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Abstract We consider small world graphs as defined
by Kleinberg (2000), i.e., graphs obtained from a d-
dimensional mesh by adding links chosen at random accord-
ing to the d-harmonic distribution. In these graphs, greedy
routing performs in O(log2 n) expected number of steps.
We introduce indirect-greedy routing. We show that giv-
ing O(log2 n) bits of topological awareness per node en-
ables indirect-greedy routing to perform in O(log1+1/d n)
expected number of steps in d-dimensional augmented
meshes. We also show that, independently of the amount
of topological awareness given to the nodes, indirect-
greedy routing performs in �(log1+1/d n) expected num-
ber of steps. In particular, augmenting the topological
awareness above this optimum of O(log2 n) bits would
drastically decrease the performance of indirect-greedy
routing.

Our model demonstrates that the efficiency of indirect-
greedy routing is sensitive to the “world’s dimension,” in
the sense that high dimensional worlds enjoy faster greedy
routing than low dimensional ones. This could not be ob-
served in Kleinberg’s routing. In addition to bringing new
light to Milgram’s experiment, our protocol presents sev-
eral desirable properties. In particular, it is totally oblivi-
ous, i.e., there is no header modification along the path from
the source to the target, and the routing decision depends
only on the target, and on information stored locally at each
node.

A preliminary version of this paper appeared in the proceedings of
the 23rd ACM Symposium on Principles of Distributed Computing
(PODC), St. Johns, Newfoundland, Canada, July 25–28, 2004.
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1 Introduction

We consider small world graphs as defined by Kleinberg [7],
i.e., graphs obtained from a d-dimensional mesh, for some
fixed d ≥ 1, by adding long-range links chosen at random
according to the d-harmonic distribution, i.e., the probabil-
ity that x chooses y as long-range contact is h(x, y) =
1/(Zx ·dist(x, y)d) where dist() is the Manhattan distance in
the mesh (i.e., the distance in the L1 metric), and Zx is a nor-
malizing coefficient (cf. Sects. 5.1 and 5.2 for more details).
This model aims at giving formal support to the “six degrees
of separation” between individuals experienced by Mil-
gram [14], and recently reproduced by Dodds, Muhamad,
and Watts [5] (see also [1]). In a social context, professional
as well as leisure occupation, citizenship, geography, ethnic-
ity, and religiousness are all intrinsic dimensions of the hu-
man multi-dimensional world, playing different roles with
possibly different impact degrees [6]. Each of these dimen-
sions should be used as an independent criterion for routing
in the social graph. In this context, one would thus expect
that the more criteria used the more efficient the routing
should be. Surprisingly however, Kleinberg’s model does
not reflect this fact, in the sense that greedy routing has
the same performance whether the number of mesh dimen-
sions considered is one, two, or more. Indeed, Kleinberg
has shown that greedy routing in the n-node d-dimensional
mesh augmented with long-range links chosen according to
the d-harmonic distribution performs in O(log2 n) expected
number of steps, i.e., independently of d . (This bound is
tight as it was shown in [3] that greedy routing performs in
at least �(log2 n) expected number of steps, independently
of d). Kleinberg has also shown that augmenting the d di-
mensional mesh with the r -harmonic distribution, r �= d ,
results in poor performance, i.e., �(nαr ) expected number
of steps for some positive constant αr . Furthermore, it is
shown in [2] that, in the 1-dimensional mesh augmented
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according to any probabilistic distribution, greedy rout-
ing performs in �(log2 n/ log log n) expected number of
steps, and this lower bound is conjectured to hold in higher
dimensions.

In light of the previous lower bounds combined with
the fact that the expected diameter of augmented meshes is
O(log n) (cf. [13]), one can conclude that the absence of the
dimension parameter from the complexity of greedy rout-
ing in augmented meshes is a problem of the greedy rout-
ing specification, and not of the links distribution. We thus
propose a new greedy protocol, called indirect-greedy rout-
ing, based on additional topological awareness given to the
nodes, meaning that every node x is aware of the existence of
a list Ax of long-range links. (Hence note that by additional
topological awareness we do not mean adding more long-
range contacts to nodes). Kleinberg’s model can actually be
seen as a special case of our model in which the awareness
of every node is reduced to its own long-range contact, i.e.,
to O(log n) bits. At every step of indirect-greedy routing to-
ward a target t , there are two phases. In the first phase, the
current node x uses its awareness Ax to select an intermedi-
ate destination x̂ , i.e., a node such that its long-range contact
is close to t . In the second phase, x applies greedy routing
toward x̂ , and forwards to some neighbor y. In y, the same
process is applied, a new intermediate destination ŷ is se-
lected (thanks to y’s awareness Ay), and greedy routing is
applied toward ŷ. And so on. The intermediate destination
may or may not remain the same at every step of indirect-
greedy routing. Once the routing reaches a node x for which
x = x̂ , greedy routing applies, and forwards to the neighbor
of x that is closest to the target t . The same actions are re-
peated at every node until the routing eventually reaches the
target.

1.1 Our results

We show that if every node is given a topological awareness
of size O(log2 n) bits or, more specifically, if every node
is aware of the long-range contacts of its O(log n) closest
nodes in the d-dimensional mesh, then indirect-greedy
routing performs in O(log1+1/d n) expected number of
steps. Comparing the indirect-greedy protocol with other
greedy protocols of the literature (cf. Table 1) demonstrates
that, for an awareness of �(log2 n) bits, our protocol is the
fastest. Indeed, this table displays the performances of vari-
ants of greedy routing in d-dimensional meshes augmented
using d-harmonic distributions, with c long-range contacts
per node.1 For d ≥ 2, indirect-greedy routing performs
faster than any other greedy algorithm, for any value of c
such that the amount of awareness is �(log2 n) bits, i.e.,
c = log n for Kleinberg’s greedy routing and Decentralized

1 The coefficient 1/c1/d in front of the performance of indirect-
greedy routing comes from the fact that if every node has c long-range
contacts, then to get an awareness of O(log n) long-range links, every
node just needs to be aware of the long-range contacts of all nodes at
distance O((

log n
c )1/d ) from it. (The same holds for [13]).

Table 1 Performance of variants of greedy routing in d-dimensional
meshes augmented using d-harmonic distributions, with c long-range
contacts per node

Amount of
awareness

Routing algorithm Expected #steps (#bits)

Greedy [7] O( 1
c log2 n) O(c log n)

Greedy [3, 13] �( 1
c log2 n) O(c log n)

Greedy [2] �( 1
c log2 n/ log log n) O(c log n)

NoN-greedy [12] O( 1
c log c log2 n) O(c2 log n)

Decentralized algorithm [10] O( 1
log2 c

log2 n) O(c log n)

Non oblivious [13] O( 1
c1/d log1+1/d n) O(log2 n)

Indirect-greedy [This paper] O( 1
c1/d log1+1/d n) O(log2 n)

algorithm, and c = √
log n for NoN-greedy routing [12],

defined in the percolation model of [4]. For c = √
log n,

indirect-greedy performs in O(log1+1/2d n) expected
number of steps, that is faster than O(log3/2 n/ log log n)
steps for NoN-greedy. For c = log n, indirect-greedy
performs in O(log n) steps, as Kleinberg’s greedy routing.
The Decentralized algorithm [10] visits O(log2 n/ log2 c)
nodes, and distributively discovers routes of expected length
O(log n(log log n)2/ log2 c) links using headers of size
O(log2 n) bits.

The algorithm in [13] has the same performance as
indirect-greedy. It is however not oblivious. In contrast, our
protocol is totally oblivious, i.e., there is no header mod-
ification along the path from the source to the target, and
the routing decision depends only on the target, and on in-
formation stored locally at each node. Obliviousness is a
desirable property for a routing protocol because the deci-
sions are taken locally at each node independently of the
past, hence insuring better fault-tolerance. (This is of course
true up to a reasonable tradeoff between performance and
simplicity/fault-tolerance). Our interest in obliviousness is
actually motivated by Milgram’s experiment in which the
intermediate persons performed in an oblivious manner.

Surprisingly, the positive impact of additional topolog-
ical awareness reaches a certain limit, as far as indirect-
greedy routing is concerned. Indeed, if the number c of
long-range contacts of each node is constant, then indirect-
greedy routing performs in �(log1+1/d n) expected number
of steps, independently of the topological awareness given
to the nodes, that is independently of the lists Ax , and of
their sizes. Above a certain limit, augmenting the topolog-
ical awareness of the nodes not only becomes useless, but
also degrades the performance of indirect-greedy routing.
Precisely, this limit is �(log2 n) bits of topological aware-
ness per node (i.e., the awareness of �(log n) long-range
links).

These results prove that there is no trade-off between
the amount of topological awareness given to the nodes and
the performance of indirect-greedy routing, and demonstrate
an intrinsic limitation of this strategy in augmented graphs.
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In particular, if every node has a topological awareness of
size n, i.e., is aware of all long-range contacts, then indirect-
greedy routing would not perform better than Kleinberg’s
greedy routing, leading to an �(log2 n) expected number of
steps.

More importantly, our study captures the trade-off that
we expected: if social entities are living in a d-dimensional
world, then giving additional topological awareness of
O(log2 n) bits to these entities enables indirect-greedy rout-
ing to perform in O(log1+1/d n) expected number of steps.
(Again, this is in contrast with Kleinberg’s greedy rout-
ing which performs in �(log2 n) number of steps, indepen-
dently of the world’s dimension.) In particular, our model
demonstrates a significant difference between routing using
one criterion (i.e., in the 1-dimensional mesh), which per-
forms in O(log2 n) expected number of steps, and routing
using two criteria (i.e., in the 2-dimensional mesh), which
performs in O(log3/2 n) expected number of steps. (Note
that in both cases, every node has only one long-range con-
tact). The relative improvement decreases when the number
of dimensions increases, which is consistent with what was
observed by Killworth and Bernard [6].

To summarize, given a fixed number of “acquaintances”
2d + c per node in an augmented d-dimensional mesh
with c long-range contacts per node, greedy routing per-
forms in O( 1

c log2 n) expected number of steps, whereas
indirect-greedy routing performs in O( 1

c1/d log1+1/d n) ex-
pected number of steps. These results lead to the conclusion
that the variety d of our relationships seems to have more
impact on the distance between people than the number
2d + c of these relations, as far as Milgram’s experiment
is concerned. Our investigation is perhaps a first step toward
the formalization of arguments in favor of the sociological
evidence stating that eclecticism shrinks the world.

1.2 Organization

The paper is organized as follows. The next section precisely
describes indirect-greedy routing, including the notion of
topological awareness. Then, in Sect. 3, we give a neces-
sary and sufficient condition for indirect-greedy routing to
converge, and we compute an upper bound on the expected
number of steps of indirect-greedy routing when nodes are
aware of the long-range contacts of their O(log n) closest
neighbors in the mesh. In Sect. 4, we compute a tight lower
bound on the expected number of steps of indirect-greedy
routing, independently of the amount of awareness given to
the nodes. Finally, in Sect. 5, we give further motivations to
our model, by revisiting it in the context of Milgram’s ex-
periment. In particular:

• we will expand on the surprising fact that giving more
awareness does not necessarily improve performances,
at least as far as Milgram’s experiment is concerned, and

• we will motivate our interpretation of the dimensions of
the mesh in terms of criteria based on which routing is
performed.

The reader unaware of the details of Milgram’s experi-
ments and of Kleiberg’s results can consult Sects. 5.1 and
5.2 respectively.

2 Topological awareness and indirect-greedy routing

We address the following question: is there some additional
“topological awareness” that could be given to nodes so that
greedy-like routing performs in less than �(log2 n) expected
number of steps in the augmented d-dimensional mesh, at
least for d > 1? By additional topological awareness we
do not mean adding long-range contacts to nodes (in the
remainder, there is only one long-range contact per node).
Obviously, if nodes are given more than one long-range
contact, then the performance of greedy routing can be im-
proved, however to a limited extent only. For instance, with
c long-range contacts per node, Kleinberg’s greedy routing
would perform in �( 1

c log2 n) expected number of steps [3],
which remains �(log2 n) for c = O(1). We propose a model
in which the log2 n barrier can be overcome, with a constant
number c (say, c = 1) of long-range contacts per node.

Kleinberg’s “traditional” greedy routing fails to discover
short routes for at least two reasons. First, the path toward
the target may never pass exactly by nodes possessing
long-range links leading close to the target, and, second,
the path toward the target does not consider long-range
links for which a small detour is necessary. To address
these two problems, indirect-greedy routing considers more
long-range links (thanks to the “awareness” of each node),
and allows detours going away from the target when this
enables to find a long-link leading close to the target.

2.1 Topological awareness

In our model, we assume that, in addition to the underly-
ing graph, and to its long-range contact in the augmented
graph, every node is aware (say, assuming that the nodes
model social entities, thanks to some rumors) of some list of
“acquaintances” between pairs of other nodes. This idea is
formalized as follows.

Definition 1 The topological awareness of a node x is a list
Ax of long-range links in the augmented graph.

In Kleinberg’s model Ax = {ex } where ex is the long-
range link of x . We consider the case in which Ax =
{e1, e2, . . . , ek} with ex ∈ Ax and where, for every i , ei
is a long-range link not necessarily incident to x . Note that
the degree of x remains unchanged compared to Kleinberg’s
model, i.e., the number of long-range contacts of every node
x is the same in our model than in Kleinberg’s model.
For instance, in Fig. 1, node x has four neighbors in the
2-dimensional mesh: a, b, c, and d . It also has one long-
range contact x ′. The topological awareness of x is Ax =
{(x, x ′), (a, a′), (d, d ′), (y, y′)}. This means that node x is
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Fig. 1 Long-range links in the 2-dimensional mesh. The topological
awareness of node x is composed of the four plain long-range links

aware that there is a long-range link from a to a′, from d to
d ′, and from y to y′. Note that x does not have any long-
range link to either y or y′, but is just aware that there is a
long-range link from y to y′. On the other hand, x does not
know the long-range contacts of b and c.

This gives rise to the following: how to benefit from
the additional topological awareness given to the nodes
to perform simple (i.e., greedy) routing in the augmented
d-dimensional mesh? To answer this question, we define
indirect-greedy routing.

2.2 Indirect-greedy routing

To define indirect-greedy routing, let us introduce some no-
tation. For a directed edge e = (u, v), we denote u = tail(e),
and v = head(e). The 2d neighbors of the current node
x in the d-dimensional mesh are denoted by w1, . . . , w2d ,
and the long-range contact of x is denoted w0. Finally, let
t be the target node, t �= x . The function dist(u, v) is the
Manhattan distance between nodes u and v in the mesh.

Phase 1. Among all edges in {(x, w1), . . . , (x, w2d)} ∪ Ax ,
x selects an edge e such that head(e) is closest to the
target t in the mesh (according to the Manhattan dis-
tance). If there are several such edges e, x selects one
such that tail(e) is the closest to x in the mesh. Possible
remaining ties are broken arbitrarily. If tail(e) = x or if
dist(x, tail(e)) ≥ dist(x, t), then set x̂ = t , otherwise set
x̂ = tail(e).

Phase 2. Node x selects, among its 2d + 1 neighbors
w0, w1, . . . , w2d , the one that is the closest to x̂ , and for-
wards to that neighbor.

In the following, the node x̂ selected during Phase 1
is called the intermediate destination for x . Note that we
set x̂ = t if dist(x, tail(e)) ≥ dist(x, t). We could replace
this latter condition by dist(x, tail(e)) + dist(head(e), t) ≥
dist(x, t) but this would not improve the performance of
indirect-greedy routing. In fact, the condition dist(x, tail
(e)) ≥ dist(x, t) is somewhat more consistent with the fact
that routing from x to tail(e) is performed by traditional

greedy routing, whereas routing from head(e) to t is per-
formed by indirect-greedy routing.

Remark 1 Indirect-greedy routing is totally oblivious, i.e.,
there is no header modification along the path from the
source to the target, and the routing decision depends only
on the target, and on information stored locally at each
node. That is, in contrast with non-oblivious protocols
(see, e.g., [10, 13]), the computation of the intermediate
destination is performed at every node involved in the
routing process. In particular, if x is the current node, and
if wi is the neighbor of x to which it forwarded during
Phase 2, then the intermediate destination ŵi for wi may be
different from the intermediate destination x̂ for x .

Let us take two extreme examples to illustrate the behav-
ior of indirect-greedy routing:

(a) If the topological awareness of every node is reduced to
its own long-range contact, then the edge e selected dur-
ing Phase 1 is necessarily incident to the current node x ,
i.e., tail(e) = x and thus x̂ = x . Thus, during Phase 2, x
forwards to head(e). Therefore, indirect-greedy routing
reduces to greedy routing in this case.

(b) If the topological awareness of every node is the whole
graph, i.e., if every node is aware of all long-range con-
tacts (a very unrealistic hypothesis), then let e1, . . . , ek
be the k ≥ 1 long-range links such that, for every i ,
1 ≤ i ≤ k, dist(head(ei ), t) is minimum among all long-
range links. At every node involved in routing, the in-
termediate destination is yi = tail(ei ) for some i . (The
intermediate destination may change if the current node
is at equal distance from two intermediate destinations.)
For a source s, let m = min1≤i≤k dist(s, yi ). Most of the
process actually consists in traveling distance m in the
mesh, from s to one of the yi ’s, using Kleinberg’s greedy
routing. Hence, indirect-greedy routing also reduces to
greedy routing in this case. Obviously, in this example, a
faster routing would be obtained by computing a short-
est path from the source to the target in the augmented
mesh, but this would be a quite unrealistic model as far
as social networks are concerned (see Sect. 5).

Remark 2 As opposed to Kleinberg’s greedy routing, the
Manhattan distance to the target is not strictly decreasing at
each step of indirect-greedy routing. Indeed, an intermedi-
ate destination can be farther from the target than the current
node, and thus going to this intermediate destination may
result in increasing the Manhattan distance to the target. We
will see in the next section that, under a weak condition, this
phenomenon has little impact on the expected performance
of indirect-greedy routing because it is counter balanced by
the fact that the intermediate destination has a long-range
contact leading close to the target.

3 Performance of indirect greedy routing

In this section, we give a sufficient condition for indirect-
greedy routing to converge, i.e., to always route correctly
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for any setting of the long-range links. We later prove that
if every node is aware of the long-range contacts of its
O(log n) closest nodes in the d-dimensional mesh, then
indirect-greedy routing performs in O(log1+1/d n) expected
number of steps.

Let Ax be the topological awareness given to every node
x . The set {Ax | x ∈ V } is called the system of awareness of
the augmented mesh H = (V, E). Now, for every node x , let
us denote by Nx the set of x’s neighbors in H (thus including
x’s long-range contact). For every link e with tail(e) �= x , we
then define

Nx (e) = {y ∈ Nx | dist(y, tail(e))

≤ dist(z, tail(e)) for every z ∈ Nx }.
Nx (e) is the set of neighbors of x closest to tail(e), i.e.,
those nodes to which x forwards when applying Kleinberg’s
greedy routing toward tail(e). Our condition for convergence
of indirect-greedy routing is based on the following defini-
tion.

Definition 2 A system of awareness {Ax | x ∈ V } is mono-
tone if, for every x , and for every e ∈ Ax \ {ex } where
ex is the long-range link of x , we have e ∈ Ay for every
y ∈ Nx (e).

Remark 3 If all sets Sx = {tail(e) | e ∈ Ax } have the same
shape S for all nodes x , in the sense that S = Sx0 = {tail(e) |
e ∈ Ax0} for some fixed node x0, and Sx is obtained by
translating Sx0 along the vector x0 → x , then monotonicity
is equivalent to the fact that every shortest path in the mesh
from x0 to any node in S is included in S. “Being mono-
tone” is more general than “having the same shape” because
it does not require the structure of the topological awareness
to be the same for all nodes.

Lemma 1 If the system of awareness is monotone then
indirect-greedy routing converges.

Proof Let s be the current node, and let t be the target. Let
u be the current intermediate destination, and let v be the
long-range contact of u. We define the potential of s with
respect to destination t as:

φt (s) = dist(s, u) + n · dist(v, t)

From s, the route goes to some node s′ on a shortest path
from s to u. If the intermediate destination at s′ is the same
as the one at s, then φt (s′) ≤ φt (s) − 1. If the intermedi-
ate destination changes, then let u′ be the new intermediate
destination, and let v′ be its long-range contact. Since the
system of awareness is monotone, we have (u, v) ∈ As′ .
Therefore, dist(v′, t) ≤ dist(v, t).

– If dist(v′, t) < dist(v, t) then

φt (s
′) = dist(s′, u′) + n · dist(v′, t) ≤ (n − 1)

+ n · (dist(v, t) − 1) = dist(v, t) − 1 < φt (s).

– If dist(v′, t) = dist(v, t) then Phase 1 of indirect-greedy
routing specifies that since s′ chooses u′, u′ is at least as
close to s′ as u. Therefore,

φt (s
′) = dist(s′, u′) + n · dist(v′, t) ≤ dist(s′, u)

+ n · dist(v, t) ≤ φt (s) − 1.

Therefore, in all cases, the potential is strictly decreas-
ing after each step of indirect-greedy routing. Thus indirect-
greedy routing eventually reaches the target. 	


Let d be any fixed positive integer (the dimension of the
mesh).

Theorem 1 In the d-dimensional mesh augmented with
one long-range link per node chosen according to the
d-harmonic distribution, if every node is aware of the
long-range contacts of all nodes at Manhattan distance ≤
log1/d n in the mesh, then indirect-greedy routing performs
in O(log1+1/d n) expected number of steps.

The remainder of this section is dedicated to the proof of
Theorem 1. Notice that the system of awareness induced by
balls of the same radius is monotone (cf. Remark 3). There-
fore, thanks to Lemma 1, indirect-greedy routing converges.
We compute the expected number of steps to reach any tar-
get from any source. Let x be the current node, and t be the
target node. First, we consider the case where x is far from
the target t in the mesh, that is dist(x, t) > λ · log1/d n for a
sufficiently large constant λ that will be determined later.

Remark 4 The general argument of the proof consists in
computing the expected number of steps for reducing the
distance to the target by a factor at least 2, and to reapply
iteratively this argument every time the distance to the target
has been reduced by a factor at least 2. It is crucial to note
that the decision taken by the algorithm at the current node
is independent from the history of the algorithm to reach
this node. Moreover, the harmonic distribution is such that
finding a long-range link halving the distance m to the tar-
get is independent from m. Therefore, the expected number
of steps to decrease the distance to the target by a factor at
least 2, conditioned to the fact that the current node is x , is
in fact independent from x . This is why we can sum up the
conditional expectations to get the total expected number of
steps for reaching the target. On the other hand, the num-
ber of fresh long-range links in the awareness of the current
node x depends on how x was reached. For instance, if x is
reached via a link of the underlying mesh, then there are less
fresh long-range links in the awareness of x than if x would
have been reached via a long link. This type of dependency is
taken into account in our analysis of indirect-greedy routing.

Lemma 2 Starting at a node x at Manhattan distance m >
λ log1/d n from the target, λ > 1, indirect-greedy routing
reaches a node at Manhattan distance ≤ λ log1/d n from the
target in at most O(log1+1/d n) expected number of steps.

Proof Let m = dist(x, t) > λ1 log1/d n for some λ1 > 1,
and let us compute the expected number of steps required by
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indirect-greedy routing for reaching a node x ′ at Manhattan
distance ≤ m/2 from t . Let

B = {u | dist(u, t) ≤ m/2}.
For any node u, let

V (u) = {v | dist(u, v) ≤ log1/d n}.
V (u) corresponds to the set of all possible tails of the long-
range links known by u. We define the subset V ′(u) of V (u)
as follows:

V ′(u) = {v ∈ V (u) | dist(v, t) ≤ m}.
For two node sets X and Y , let Pr(X → Y ) be the proba-
bility that at least one node in X has its long-range contact
in Y . Claim 1 Pr(V (x) → B) is asymptotically at least some
constant β > 0 (depending only on the dimension d of the
mesh).

Proof We have Pr(V (x) → B) ≥ Pr(V ′(x) → B). Note
that |V ′(x)| ≥ 1

2d |V (x)| as t �∈ V (x) since λ1 > 1. There-
fore, |V ′(x)| = �(log n). Let a > 0 and n1 > 0 be such
that |V ′(x)| ≥ a log n for any n ≥ n1. For any node u,
let Eu be the event “u has its long-range contact in B.” We
have Pr(V ′(x) → B) = 1 − �u∈V ′(x)(1 − Pr(Eu)). Let
p = Pr(Ex ). Since Pr(Ex ) ≤ Pr(Eu) for any u ∈ V ′(x),
we get Pr(V ′(x) → B) ≥ 1 − (1 − p)|V ′(x)|. Now, we have

p =
∑

u∈B

h(x, u) = 1

Zx

∑

u∈B

1/dist(x, u)d

where Zx = ∑

w �=x 1/dist(x, w)d .

On one hand Zx = ∑

i≥1 |Si |/ id where Si is the set
of nodes at Manhattan distance exactly i from x . We have
|Si | = O(id−1) for any i . Thus Zx = O(log n).

On the other hand,
∑

u∈B

1/dist(x, u)d ≥|B|/(3m/2)d ≥�(md)/(3m/2)d ≥�(1).

Therefore p is at least �(1/ log n). Let b > 0 and n2 ≥ n1
be such that p ≥ b/ log n for any n ≥ n2. We have

(1 − p)|V ′(x)| ≤ (1 − b/ log n)a log n

for any n ≥ n2. Since (1−b/z)az ≈ e−ab for large z, we get
that 1 − (1 − p)|V ′(x)| ≥ f (n) where f (n) ≈ 1 − e−ab for
large n. Let 0 < β < 1 − e−ab. There exists n3 ≥ n2 such
that Pr(V (x) → B) ≥ β for any n ≥ n3. 	


Let x1 ∈ V (x) be the intermediate destination se-
lected by x = x0 during phase 1 of indirect-greedy rout-
ing. In phase 2, the route goes from x0 to x1 according to
Kleinberg’s greedy routing. However, on the way to x1, new
long-range links are discovered, and possibly a new node x2
whose long-range contact is a node closer to t than the long-
range contact of x1 is discovered (see Fig. 2a). If such a new
node x2 is discovered (on Fig. 2a, x2 is discovered at node
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Fig. 2 Intermediate destinations before jumping into B

s1), x1 is discarded, and the new intermediate destination be-
comes x2. In this case, x2 is discovered after performing at
most log1/d n steps of routing toward x1 in the worst-case.
Indeed, every node is aware of the long-range contacts in
a ball of radius log1/d n. Again, on the way to x2, possibly
a new node x3 whose long-range contact leads to a node
closer to t than the long-range contact of x2 is discovered at,
say s2, and routing switches to x3. This phenomenon may
occur many times, constructing a sequence x0, x1, x2, . . . of
intermediate destinations, with x0 = x (see Fig. 2a). More
formally, we define the following:

Definition 3 An intermediate destination v is good if (1) the
path constructed by indirect-greedy routing reaches v, (2)
the intermediate destination v̂ for v satisfies v̂ = t , and (3)
the long-link of v is used by indirect-greedy routing at v.
The intermediate destination v is bad otherwise.

In the sequence (xi )i≥0 of intermediate destinations de-
fined above, since xi+1 is the intermediate destination for
si , the Manhattan distance between every two consecutive
intermediate destinations xi and xi+1 satisfies

dist(xi , xi+1) ≤ 2 log1/d n for every i ≥ 0. (1)

Claim 2 There exists a constant λ2 > 0 such that starting
from x at distance > λ2 · log1/d n from the target, the ex-
pected number of bad intermediate destinations xi ’s is at
most a constant γ depending only on the dimension of the
mesh, or routing reaches a node at distance ≤ λ2 log1/d n
from the target.

Proof Let si be the node where indirect-greedy routing
switches from xi to xi+1, with possibly si = xi if xi
is bad. Let Ci be the set of all tails of the new long-
range links discovered while going from si to xi+1, and let
a0, a1, a2, . . . , al be the path from si toward xi+1 generated
by Kleinberg’s greedy routing, where a0 = si and al = si+1.
This path is the one generated by Phase 2 of indirect-greedy
routing. By definition, we have Ci = (∪l

j=1V (a j )) \ V (si ).
The path a0, a1, a2, . . . , al is included in the ball centered at
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Fig. 3 The set Ci is included in the Grey area, and in the 2-dimensional mesh |Ci | ≤ 3 log n

xi+1 and of radius dist(si , xi+1) because Kleinberg’s greedy
routing always decreases the distance to the target (here the
target is xi+1). This inclusion holds even if the path contains
long-range links (a j , a j+1). Hence |Ci | ≤ (2d −1) log n (see
Fig. 3). Let E be the event “there is a long-link e such that
tail(e) ∈ Ci and head(e) is closer to t than the long-range
contact of xi+1.” One cannot directly state that

Pr(E) ≤ |Ci | / (|V (si )| + |Ci |)
because the probability of having a long-range contact close
to t changes with the distance to the target. Nevertheless,
since Ci is included in the ball centered at xi+1 and of ra-
dius log1/d n, the maximum distance between two nodes in
Ci is only a small fraction of m if m = �(log1/d n), and
thus this probability does not change much along the path
a0, a1, a2, . . . , al . Therefore, for any ε > 0, there exists
λε > 0 such that

Pr(E) ≤ (1 + ε) · |Ci | / (|V (si )| + |Ci |)
for every i such that dist(si , t) > λε · log1/d n. Therefore,
since |V (si )| = log n and |Ci | ≤ (2d − 1) log n, we get that
for any ε > 0, there exists λε > 0 such that, if dist(si , t) >

λε · log1/d n, then the probability that, while going from si
to xi+1, a better intermediate destination is discovered is at
most

pε ≤ (1 + ε) · 1

1 + 1
2d−1

.

Let ε < 1/(2d −1) so that pε < 1. The expected number
of successes of trials which succeed each with probability at
most pε is constant γ (i.e., depending only on d and ε but
not on n). Therefore, by setting λ2 = max{λ1, λε}, we get
that starting from x at distance λ2 · log1/d n from the target,
the expected number of bad intermediate destinations xi ’s
is at most γ (or routing reaches a node a node at distance
≤ λ2 log1/d n from the target). 	


From Eq. (1) and Claim 2, after at most 2γ log1/d n
expected number of steps, one eventually reaches a good
intermediate destination y1 (see Fig. 2a). Since y1 is good,
the long-link is used, leading to some node z1 (see Fig. 2b).
If z1 ∈ B then we are done. Otherwise, starting from z1,
indirect-greedy routing eventually reaches another good
intermediate destination y2. Since y2 is good, the long-link
is used, leading to some node z2. And so on. We construct in
this way the sequence z1, z2, . . . of the long-range contacts
of the good intermediate destinations y1, y2, . . . that are
reached during indirect-greedy routing (see Fig. 2b). Let Ei
be the event “at least one node in V (zi ) has its long-range
contact in B.”

Claim 3 There exists a constant λ3 > 0 such that starting
from x at distance > λ3 · log1/d n from the target, the ex-
pected number of good intermediate destinations yi that are
visited before the event Ei holds is constant (i.e., depend-
ing only on the dimension of the mesh), or routing reaches a
node a node at distance ≤ λ3 log1/d n from the target.

Proof We observe the two following points.

(1) By construction, the long-range contact z1 of y1 is not
farther to t than any other node that was visited by
indirect-greedy routing before. Actually, z1 is not farther
to t than any end-point of long-range links in the aware-
ness of nodes visited before.

(2) The expected distance between y1 and z1 is at least
log1/d n. Indeed, the expected distance between y1 and
z1 is

∑

i≥1

i Pr(dist(y1, z1) = i)
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≥
∑

i≥dist(y1,t)/2

i Pr(dist(y1, z1) = i)

≥ dist(y1, t)

2
Pr(dist(y1, z1) ≥ dist(y1, t)/2)

≥ dist(y1, t)

2
Pr(dist(z1, t) ≤ dist(y1, t)/2).

By the same analysis as Claim 3, Pr(dist(z1, t) ≤
dist(y1, t)/2) ≥ β. Thus the expected distance between y1
and z1 is at least β dist(y1, t)/2. Setting λ3 = 4/β, and as-
suming that dist(y1, t) > λ3 log1/d n, the expected distance
between y1 and z1 is such that the two balls centred at y1
and z1, and of radius log1/d n do not intersect.

Combining these two observations, we get that the long-
links whose tails are in V ′(z1) have never been considered
so far by indirect-greedy routing. Therefore, Claim 1 can be
applied to z1 and we get that Pr(V ′(z1) → B) ≥ β. Thus we
can repeat the same analysis for z1 as we did for x , yielding
that after at most γ log1/d n expected number steps indirect-
greedy routing reaches y2, and from there z2. By repeating
the same analysis at every zi , we get that

Pr(V ′(zi ) → B) ≥ β

for every i ≥ 1. Therefore the number of good intermediate
destinations visited before Ei holds is 1/β. 	


Set λ = max{λ1, λ2, λ3}. From Claim 3, starting from x
at Manhattan distance m > λ log1/d n from t , it takes at most
1
β

log1/d n expected number of steps to reach a node in B,

or a node at distance ≤ λ log1/d n from the target. In other
words, decreasing the Manhattan distance by a factor of 2
takes at most O(log1/d n) expected number of steps. There-
fore, from any source at Manhattan distance m > λ · log1/d n
from t , it takes O((log m) · (log1/d n)) = O(log1+1/d n) ex-
pected number of steps to reach a node at Manhattan dis-
tance ≤ λ · log1/d n from t . This completes the proof of
Lemma 2. 	


It remains to consider the case where the current node x
is close to the target t , i.e., m = dist(x, t) ≤ λ · log1/d n for
some constant λ.

Lemma 3 Starting at a node x at distance ≤ λ log1/d n
from the target, indirect-greedy routing reaches the target
in at most O(log1+1/d n) number of steps on expectation.

Proof Let u be the current intermediate destination (i.e., the
one selected by x), and let v be the long-range contact of u.
We proceed similarly as in the proof of Lemma 1, and define
the potential of x as

φt (x) = dist(x, u) + dist(v, t) · (1 + log1/d n).

From x , the route goes to some node x ′ on a path from x to
u. If the intermediate destination at x ′ is the same as the one
at x , then φt (x ′) ≤ φt (x)− 1. If the intermediate destination
changes, then let u′ be the new intermediate destination, and

let v′ be its long-range contact. Since balls form a mono-
tone system of awareness, we have (u, v) ∈ Ax ′ . Therefore
dist(v′, t) ≤ dist(v, t).

If dist(v′, t) < dist(v, t) then

φt (x ′) = dist(x ′, u′)+ dist(v′, t) · (1 + log1/d n) ≤ log1/d n

+ (dist(v, t) − 1) · (1 + log1/d n) < φt (x).

If dist(v′, t) = dist(v, t) then Phase 1 of indirect-greedy
routing specifies that since x ′ chooses u′, dist(x ′, u′) ≤
dist(x ′, u). Therefore,

φt (x ′)=dist(x ′, u′)+dist(v′, t) · (1 + log1/d n)≤dist(x ′, u)

+ dist(v, t) · (1 + log1/d n) ≤ φt (x) − 1.

Therefore, in all cases, the potential is strictly decreasing af-
ter each step of indirect-greedy routing. The potential of a
node x at distance m from t is at most log1/d n + m · (1 +
log1/d n). Thus, a node at distance at most λ · log1/d n from t
has potential ≤ O(log2/d n) ≤ O(log1+1/d n). Therefore,
the target is reached after at most O(log1+1/d n) steps,
which completes the proof of Lemma 3. 	


Theorem 1 directly follows from Lemmas 2 and 3.

4 Lower bounds for indirect-greedy routing

Theorem 1 shows that indirect-greedy routing with topolog-
ical awareness of the O(log n) closest neighbors in the mesh
routes faster than greedy routing. Hereafter, in Theorem 2,
we show that the expected number of steps of indirect-
greedy routing is �(log1+1/d n) for any amount of aware-
ness. More interestingly, Theorem 2 demonstrates that log n
links is an optimum for the awareness. If the amount v(n)
of awareness is smaller than log n links then the expected
number of steps is a decreasing function of the awareness
(see Fig. 4). However, after the threshold of v(n) = log n,
the expected number of steps is an increasing function of the
amount of awareness (see Fig. 4).

Theorem 2 In the d-dimensional mesh augmented with
one long-range link per node chosen according to the d-
harmonic distribution, for any 1 ≤ v(n) ≤ n, if every
node is aware of the long-range contacts of its v(n) clos-
est nodes in the mesh, then indirect-greedy routing performs
in �(log1+1/d n) expected number of steps. More precisely,
if d > 1, and v(n) = logα n for some α ≥ 0, then a perfor-
mance of O(log1+1/d n) expected number of steps cannot be
reached if α �= 1.

To prove Theorem 2, we first prove the following:

Lemma 4 Reaching a node at distance m using (Kleinberg’s)
greedy routing requires:

• at least m expected number of steps if m = logα n for
some α < 1;

• at least log m log n expected number of steps if m =
logα n for some α > 1:
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Fig. 4 The expected number of steps vs. the awareness v(n) =
(log n)α . The expected number of steps is �((log n)2+α/d−α) if α < 1
(by Lemma 5), and �((log n)1+α/d−o(1)) if 1 ≤ α < d (by Lemma 6).
For α > d , the expected number of steps is �(log2 n) (by Lemma 6)

Proof Let s be the source node, t be the target node, and
m = dist(s, t). Assume first that m = logα n for some α <
1. Let r ≤ m, and let B be the ball of radius 2r centered at
x . By definition of the d-harmonic distribution, we have

Pr(x → B) =
∑

b∈B

Pr(x → b) ≈ 1

log n

∑

b∈B

1

dist(x, b)d

≈ 1

log n

2r∑

i=1

|Si |
id

where Si is the set of nodes at distance exactly i from x .
Thus

Pr(x → B) ≈ 1

log n

2r∑

i=1

id−1

id
≈ log r

log n
≤ log m

log n
.

Therefore, while going from s to t using Kleinberg’s greedy
routing, the expected number of discovered long range links
that connect to nodes closer to t than the current node is
O(

m log m
log n ). Since m = logα n with α < 1, this number goes

to zero as n goes to infinity, and thus no long range link is
used between s and t , resulting in m expected routing steps.

Assume now that m = logα n for some α > 1. Then, for
i ≥ 0, let

Bi = {u | dist(u, t) ≤ m/2i }.
For any node x ∈ B0 \ B1, and any i ≥ 1, we have (ignoring
the constant depending on d only):

Pr(x → Bi ) =
∑

b∈Bi

Pr(x → b) ≈ 1

log n

∑

b∈Bi

1

dist(x, b)d

≤ 1

log n
· |Bi |

md(1 − 1
2i )

d

The latter inequality follows from the fact the d-harmonic
distribution decreases with the distance. Since |Bi | ≈
(m/2i )d , we get that, up to a constant,

Pr(x → Bi ) ≤ 1

log n
· (m/2i )d

md(1 − 1
2i )

d
= 1

(2i − 1)d log n
.

Therefore, while traveling in B0\B1, the probability to visit a
node whose long-range contact is in B1 is only O(1/ log n).
Thus while traveling in B0\B1, the expected number of steps
before visiting a node whose long-range contact is in Bi is
�(log n) for any i ≥ 1. Since m � log n, such a node will
eventually be visited. However, since Pr(x → Bi ) decreases
exponentially with i , the expected value of the index i such
that greedy routing reaches a node in Bi while entering B1
for the first time is a constant. As a consequence, an ex-
pected number of �(log n) steps are required to decrease
the distance to the target by at most a constant expected fac-
tor. Therefore, starting from a node at distance m from the
target, at least �(log m log n) expected number of steps are
required. 	


To prove Theorem 2, we consider separately the cases
v(n) 
 log n, and v(n) � log n. Intuitively, if every node
is aware of the long-range contacts of its v(n) 
 log n clos-
est neighbors, then reaching an intermediate destination is
fast, but a large number of intermediate destinations must
be visited before expecting reaching a node whose long
range-contact leads close to the target. In fact, we show the
following:

Lemma 5 If v(n) = logα n, for some 0 ≤ α < 1, then the
expected number of steps to reach the target is at least

�(((log n)/v(n))1−1/d · log1+1/d n).

Proof Let m = dist(x, t) be the distance between the current
node x and the target t . We use the same notations as in the
proof of Theorem 1. Let B = {u | dist(u, t) ≤ m/2}, and,
for any node u, let V (u) = {v | dist(u, v) ≤ v(n)1/d}. From
the definition of the d-harmonic distribution, an expected
number of �(log n) long-range contacts must be considered
before finding one that leads to a node in B. Hence, we com-
pute the expected number of steps required to learn about
�(log n) long-range contacts. Starting from x , the route vis-
its a sequence y1, y2, . . . of good intermediate destinations
(see Fig. 2).
Claim 4 The expected number of steps required to go from
y j to y j+1 is �(v(n)1/d).

Proof Let x0, x1, . . . , x
 be the sequence of bad intermedi-
ate destinations that are considered while traveling to y j+1
starting from y j , until the route eventually reaches the good
intermediate destination y j+1. I.e, x0 = y j and x
 = y j+1.
Let r = dist(x0, x1) (note that r ≤ v(n)1/d since x1 ∈
V (x0)).

Since the expected Manhattan distance r̄ between x0 and
x1 is �(v(n)1/d), and v(n) = logα n, α < 1, it follows from
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Lemma 4 that the expected number of steps required to go
from x0 to x1 is �(v(n)1/d). Actually, the routing does not
reach x1 if a new intermediate destination x2 is discovered.
However, a constant portion of the path from x0 to x1 must
be traversed before expecting to discover a new intermediate
destination. Indeed, to discover the same order of magnitude
of new long-range links as v(n), one must go at expected
distance �(v(n)1/d) from x0. Therefore, the portion of the
path from x0 to x1 that is traversed before possibly switching
toward x2 requires �(v(n)1/d) expected number of steps.
Hence, the expected number of steps required to go from y j

to y j+1 is �(v(n)1/d).
On the other hand, by Claim 2, the expected number of

steps required to go from y j to y j+1 is actually O(v(n)1/d)
because the sequence x0, x1, . . . , x
 is of constant expected
length. 	


From Claim 4, dist(y j , y j+1) ≤ O(v(n)1/d). As a
consequence, the expected number of long-range contacts
discovered while going from y j to y j+1 is O(v(n)).
Therefore, learning about an expected number of �(log n)
long-range contacts implies that the expected length k of the
sequence y1, y2, . . . , yk is �(log n/v(n)). Hence, starting
from x at distance m from the target, the route visits an
expected number of �(log n/v(n)) good intermediate des-
tinations y1, . . . , yk , and, by Claim 4, the expected number
of steps required to go from y j to y j+1 is �(v(n)1/d).
Therefore, the expected number of steps required to reach
B, and thus to reduce the distance to the target by a factor at
least 2, is �(log n/v(n)1−1/d). By the same arguments as in
the second part of the proof of Lemma 4, after this amount
of steps from a node at distance m from the target t , the
distance from t is reduced by an expected constant factor.
Therefore, starting from a node at Manhattan distance
�(n1/d) from the target, the expected number of steps to
reach the target is �(

log n
v(n)1−1/d · log n1/d), which completes

the proof of Lemma 5. 	

Conversely, if every node is aware of the long-range con-

tacts of its v(n) � log n closest neighbors in the mesh, then,
intuitively, it is easy to find a long-range link that leads close
to the target. However, traveling from the current node to
the intermediate destination that is the tail of this long-range
link requires a large number of steps. More precisely, we
show the following:

Lemma 6 If v(n) = logα n for α ≥ 1, then the expected
number of steps to reach the target is at least

�

(
log n

log(v(n)/ log n)
· v(n)1/d

)

if α < d

and

�

(
log n

log(v(n)/ log n)
· log n log v(n)

)

if α > d.

Proof Assume that the distance m = dist(x, t) between the
current node x and the destination t is > c·v(n)1/d where c is

a constant large enough. Let B = {u | dist(u, t) ≤ m/2r(n)}
where r(n) = 1

d log(2dv(n)/ log n). We have r(n) ≥ 1.
From the setting of r(n), we get:

Claim 5 Pr(V (x) → B) is asymptotically at least some pos-
itive constant.

Proof We have Pr(V (x) → B) = 1 −�y∈V (x)(1 − Pr(y →
B)). Now, ignoring the constants, we have

Pr(y → B) =
∑

b∈B

Pr(y → b) ≈ 1

log n

∑

b∈B

· 1

distd(y, b)

≥ 1

log n
· |B|
(m + v(n)1/d + m/2r(n))d

≈ 1

log n
· (m/2r(n))d

(m + v(n)1/d + m/2r(n))d

≈ 1

log n
· 1/2d·r(n)

(1 + v(n)1/d

m + 1
2r(n) )

d

≈ 1

v(n)
· 1

(1 + (v(n)/m)1/d)d

≥ 1

v(n)
· 1

(1 + 1/c)d
.

Therefore Pr(V (x) → B) is lower bounded by a function of
n that is ≈ 1 − (1 − 1

v(n)
)v(n). The latter is asymptotically

constant, and the claim follows. 	

From Claim 5, with constant probability, the current

node x finds a long-range link leading to B in its aware-
ness, i.e., a long-range link decreasing the distance to the
target by a factor 2r(n). The expected Manhattan distance
between x to a node in V (x) whose long-range contact
is in B is �(v(n)1/d). To travel such a distance using
Kleinberg’s greedy routing, the expected number of steps is,
from Lemma 4, �(v(n)1/d) if α < d , and �(log n log v(n))
if α > d . Thus, reducing the distance to the target by a fac-
tor 2r(n) requires �(v(n)1/d) expected number of steps if
α < d , and �(log n log v(n)) expected number of steps if
α > d . Therefore, starting from a node at distance �(n1/d)
from the target, the expected number of steps to reach the tar-
get is �(

log n
r(n)

·v(n)1/d) if α < d , and �(
log n
r(n)

·log n log v(n))

if α > d . 	


5 Social networks perspectives

The aim of this section is to give further motivations to our
model, by revisiting it in the context of Milgram’s experi-
ment, and in light of Kleinberg’s results.

5.1 Milgram’s experiment

Augmented graphs as defined in [17] have been introduced
as a model for the “small world phenomenon.” They consist
in families of graphs H = (G,D) obtained from a graph
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G by adding links chosen at random according to a prob-
abilistic distribution D. The graph G models an awareness
common to all the social entities represented by the nodes
of H . In other words, nodes of H are aware of the topol-
ogy G. In particular, any node x can compute the distance
distG(x, y) from x to any other node y in G. The links in G
model acquaintances between social entities that can be eas-
ily deduced from characteristics of the social entities (ge-
ographical positions, hobbies, professional activities, etc.).
The added links, called long-range links, model acquain-
tances that cannot be deduced globally because they cor-
respond to random events which created acquaintances be-
tween entities that have generally little in common. If (u, v)
is an edge of G, then any node x is aware that u and v
have some acquaintance. However, if (u, v) is a long-range
link non-incident to x , then x does not know that there is
an acquaintance between u and v. In particular, x cannot
compute the distance distH (x, y) from x to any other node
y in H .

Milgram’s experiment reports that there are short chains
of acquaintances between individuals, and that these chains
can be discovered in a greedy manner. Roughly speak-
ing, given an arbitrary source person s (e.g., living in
Wichita, KA), and an arbitrary target person t (e.g., living in
Cambridge, MA), a letter can be transmitted from s to t via
a chain of individuals related on a personal basis. The trans-
mission rule is that the letter held by an intermediate person
x is passed to the next person y who, as judged by x , is closer
to the target among all persons x knows on a first-basis.
Milgram’s experiment conclusion is often summarized as
the “six degrees of separation” phenomenon because, for
chains that reached the target,2 the number of intermediate
persons between the source and the target ranged from 2
to 10, with a median of 5.

5.2 Greedy routing in augmented meshes

In his seminal work [7, 8] (see also [9]), Kleinberg gives a
formal support to the six degrees of separation phenomenon.
He considers a d-dimensional mesh augmented with long-
range links chosen according to the d-harmonic distribution
(see Fig. 1). More precisely, the underlying graph G is the
d-dimensional mesh n1/d × · · · × n1/d , and the augmented
graph H is obtained by adding exactly one out-going link
to every node x . If there is a long-range link from x to y,
then y is called the long-range contact of x . The proba-
bility that x chooses y as long-range contact is h(x, y) =
1/(Zx · dist(x, y)d) where dist() is the Manhattan distance
in the mesh (i.e., the distance in the L1 metric), and the nor-
malizing coefficient Zx satisfies Zx = ∑

z �=x 1/dist(x, z)d .
In Kleinberg’s model, long-range links are directed, i.e., a

2 Many chains did not succeeded in Milgram’s experiment. Exper-
iments by Dodds et al. [5] revealed however that this is perhaps not
due to the inability of reaching the target, but rather due to the fact that
individuals do not necessarily benefit from their connectedness: they
often stop retransmission simply because they believe that there is no
short chain to the target, although such a chain does exist.

long-range link from x to y does not imply a long-range link
from y to x . This is consistent with what can be observed
in the human society. In particular, human relationships are
not always symmetric. More importantly, although directed
long-range links produce nodes with high in-degree, these
“hubs” remain with only an out-degree of one. Hence the
impact of hubs is kept limited in the model.3

A salient property of Kleinberg’s model is that it is a
“small world,” i.e., a graph in which not only the expected
distance between nodes is small, but also greedy routing is
able to discover short routes between any pair of nodes.

Greedy routing is a metaphor of the way social entities
proceed to search for resources or information in the graph
representing their acquaintances [1, 5, 15, 16]. These entities
are given very limited computational power. This restriction
is motivated by the fact that social entities (e.g., humans)
have bounded storage capability, and are usually unable to
perform complex computations involving more than a small
number of objects. Typically, computing shortest paths in
a graph with more than few vertices is assumed to be a
too complex task to be performed by social entities. Greedy
routing performs as follows: at the current node x , a search
for a target node t is forwarded to the neighboring node y
of x , including its long-range contact, which is the closest
to t in the mesh. In other words, a social entity optimizes
locally the discovery of the target by choosing, among all its
acquaintances, the one that is likely to be the closest to the
target. The distance to the target is however estimated using
the Manhattan distance.

5.3 Criteria vs. dimensions

It was observed (cf., e.g. [6]) that searching for the target
in Milgram’s experiment is performed based on at least two
criteria (e.g., geography and occupation), and that perform-
ing the search based on one criterion only (e.g., geography)
results in poorer performance. The estimation of the distance
to the target is performed thanks to all available criteria. In
Kleinberg’s model, the estimation of the distance to the tar-
get is performed based on the coordinates of the nodes in the
mesh. That is, the mesh is not aiming at modeling geogra-
phy only, but at capturing all possible criteria used for the
search. In other words, the mesh includes all criteria per se,
and the long-range links model random events capturing the
fact that our acquaintances are not necessarily living close to
us, do not necessarily practice the same religion (if they do),
do not necessarily occupy the same social position, etc.

On the other hand, there is no one-to-one correspon-
dence between the dimensions of the mesh and the crite-
ria used for the search. In particular, moving along one axis
preserves all the coordinates of the mesh, which is not per-
fectly true in real life. Nevertheless, most of the time, our
acquaintances have characteristics very similar to ours. (The

3 Dodds et al. [5] observed that, in contrast with what is often be-
lieved, the presence of hubs appears to have a limited relevance to so-
cial search. Thus it is desirable that a model keeps the role of hubs
limited.
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Fig. 5 Searching for Joe Wilson

rare cases of acquaintances with characteristics very differ-
ent from ours are modeled by long-range contacts.) A model
aiming at capturing the slight variations of the characteris-
tics of our acquaintances could be obtained by introducing
some randomness in the Cartesian product operation, to lo-
cally shuffle the connections. This would however signifi-
cantly complicate the analysis of the model, without bring-
ing new light on Milgram’s experiment. Thus, in this paper
we have chosen to stick to Kleinberg’s model for analyzing
the impact of the number of criteria on the performance of
the search. Hence, for the sake of simplicity, we have viewed
every dimension of the mesh as a distinct criterion.

5.4 Substratum of topological awareness

Our model was based on the following observation: although
every individual personally knows a small number of other
individuals only, he or she is often aware of a large number
of personal acquaintances between individuals that he or she
does not personally know. Let us take a simple example to
illustrate this observation (see Fig. 5).

Consider Milgram’s experiment in which the goal is to
send a letter to Joe Wilson, who is located at Revelstoke,
Alberta, Canada. In addition to Wilson’s location, we are
also given the facts that Wilson is a designer, and that he won
a downhill ski Canadian championship in the 1980s. The let-
ter is currently held by Alice, a librarian in San Francisco.
Alice has a friend, Mary, living in Seattle, an uncle, Olson,
living in Bergen where he is training the Norwegian cross
country ski team, and finally a former schoolfriend, Mark,
who is a pianist in the Vienna symphony orchestra.

Based on her acquaintances, Alice may forward the let-
ter either to Mary or to Olson. In the former case, there is
a geographical improvement. In the latter case, there is also
an improvement because a cross country ski trainer is some-
what close (in terms of occupation) to a downhill ski cham-
pion. On the other hand, Alice would certainly not forward
the letter to Mark because Mark is geographically farther
from Joe Wilson than Ann, and Mark’s vitae has little to do
with Wilson’s vitae.

Now, assume that in Alice’s recent phone conversation
with Mark, she learned that Mark moved to a new house,
entirely designed by his new girlfriend, Ann, an architect
who graduated from Vancouver. Based on this “topological
awareness,” it makes sense for Alice to forward the letter to
Mark, because he may then forward it to his girlfriend Ann.
Once the letter will be in Ann’s hands, the improvement
will be significant because an architect who graduated

from Vancouver is reasonably close to a designer living in
Alberta. Note that there is no personal acquaintance between
Alice and Ann (she hardly remembers her name). However,
Alice is aware that there is an acquaintance between Mark
and some architect from Vancouver. This acquaintance is a
long-range link because an acquaintance between a member
of the Vienna symphony orchestra and a Canadian archi-
tect can be hardly guessed. The fact that Alice is aware of
Mark’s long-range contact significantly improves the search
for Joe Wilson. This phenomenon cannot be captured by
Kleinberg’s model because, in his model, a social entity is
not aware of any long-range links not incident to it.

5.5 Substratum of indirect-greedy routing

Our model captures the “indirect” routing strategy based
on Alice’s awareness of the social characteristics of Mark’s
long-range contact. In this model, we assumed that, in addi-
tion to the underlying graph G, and to its long-range contact
in the augmented graph H , every social entity is aware of
some list of acquaintances between pairs of other entities.

According to Kleinberg’s greedy routing, when Alice is
searching for Joe Wilson, she chooses, among all her per-
sonal acquaintances, the one who is most likely to know
Wilson. As we mentioned before, this strategy results in hav-
ing Alice choosing either Olson or Mary, but not Mark, al-
though Mark is more likely to be closer to Wilson than both
Olson and Mary. Being aware of Mark’s long-range contact
Ann, Alice may then decide to use Mark as an “intermediate
destination.” Mark is farther from the target Joe Wilson than
Alice. However, from Mark, the search may be forwarded
close to Wilson, thanks to the long-range link Mark-to-Ann.

Obviously, a faster search would be obtained by
computing short cuts from the source to the target in
the augmented mesh using the local awareness of every
node. However, such a complex computation is assumed
to be beyond the computing capabilities of social entities.
For instance, although most humans would be able to go
through a reasonably large directory to select one key
(say, the smallest), most humans would be unable to sort a
directory based on the keys contained into it.

The convergence of indirect-greedy routing requires the
system of awareness to be monotone. It is reasonable to as-
sume that monotonicity is a property that a system of aware-
ness usually satisfies. Indeed, if a social entity x is aware of
the acquaintance that some node u has with v, then a node
y that is closer to u than x is probably also aware if this ac-
quaintance. For instance, if you become aware that Bob, the
companion of the sister Sophie of your friend Tom, meets
some unrelated guy Charles in a plane, then certainly Tom
is aware of that, and this is even more certainly the case of
Sophie. One may argue the other way though, by saying that
if you become aware of some relation between two of your
friends, your neighbor in the street may not know that, even
if he lives closer to your friends than you do. Nevertheless,
our definition of convergence is very restrictive, and even if
the system of awareness is not properly monotone, indirect-
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greedy routing will converge for most setting of the long
range contacts, and non convergence may occur for only few
pairs source-target.

As a final remark concerning or model, note that we as-
sumed that every social entitiy personnaly knows a constant
number of other entities (its 2d neighbors in the mesh plus
it c long-range contacts). In contrast we have assumed that
every social entity is aware of log n long-range links. This
is of course debatable, but it is reasonable to assume that
the number of people we know personally is less impacted
by the world population than the number of rumors we hear
about other people.

5.6 What did we learn out of indirect-greedy routing?

We have defined our model having in mind the way social
entities may plausibly have routed the letters in Milgram’s
experiment, i.e., (1) by using intermediate destinations, and
(2) in an oblivious manner. The latter is imposed by the way
the experiment was performed. The former is our conjecture.
By interpreting the dimensions of the mesh as many criteria
on which greedy routing is based, our model demonstrates
that eclectic relationships are desirable, as far as connect-
edness to other individuals is concerned. This is consistent
with what can be observed in every-day life. In particu-
lar, searching using two criteria is significantly faster than
searching using only one criterion. For instance, Killworth
and Bernard [6] have observed that, in a search for an indi-
vidual, at least two criteria (occupation and geography) were
used by the participants. Determining whether individuals
involved in Milgram’s experiment used intermediate desti-
nations (consciously or unconsciously) to route the letter to
the target would allow us to validate our model.
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