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Summary. The purpose afompact routings to provide ala-  this question in the affirmative, by showing thanhode net-
beling of the nodes of a network and a way to encode the routworks supporting interval routing schemes [27,28] (IRS for
ing tables, so that routing can be performed efficiently (e.g., orshort), allow broadcasting witf(n) message-complexity.
shortest paths) whilst keeping the memory-space required to Formally, a networkG = (V, E) (in this paper, bynet-
store the routing tables as small as possible. In this paper, weork, we will always mean a connected undirected graph with-
answer a long-standing conjecture by showing that compaabut self loops and multi-edges) supports an IRS if the nodes
routing may also assist in the performance of distributed comof that network can be labeled from 1 #40= |V| in such a
putations. In particular, we show that a network supportingway that the following is satisfied: given any nodec V' of

a shortest patiimterval routing schemallows broadcasting degreed and label, there is a set of intervalsiy, ..., I; of

with a message-complexity @#(n), wheren is the number  {1,...,n}, one for each edgey, ..., e4 incident tox, such

of nodes of the network. As a consequence, we prove thagat W{1,...,n}\ {0} Uf—l I, (2) I; N I; = ) for every
O(n) messages suffice to solve leader-election for any graph -« j and (3)¢’ € I, implies that there is a shortest path from
labeled by a shortest path interval rOUting SCheme, imprOVingU to the node labeled’ passing through the edgﬁ (|RS

the previous known bound @(m + n). A general conse-  encode shortest path routing tables with the property that the
quence of our result is that a shortest path interval routingset of destination-addresses using a given link is a set of con-
scheme contains ampséructural informatiorto avoid devel-  secutive integers.) IRS are well-known in the framework of
oping ad-hoc or network-specific solutions for basic problemscompact routing since a network of maximum degreend

that distributed systems must handle repeatedly. supporting an IRS, has routing tables of si2@A log n) bits,

in comparison to thé(nlog A) bits of a table returning, for
Key words: Compact routing — Interval routing — Broadcast- every destination labelc {1,...,n}, the output port corre-
ing — Distributed computing sponding to that label. For more about IRS, we refer to [7,11,

18,20,23,24], and to the survey [17]. For more about compact
routing in general, we refer to [13-15,19,21,26]. In the re-
mainder of this paper, given a network supporting an IRS, we
will make no distinction between the nodes and their labels. In
other words, we will assumé = {1, ..., n} where the label

of nodez in the IRS is precisely: € {1,...,n}.

_ o Broadcasting for an arbitrary node of a network is the in-
This paper addresses a problem originally formulated byformation dissemination problem which consists of sending a
D. Peleg that can be informally summarized as follows: “Do given message to all the other nodes. The message-complexity
networks supporting shortest path compact routing schemegf broadcasting is betweef(n) andO(m), m = |E|, since
present SpeCifiC ablllty in term of distributed Computation? the reception of the message by every node but the source re-
E.g., broadcasting, leader election, etc.” This paper answerguires atleast—1 messages, and yet, broadcasting can always
Part of this work was completed while the third author was visiting :)ignpgfr][cﬁgrr]r?gsgggg oed\;ggytggdneeftg\;\?vrgré@?ﬁ antmmge’susgcér;rtﬁfgg gh
the Computer Science Department of University Paris-Sud at I‘.Rl'all its incident edge,s apart from the one through which it has
supported by the Australian-French ARC-IREX/CNRS cooperation eceived the message). Improved upper and lower bounds may

#99N92/0523. A preliminary version of this paper was presented a . -
the 19th ACM Symposium on Principles of Distributed Computing e derived as a function of the knowledge of the nodes of the

1 Introduction

(PODC 2000). network and of the maximal size of the message-headers (e.g.,
) N see [1,2,5]). In this paper, the only knowledge of every node
Additional support by the CNRS is its label in some IRS and the intervals attached to its inci-

" _Additional support by the Aquitaine Region project #98024002 gent edges in the same IRS. The size of each message-header
*** Additional support by the ARC
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transmitted by our broadcast protoco[lsg, n] + 1 bits. (In  strict LIRS. The following section presents some preliminary
respect to the time-complexity of broadcasting, we refer theresults. Section 3 is dedicated to networks supporting strict
reader to [3,12,22].) LIRS. Section 4 relaxes the strictness requirement. Section 5

The relationship between IRS and broadcasting has beerelaxes the linearity requirement and presents our main result
previously investigated. Van Leeuwen and Tan [28] proved thaabout IRS. Section 6 contains some remarks about related
minimum spanning tree construction (and therefore broadproblems, specifically leader election and distributed spanning
casting) and other related distributed problems such as leadeiree computation. Finally, Sect.7 contains some concluding
election, may be solved by exchangiégn) messages in a remarks about possible extensions based on the results of this
ring whose nodes are labeled according to an IRSGafhd + paper.

n) messages for arbitrary graphs whose nodes are labeled ac-

cordingtoanIRS. Letus recall thatleader-election without any

network knowledge require®(n logn) messages for aring 2 Preliminary results

and®(m+n log n) messages for an arbitrary graph [16]. More

generally, the question of how much a labeling can help in then this section, we will present a distributed broadcast proto-
solution of distributed problems was studied in [9,10] in the col for a network supporting an IRS. This protocol is simple
framework of Sense of Direction [8]. It was shown in [6] that though efficient, since its message-complexity will be shown
the message-complexity of the broadcast problemisl for to beO(n). We refer to this protocol as the up/down proto-
the restricted class of networks supportalshortest-path  col. The second part of the section will present tools for the
IRS (an IRS where all the shortest paths are represented) withnalysis of this protocol.

additional restrictions on the intervals (strictness and linear-

ity). Finally, de la Torre, Narayanan and Peleg [4] showed that

the same result holds in IRS networks satisfying the so-calle®.1 The up/down broadcast protocol

ssr-tree property. (Informally, this property states that, for

any noder, the set of paths induced by the IRS originated atLet v be the source of the broadcast, identified by its label
x and ending at all the other nodes, is a tree.) In this paper, win the IRS. The source initiates the broadcast by sending two
improve these results by showing that a network supportingopies of the message, one meant for the nodel and the
standard shortest path IRS supports a broadcast protocol other meant for the node+ 1. The latter copy is called the
message-complexity (n). “up” copy and the former the “down” copy. (f = 1 orv = n,

Our result has many consequences on other problems su¢hen the source sends only one copy.) There will be at most
asleader-electioror distributed spanning treéor instance, two copies of the message circulating in the network. First we
Korach et al. [25] have shown that the leader-election prob-concentrate on the up copy meantfof 1. The message will
lem may be solved usingh(n) + n)(logsn + 1) mes-  eventually reachy + 1 by the shortest path set by the IRS. It
sages wheré(n) is the message-complexity of broadcasting may possibly cross intermediate nodes but these nodes will
in an n-node network. This result, combined with our own, simply forward the message to its destination, disregarding
shows that-node networks supporting shortest path IRS al-of its content. Oncer + 1 receives the message, it reads its
low the leader-election problem to be solved witfw: log n) content, modifies the header by replacing 1 by v + 2 and
message-complexity. In fact, we will prove, by giving a spe-forwards it towards the node labeledt- 2. More generally,
cific algorithm based on ou?(n)-message broadcast proto- once anode labeled v < 2 < n, receives the message meant
col, thatO(n) messages suffice to solve leader-election forfor z, it reads its content, modifies the header by replaging
any graphs whose nodes are labeled according to a shorteégsy « + 1 and forwards it toward node labeled+- 1. When
path IRS. This improves th@(m + n) previous bound of van  the node labeled receives the message, it reads its content
Leeuwen and Tan [28]. Note that the set of networks supportand removes it from the network. The same strategy is applied
ing IRS forms awide class of graphsincluding, e.g., unitary in-for the down copy, by replacing+ 1byz — 1,1 < z < v,
terval and circular-arc graphs, hypercubes, multi-dimensionatintil it reaches the node labeled 1, which reads its content
tori (see [17]). and removes it from the network. Again, at every given time,

This paper is organized according to several hypotheses copy of the message is meant for only one specific node,
on the IRS. These hypotheses will be relaxed as the paperalled thetarget and when a node different from that target
proceeds. We distinguish two types of intervals: an intervalreceives the message, it does not take the opportunity to read
[a,b] = {a,...,b} with b > ais said to bdinear, whereas an its content, but just forwards the message to the target along
interval [a, b] with b < a refers to the sefa,...,n,1,...,b} the shortest path set by the IRS leading to that target.
and is said to beyclic. The class of networks supporting linear The up/down protocol uses headers of gike, n] + 1
IRS (LIRS for short), those in which all intervals of the IRS are bits: the label of the destination héleg, n] bits and there is
linear, is strictly included in the class of networks supportingone bit indicating whether it is a down copy or an up copy. The
IRS. We also distinguish the cage\ {z} = Ule I;forevery  message-complexity of the up/down protoccﬂjé‘;f d(i, i+
nodez!, from the case in which: appears in the interval 1) whered(z,y) is the distance between the node labeted
of one of its incident edges, for at least one nadédn the ~ and the node labeleglin . To the knowledge of the authors,
former case, the IRS is said to baict. Hence we get four noimproved bounds af(i, i+1) for networks supporting IRS

types of interval routing schemes: IRS, LIRS, strict IRS, andare known. Note that it is known [6] thal(i,i + 1) = 1 for
networks supporting aall-shortest-pathstrict LIRS (that is

! Recall that we assuméd = {1,...,n} and we make no dis- for networks such thata strict LIRS enco@d#ishortest paths).
tinction between the nodes and their labels. The class of networks supporting all-shortest-paths strict LIRS
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is very restricted and, as we will see, only weaker results mayandu; ¢ I, impliesu; > wu; 1. Thereforeg +1 < w41 < u;
be proved for (single shortest path) LIRS or IRS. for0<i<k—1.

Assume, for the sake of clarity, that the source is the node  Similarly, one can show that — 1 > v;;1 > v; for
labeled! (the general case will be considered in later sections)) < i < m — 1.
LetW = wy,wo, ..., w, be the sequence of nodes visited by
the message from its soureg (labeled 1) to its final destina-
tion w, (labeledn). The same node may appear several times"
in W, however, a node can only appear once as atarget node.Corollary 1 In a network supporting a strict LIRS(7, ¢ +
The possible other occurrences of nadeorrespond to steps 1) < min{i,n —i}.
of the protocol in whichz is traversed by a message meant
for a target nodg # x. Let us complement the sequerié¢e
by two virtual nodeswy = n + 1 andw,,; = 0. These two
nodes are not target nodes. More precisBlycan be written

A direct consequence of Lemma 1 is thit, = + 1) <
—x,andd(z,z — 1) < z — 1, and hence we have:

This corollary does not yield any satisfactory upper bound
on the message-complexity of the up/down protocol for
strict LIRS as it merely induces the trivial upper bound

as: S td(iyi +1) = O(n?). Lemma 1 is, however, impor-
tant as it states that, in strict LIRS, once a target nodas

W =Y, X1,Y1, X5, Y2, ..., X1, Y1, X, Y, (1) received the up copy of the message in the up/down protocol,

whereX;,i = 1,..., o, is amaximal sequence of consecutive N0 node of label srr_1a||er or equal towill be visited any- .

target nodes antl,, i — 1, ..., 0 — 1, is the sequence of non- More, and symmetrically for the down copy. Note that this

target nodes between the last nodeXofand the first node of is not enough to conclude that the message-complexity of the
Xi11. We setVy = wo, andY, = w,,1. The nodes of thé;'s up/down protocol has a message-complefy.) as nodes of
are calledntermediatenodes. large labels may be visited a non-constant number of times in

) ‘ ) the up/down protocol. Nevertheless, Lemma 1 will be exten-
Notation. For everyi, throughout the paper, we will always  sjvely used throughout this paper. The following results allow

make use of the following notation (see Fig. 1). areader to understand the subtle difference between LIRS and
o k; = |X;| and¢; = |Y;; strict LIRS.
O trr:e llast noge Of/(f; d Lemma 2 Let G be a network supporting a LIRS. Lej =
e y; = the last node of;; an Tyup, ... up = x + 1 (resp.vg = 2,01, ...,0, = x — 1)
e 2; = the first node ot;.

be the shortest path from nodeo nodex + 1 (resp. to node
x — 1) set by the LIRS. Then, for every: > i > 1, we have:

2.2 Intermediate node sequences (1) w; >x+1,

The next four lemmas give some properties satisfied by th@nd
intermediate nodes in thg’s. These properties will be shown  (ii) u; < u; for everyj,1 < j <i— 2.
to be helpful in computing the message complexity of the

up/down protocol. (Respectively, for evely1 < i < m: (i) v; < z — 1, and (ii)

v; > v, foreveryj, 1 < j <i—2.)
Lemma 1l Let G be a network supporting a strict LIRS. Let

Uy = U1, ... u =z + 1 (resp.vy = a,v1,...,0, =  Proof. Let; be the interval of edgéu;, u;11) atw;, i =
 — 1) be the shortest path from nodeto nodex + 1 (resp. ;- - -, £ —1. By definition, we have + 1 € I; andu, ., € I;.
to noder — 1) set by the strict LIRS. Then Fori > 1 we also haver ¢ I; (otherwise there would exist a

shorter path fromxtox 4+ 1). Thusu; > z+1forl <i <k
up >up > .. >Uup—1 >+ 1 as the intervals are linear. So Propetyholds.

For proving Property(ii), we note that, ifi > 1, then

(Respectivelyy < vy <. <vm-y <2—1) u; ¢ I, for everyj < i — 1 by definition of the path: =

Proof. Let I; be the interval of edgéu;, u; 1) atu;, i = ug, u1,...,u, = = + 1. Therefore, since; > = + 1 for all
0,...,k— 1. We havex + 1 € I; by definition of the path j,1 < j < k, we haveu,;; < u; foreveryj, 1 < j <i—1.
Uy = T,U1,...,ur = ¢+ 1landu;y1 € I; as(u;, uiy1) IS The results for the;’s are obtained in a similar way.

the unique shortest path from to w; 1. Also,z ¢ I, > 0,
by definition of the pathuy = z,uq,...,ux = z + 1, and
u; ¢ I;,0 < i < k—1, as the LIRS is strict. In particular,
[ + 1,u1] C Iy, andz ¢ I, implies thatu; > x as Iy
is linear. More generally, foi > 1, [z + 1,u;41] € I; and  Corollary 2 In a network supporting an LIRS(7,i + 1) <
x ¢ I impliesu; 11 > x becausd,; is linear. Now,u; > z 1+ min{i,n — i}.

As a consequence of Lemma 2, we halfe,z + 1) <
n —z + 1, andd(z,z — 1) < z, and hence we get a result
similar to Corollary 1:
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We now analyze the relation between the labels of nodes We first note thad_;_ (¢; — k;) > & implies thatx < /.
in two consecutive sequences of intermediate notes, = Note also that, i > r, thenzf:rl (; — k;) < 6 — 1 implies
{ur, ... ue,, yandY, = {v,...,ve } say. Letus consider thatx >k, +1 > 2.If s = r, thens = ky +6 > k > 1.
the two following examples: Thereforeyp,, is well defined. To prove Lemma 3, we use the

— AssumeX, = {z} and¢, > 2. (Recall that the form of following result:
WisW =...Y, 1, X;,Y,...) If the network supports a  Claim 1 Under the hypothesis of LemmaBy, z,) < x—1.
strict LIRS, then, by considering the interval ¢n v;) at
xif v # ug__, orthe interval or(vy, v2) atvy, otherwise, ~ Proof. If s = rthend(u, ;) < d(u, X;)+ks—1 < 6+k, —
one can easily check that, | > vs. 1 = k — 1. Let us show that the same result holds it r.
- AssumeX, = {z,z + 1}1:emd ¢, > 3. If the network  For that purpose, we show by induction othat, assuming
supports a strict LIRS then one can check similarly thats > 7, we have
Ug,_, > V3.

Remark.The two previous examples show that, by “jumping” d(u,y;) < (6 —1) + Z(kj —4)

over some intermediate nodes, one can find a strictly decreas- a=

ing sequence of intermediate nodes. The problem is however foreveryi=r,...,s— 1. )
more complexifX, = {z}with¢, =1, 0rif X, = {z,z+1}
with ¢, < 2. In both cases, there is not enough intermediate .
nodes to jump irY,. in order to find an intermediate node of e, Letl, bethem_terval onthe edge,, u,) atz, and, for
label smaller thani, . Nevertheless, if(, = {z,z + 1}, i > 1, let]; be the interval on the edde; 1, u;) atu;—..
Y, = {v1,02}, Xpu1 = {z + 2} and if o1 = [Yye| IS For everyi > 1, we haver,. + 1 € [;, andz, ¢ I;. From
large enough, then one can check that , > w, where Lemma 1, we also hawe, > ... > ug, >z, +1. By hy-
Yoi1 = {wi,...,w,,, }. However, if/, 1 is too small, say pothesis of Lemma 3 >  for everyz € {J,_, X, and
¢,+1 = 1, then one must consider the next sequérge, and u < ug,. Thus, sincey; € I;, we get tha, < I; for every

so on. In fact, as we will see, looking for a node label smaller ih?omlj’gh o b Therefg\rseéacsohnosr;sutepnaég ff‘z;(to u %Ois
than depends on the partial sums ULy oo Uiy Yr,U) S
eGP P o +d(u, X, ) — 1, and thusi(u, g,) < (5—1)+ (ky — £,).

e Initial stepi = r. LetY, = uq,...,uy,. Note thaty, =

S S

Z(|Y"| X)) = Z(& k) e Induction step.Assume thatd(u,y;) < (6 — 1) +
= = ’ > i, (kj — £;) for somei, r < i < s — 1, and let us

show thatd(u, y;+1) < (6 —1)+ Z;ﬁ_(kj —{;). For the
same reasons as for the case r, a shortest path from
the last noder;,; of X;; tou goes through all nodes of

Y;+1. We get that

for s > r. More precisely, this operation depends on the first
smallest index such that this sum is large enough. Roughly
speaking, as suggested by the examples abowve if is
the last node ot’._;, then the next node smaller than _,
may be found inY, if |Y.| > |X,|; otherwise, inY, ., if

V.| + [Yir1| > |X,| + |X,11]; and so on. In general, one (it T d(w, yir1) < d(@it1,u) < ki ’%d(“’y")

needs to jump at least as many intermediate nodes as target !

nodes, in order to make sure to find a node smaller than . S@=1)+kipr+ Y (kj—£)).
The next two lemmas formally state this relationship between j=r

consecutive sequences of intermediate nodes. Again, the goal - ]
is to answer the following: given an intermediate nadec And thusd(u,yit1) < (6 — 1) + 355 (k; — £;). This
W, where can we find another intermediate nedec W, completes the proof of (2).

j > i, whose label is smaller, or at least not larger, than the .
label of w;? (Lemma 1 answers this questioniif is not the ~ 4 consequence of (2) is thal(u, z;) < (6 — 1) + ks +
last node of an intermediate sequence in a strict LIRS networky_ ;.. (k; — ¢;) = x — 1, which completes the proof of the

and Lemma 2 answers this questiowifis neither the last nor claim.
the penultimate node of an intermediate sequence in a LIRS 5of of Lemma 3.Let I, be the interval on edger,, v;) at

network.) x4, and, fori > 1, let I; be the interval on edgg; _1,v;) at

For any set of nodes C V and any nodew € V, ' ‘We haver, + 1 € I;, v; € I;, anda, ¢ I,. Therefore,
we denote byi(u, S) the distance betweemand S, thatis  gincey > z + 1, we have: ifu < v; thenu € I,. Thus if

d(u,S) = min,egsd(u,v). Recall thatp is the number of = _ v;foreveryi € {1,...,k— 1}, thend(u,z,) > k—1,a
target sequences;’s. contradiction with Claim 1. Thug > v; for somei < r — 1,

Lemma 3 LetG be a network supporting a strict LIRS and let and therefore: > v, by Lemma 1.

ubeanode 0. Letr € {1, ..., o} and assumé(u, X,) < The difference between Lemma 1 and Lemma 2 engenders
d. Assume that there exists> r such thaty 7_ (£; — k;) > the following adaptation of Lemma 3 for networks supporting
§—1andy " (6;—k;) < 6—1foreverys',r <s' < s.Let NoNnstrictLIRS.

ko= kot Y0 (ki—l;)+dandlety, = vy,...,v,,.ASSUme  Lemma 4 LetG be anetwork supporting an LIRS anddete
thatu >  for everyz € |J;_, X; and assume that > ufor  anode ofG. Letr € {1,..., o} and assume thai(u, X, ) <
every intermediate node € Uf;j Y;. Thenu > v,. §.Assume thatthere exists at»  suchthab:_ (¢;—k;) >
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2As—r+1)+5andY5 (¢ — ki) < 2(s' —r+1)+ 6 for
everys',r < s < s.Letk =k + 30" (ki — £;) + 2(s —
r) 46 and letYy = vq,...,vp,. AsSsume that > z for every
x € U;_, ., X; and thatw > u for every intermediate node
we |2 (Vi \ {z:}). Thenmin{v. 1, vei2} < u.

Again, we note thad~"_ (k; — ¢;) < 2(r—s—1)—§
impliesx < ¢,—2.Moreover, ifs = rthenk = k,+§ > 1and
otherwised *_ ' (k; — £;) > 2(r —s) — d impliesk > k, > 1.
Thusk is well defined.

221

aim of the remainder of the proof is to bound the total num-
ber}"?_, |Y;| ofintermediate nodes. For that purpose, we will
partition the intermediate nodesidf into three types of (pair-
wise disjoint) subsequences. We call the result of this partition
thesequence-decompositidtvery intermediate node appears
exactly once in this decomposition. The target nodes do not
appear in the decomposition. More precisely, the decomposi-
tion will be composed of aactive threagddead-end threads
andjumped threadsHere the terminology “thread” refers to

a sequence on non-necessarily consecutive nodds. dfhe
active thread is built by a walk starting fromy up tow, 1.

Proof. We proceed in a similar way to the proof of Lemma 3. ajong the construction of the sequence-decomposition, some

We first claim thatd(u, z5) < k. This inequality holds for
s = rasdu,z) < du,X;) + k- <5+ k. = k. The
proof fors > r is based on an inductive proof of the following
property (analogous to the proof of Claim 1). Assunméng r,
we have

du,y;) <Y (kj =€) +2(i—r)+ (6 +1)
j=r
for everyi € {r,..., s — 1} 3)
o Initial stepi = r. The shortest path from). to u set by the
IRS goes through all nodes®f. Thust, — 1+ d(y,, u) <
k. +d(u, X,), and hencé(y,,u) < (k. —€,) + (6 +1).
Therefore (3) holds fof = r.

e Induction stepWe assume (3) holds farand show that
it holds fori 4 1. Again, the shortest path from,, to u
set by the IRS goes through all nodesY¢f ;, and thus
liv1—14+d(Yiv1,u) < ki1 +1+d(u, y;) and therefore
d(yir1,u) < 375 (ky = £5) + (5 +1) +2(i + 1= 7),
and (3) holds fot + 1.

The claimd(u, z;) < « then holds by application of (3)
since it yields

s—1
d(zg,u) < kg +1+ > (ki — )+ (0 +1) +2(s —r — 1)
= K.

Now, sinced(u, z5) < k,thereisanodeifws, ..., vst1}
such that; < u. Otherwise, the path set by the IRS fram
to » would go throughvs, . .., v.41, and thus would not be
a shortest path. L&tbe the smallest index if2, ..., x + 1}
such tha; < wu.If i < k+1, thenv,, o < ufromLemma 2.
If i =k + 1, thenv,1 < u (actually,v,+1 = u).

3 Strict linear interval routing schemes

parts of the active thread become dead-end threads. At the end
of the decomposition, the two extremities of the active thread
arewy andw;; and the total number of nodes in the active
thread will be at mosO(n). Also, at the end of the construc-
tion, the sum of the lengths of the dead-end threads and the
sum of the lengths of the jumped threads will be both bounded
by O(n). Therefore, the total number of intermediate nodes
will be O(n), and|W| = O(n). A careful analysis of the
constants will actually show th&iV| < 3n.

Let us be more specific. Again, the decomposition is per-
formed by visiting all intermediate nodes of the sequéeiicte
from wp to w-11, and in this way constructing the active
thread. One may “jump” over some intermediate nodes if the
length of the jump is able to be bounded. The terminology
“jump” refers to the remark in Sect.2. Jumped intermediate
nodes form a jumped thread. One may also backtrack along
the active thread for a bounded number of nodes. The nodes
along which the backtrack occurs form a dead-end thread.

The decomposition requires two parameters:ritaek m
and thedirection d. The role of the mark is to keep track of
the progression along the sequef®e In general, the mark
indicates the current position, or, more precisely, the index
i of the current set;. The mark is an important parameter
because of the backtracks. When a backtrack occurs, the mark
is set to hold the current maximum position ever reached in
the sequencB’. The direction indicates whether or not one is
currently backtracking. Inthe affirmativé = —1andd = +1
otherwise.

Initially, the active thread is reduced t@, and there is no
dead-end thread nor jumped thread. The marls set to0,
and the direction is set te 1.

The construction of the sequence-decomposition is pre-
cisely described in Algorithm 1. The explanations of the sev-
eral steps of the construction are given below.

In Case 1, the construction is currently visiting soime
While the last node of this sequence of intermediate nodes
is not reached, the active thread is updated by adding all the
forthcoming nodes of the current sequence. Informally, from

In this section, we show that the message-complexity of thd-emma 1, the size of the active thread will not increase too

up/down protocol is at mostn on a network of orden sup-
porting a strict LIRS.

3.1 Partition: a sequence-decomposition algorithm

much since the labels of the nodes are in a strictly decreasing
order.

Case 2 happens in particular when the last node of the cur-
rent sequence,. is reached (see Fig.2a). The definitionsof
is motivated by Lemma 3. 1§ does not exist, the construc-
tion stops. The jumped thread has then a length bounded by

Assume first that the source is node 1. We make use of the_i—,,1 |Xi|. In general, every jumped threadvill have a
sequencéV as introduced in (1). Since the total number of length bounded by ;. |.X;| for some index set,, so that

target nodes is;, we have} 7 | |X;| = n. Therefore, the

Iy NIy = 0if b # b. If s does exist, then we make a jump
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Fig. 2. Construction of the
sequence-decomposition

in the sequencél as explained hereafter. (Note that, as in by adding the next node of the sequentg, = Y,,, ,, and
Lemma 32 < k < /4;.) thus the claim holds after stépln Case 2.1m; is set such
In Case 2.1.1, we simply jump at the next intermediatethatp;1 € Y;,, and thusy; = p; 1. Every intermediate node
nodew whose label is smaller than the label of the currentbetween the last node &f,,, , (thatisg;—1) andp;1 (thatis
node. Case 2.1.2 can be seen as an extremal case of Case 2.4:1are putin a jumped thread and so the claim holds after step
We know from Lemma 3 that jumping &}, is sufficientasthe 4. In Case 2.2, some part of the active thread becomes a dead-
label of that node is smaller than the label of the current nodénd thread. By the setting of;, all the intermediate nodes
p+- The mark is updated to contain the index of the sequenc&0t yet assigned to any type of threads, that is all intermediate
of intermediate nodes,, reached after the jump. nodes inUJj“,, ., Y;, are putin a jumped thread. Thus
Case 2.2 is in fact the most difficult case to explain (see€Very intermediate node betwegn, andg; is putinajumped
Fig. 2b) primarily because a backtrack occurs. This backtrackhread. Therefore, the claim holds after stethus completing
is motivated by the fact that one cannot find an intermediatehe proof of the claim. .
node with a label smaller than thataf Informally, we back- We complete the proof of the lemma by noticing that,
track along the active threag, pi, ..., p; until we reach a  after every step, either the active thread is increased, or a
nodepy, ¢ < t, for which Lemma 3 may be applied. Note Part of the active thread, is put in a dead-end thread. By the

thatt’ is well defined since, ¢ U, X; = {1,...,n}. We setting of the mark, an intermediate-node put in a dead-end
will show that the length of a dead-end thread that results fronthread or a jumped thread will not be considered anymore in
abacktrack is bounded By7_ .., |X;|. We will also see that the further steps. Therefore the construction of the sequence-

the possib'ejumped thread setfromthe Vah_mdﬁasa'ength decomposition of Algonthm 1 ends after a finite number of

bounded byp"7" " .| |X;|. Fig. 2b illustrates the specific case steps.
in which the backtrack goes across a former jump.

Now, let us analyze the construction of the sequences

decomposition. .2 Message-complexity of the up/down protocol

From the sequence-decomposition algorithm, we now com-

Claim 2 At any step of the decompositiondit= -+1, then pute the message-complexity of the up/down protocol.

Y43 S Ym-

. . . ) Lemma 6 The number of intermediate nodes in the active
Proof. Inmally_thls clalm'holds. Assume the claim hoIds be- thread is at most, excludingw, andw, 1. More precisely,
fore some stepand consider the several cases of Algorithm 1. (ha |apels of the nodes of the active thread, includingand
In Case 1p, 1 will still be in Y,,,, andd will still be +1. In w,1, form a decreasing subsequenceiir 1, ... , 0.
Case 2.1, the direction is set4dl andp;,, € Y,, by defini- R
tion of the setting of the mark in both Cases 2.1.1, and 2.1.2. Proof. To prove the lemma, let us again go through the several
Case 2.2 seté$to —1. The claim also holds after stép cases of every step of the decomposition. pebe the last

_ . nhode of the current active thread. In Case 1, Lemma 1 ensures

Lemma 5 The construction of the sequence-decomp05|t|oqhatpt+1 < p;. In Case 2, ifs does not exist, then the next
given in Algorithm 1 produces a set of threads in which every,gge of the active thread is, 1 = 0 which is smaller than

intermediate node appears exactly once. every other node of the current active thread. Let us assume
Proof. After every step, let us definen; as the resultingmark  thats exists. Since Case 2.2 does not add a new node to the
and active thread, we focus on case 2.1. In Case 2.1.1, the new

node added to the active thread is, by definition, smaller than

_ P if p € Vi, In Case 2.1.2y,. < p; by application of Lemma 3
4 = {Iast node ofY;,,, otherwise. pr- bl < Pe DY app '

We claim that, at every stepall intermediate nodes befoge aneon;trEa 7 The number of nodes in the dead-end threads s at

appears exactly once in the sequence-decomposition. Initially
this claim holds. Assume it holds before siefm Case 1, from  Proof. A dead-end thread is composed of a sequence of nodes
Claim 2,¢,_1 = p: € Y.,,,_,. The active thread is upgraded that were formerly in the active thread and through which
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Algorithm 1 One step of the construction of the sequence-composition, a backtrack led back toand .J occurred). Let
decomposition for a strict LIRS y €Yy =ui,...,ug, andy € Y, bethe respective extremi-
tiesofJ’ andJ, and assumg’ = u;. Letm andd (resp.m’ and

/ H H !/
The current active thread B = po, p1, ..., pi, With po = wo. Let ') be the setting of the mark anggrle distance whémesp.J’)
r be such thap, € Y, and letY, = u1,..., uy,. occurred. Them < (6" —1)+>7_ 1 (kj — ;) + (kor —1).

Case 1p; = ui,i < £, andd = +1. Here, the active thread is up- Proof. By definition,é = d(x, X,,+1). We havey’ € X,,11
dated topo, p1, - .., pt, ui+1. There is neither a new dead-end by the setting ofm when backtracking throughll’ since
thread nor a new jumped thread. The mark and the direction arg,, ., =y'. Thus
not modified.

Case 2p; = uy, ord = —1. Letd = d(ps, Xm+1) ands > m+1 § < d(x,y").
be the smallest index such that; i — ki) > 6 —

i=m+1

1. If s does not exist, then the active thread is updated toSince the jumpJ’ occurred atz we haver > & for any
Po,P1,--.,Pt, wr+1, there is no new dead-end thread, all in- 4 ¢ U?:m’+1 X;,andz < gforanyg € U?:;riq»l Y;. There-

termediate nodes between the last nodg,pfandw-+1 forma  fore, by similar arguments to those proving (2) in the proof
new jumped thread and the construction stopseffists, thenlet  of ¢laim 1,d(Yms11,2) + b1 < k1 — 14 0" and thus

s—1
f= 0t ks #3000 (ki — ). Assume thals = v1, . v gy a) < (6 — 1) + (kg — Lowrgr ). More generally,
" again by similar arguments to those proving @), —1, z) <
i=m+1

two cases are considered:
Case 2.1:p: ¢ U X,;. Then again two cases may occur. , o1 ) , ‘
Case 2.1.1: There exister € {ovi,...,v.—1} U (O =1)+22 01 (kj—1;). Sincey’ = uj, still by the same

(Ui 11 Ya) such thatw < p;. arguments, we haviet d(y’, ) < ko + d(y, -1, ). There-
Then pick the first nodes of that type. The active fOre,
thread is updated toy, p1, - - . , pt, w, and all interme- o' —1

diate nodes between the last nodé&gf andw form a N < (5 — . L
new jumped thread. Assume € Y, then the markn dz,y) < (& —1) + Z (kJ eﬂ) + (kor —1).

is set too j=mi+l
Case2.1.2: Forany € {v1,...,v.—1} U (UiZ,,, Y:),  Combining the twoinequalities satisfieddf, y/) completes
w 2 P the proof of the claim.

Then the active thread is updateditg p1, . . . , pt, vk, ) ] )
and all intermediate nodes between the last node,of Leémma 8 The number of nodes in the jumped threads is at
anduv, form a new jumped thread. The markis set ~ MOStn.
1o s.
In both cases, there is no new dead-end thread and the dire
tiond is set to+1.
Case 2.2:p: € U;_,, 44 : . .
Let # € {0,...,t — 1} be the largest index such that by applying Case 2.1 of Algorithm 1. Assume that a jushp
pe & U X:. All nodespy/ 41, ..., p: form a new occurred betweem € Y, andy € Y,,r < o < s.If 0 < s,
dead_en(;:tmg;d_msum@“ c XU: then ifo > m + 1, then the number of nodes of the jumped thread is at most

all intermediate nodes dfj7~" . Y; form a new jumped  2oi—, 41 b — 1, thatis at mosto — 1) + 3°7_, ., [X;| by

(Eroof. Similarly to the dead-end threads, the jumped threads
are characterized by disjoint sets of target nodes of the form

X,. Then the directionl is setto—1,  Ui—m1 Xi- Let us first consider the jumped threads created

thread. The markn is updaéga"{(;, _1. definition of 0. If o = s, then assume that, = vq, ..., v,
y = Withi < & =6+ ks + 35 . (ki — ). Thus,

the number of nodes of the corresponding jumped thread is at

s—1 s .
a backtrack occurred. Every backtrack is driven by a set oanStZi:erl Litrs—1<(0-1)+ Zi:mﬂ | Xil. S0, in
target nodes J°_ 11 X; wherepy 41 € X,. Let X, =z + any case, the number of nodes of the jumped thread is at most

L...z+kandpyyy =2 +i 1 <i < k Assume that (6—1)+Z%’:m+1/|Xi|. Ifo > 1,thenth|s.sett|ng corresponds

e € Xprs1 for somem’. Let Xppr = +1,...,a" + k', to another jump/’ that occurred at previously, say between

thenp, — 2/ +i',1 < i < k', zandy € Y, = uy,...,up, y = u;. Let m’ andé’ be
From Lemma 6_ the number of nodes of the dead-enothe value of the mark and of the distance whEroccurred

thread corresponding t&,,1,. .., X, is bounded by’ —  respectively. From Claim 3, we have

i')+ Z;’;lnurg | X |+ because the active thread, traversed in o'~1

the reverse direction, produced a sequence of nodes of increas< (8’ — 1) + Z (kj — ;) + (kor —1).
ing labels. Now,n is updated tar — 1 after the backtrack, j=m/+1

and thusX,,1,..., X,_1 will not be considered anymore

[e}

when counting the number of nodes in the dead-end thread3.he size of the jump af' isi — 1+ Zj’::iurl ¢;. Thisimplies
X, may be considered again in another dead-end thread singfat the number of node for the two jumps is at m@st-1) +

possiblypt e X,,, that iSm_’ = m may occur. However, only quimL}l |Xi|+221m+1 | X;|. We repeat the same argument
:Eglic;eillﬁiﬂggresforﬁ%g”i r?%:an;’g_lgﬁg' Qfezggq:%%ﬁ?eed bfor 6" until we hgve considered all jumps that successively
¢ X, =n éfccur(ed at. It yields that th.e total number of npdes of the
i=11 ' set of jumped threads occurring at the same vertexat most
Claim 3 Assume that two jump$’ and J successively oc- ZLTH | X ;| whereY,, contains the other extremity of the last
curred atz (that is J' occurred and then, later in the de- jump occurred at.
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The analysis is the same for the jumped threads created iAlgorithm 2 One step of the construction of the sequence-
Case 2.2 by proceeding as if the jump occurred betwgen decomposition for an LIRS
and the last node df,_; (recall thatp, 11 € X,).
We conclude the proof by noticing that due to the settingy,o current active thread B — o,

P,y ..., Dt, With po = wp. Let

of the markrm, no two jumps correspond to the same set of . e g ch thap, € Y;, and letY, = ui, .. ., ue,.
target nodes. Therefore the total number of nodes is at most
21Xl =n. Case 1p; = us,i < £ —1andd = +1. Here, theactive threadis
updated tQo, p1, - - ., pt, ui+2 and nodeu; 1 is putin the aux-

Combining Lemmas 6, 7 and, 8 with L_emma S aI_IOWS to iliary thread. There is neither a new dead-end thread nor a new
conclude that the total number of intermediate nodes isat most  jymped thread. The mark and the direction are not modified.

3n. Case 2p; = ug, Orpy = uy,—1 0rd=—1. Then let § =

Remark. At the end of the decomposition, letbe the ex- dh(p“)im“) agnd skz >m2+ 1 be theé Sl?qal(ljeSt index such
tremity of the active thread whencannot be defined, that a3 i1 (bi — ki) = 2(s —m) 4 4. If 5 does not exist,

. s—1 then the active thread is updated 1@,p1,...,p:, Wri1,
is when)_;_ . (6i — ki) < 0 —1foreverys,m+1 < there is no new dead-end thread, all intermediate nodes be-

s<o0.Asz ¢ Uf:m+1 X;, all nodes of the active thread be- tween the last node of;, and w.41 form a new jumped
long ton:mH X, by application of Lemma 6. By the same thread and the construction stops. §f exists, then let
lemma, the total number of nodes inthe activethreadisatmost < = 0 + ks + Zf;lnﬂ(kz- —4)+2(s—m—1). If
> i i1 | Xi|. Sincethe set&,, .1, ..., X, were not used to pe = ug,—1 andd = +1, thenu,, is putin the auxiliary thread.
bound the total number of dead-end threads, we can conclude Assume thal; = v1,...,v,,, two cases are considered:

that the sum of the number of nodes in the active thread plus Case 2.1:p: ¢ U;_,,,, Xi. Then again two cases may occur.

the number of nodes in the dead-end threads is at most Case2.1.1l: There existw € {ur,...,vx} U
As a consequence, the total number of nodes in the (UiZm 41 (Y \ {=:})) such thatw < p,.
sequence-decomposition, and the total number of intermedi- Pick the first nodev of that type. The active thread is
ate nodes, is at mo8t:.. Therefore, the total number of nodes updatedt®o, p1, ..., pr, w, and allintermediate nodes
in the sequenc®’ is at mosBn and the message-complexity between the last node &, andw form a new jumped
of the up/down protocol is at most. thread. Assume € Y, the markm is upgcia}ted tar.
If the source node is not the node labeled 1, them let Case 2.1.2: Foramy € {vy,...,vc} U (UiZ, 11 (Y \
1 be the label of the source. From Lemma 1, the message {zi})), w >p_t' _ _
complexity of the copy going upward is at md¥tn — v) Then the active thread is updated by setiing: =
whereas the message complexity of the copy going downward min{v.i1, vx+2}. Allintermediate nodes between the
is at mosBv. last node ofY;,, andp:+1 form a new jumped thread.

The markm is set tos.
We finally obtain the following theorem. In both cases, there is no new dead-end thread and the direc-
tion d is set to+1.

Theorem 1 The message-complexity of the up/down broad-  case 2.2:p, € U:_,... Xi. The directiond is set to—1. Let
cast protocol is at mostn in a network of order. supporting ¢ € {0,...,t — 1} be the largest index such thay ¢
a strict LIRS. As a consequence, networks supporting a strict U:_,... Xi. All nodespy 1, .. ., p, form a new dead-end
LIRS allows broadcasting wit®(n) message-complexity. thread. Assume thai, ., € X,, thenifo > m + 1, all in-

o—1

termediate nodes ¢fi7_ , , ¥; form a new jumped thread.
Remark The complete bipartite grapki, ,,_» supports a strict The markm is updated ter — 1.
LIRS for which the up/down protocol usés, — 4 messages.

4 Linear interval routing schemes dropped in the auxiliary thread, and that one may stegp,at;
oruy,. Therefore, Case 2 considers also the gase uy, 1,

In order to analyze the up/down protocol in networks support-Which, if true, implies that,, is put in the auxiliary thread.
ing LIRS, we partition the sequend® in a manner similar Case 2 also differs from Case 2 in Algorithm 1 by the definition

to that in the previous section. This decomposition is given in®f Poth s andx. These settings are motivated by Lemma 4.
Algorithm 2. Assume first that the source is labeled Otherwise, the general structure of Algorithm 2 is the same as

Initially, the active thread is reduced ta, and there is Algorithm 1.
neither a dead-end thread nor a jumped thread. According t
Lemma 2, the active thread will include every other alter-
nate node. A fourth type of thread is introduced: thil-
iary thread Every other alternate node of the active thread is

dropped in the auxiliary thread. Initially, the auxiliary thread  The proof of this lemma follows exactly the same lines as
is empty and the mark. is set to0. the proof of Lemma 5. It is therefore omitted. Recall that

Let us point out the main differences appearing at everyjenotes the number of sequenégsin .
step of the sequence-decomposition. Case 1 is almost the same

as Case 1 in Algorithm 1, that is the decomposition uses théemma 10 The number of intermediate nodes in the active
current intermediate sequence to construct the active threathread is at most + o, excludingwy and w,, 1. More pre-
The only modifications are that every other alternate node igisely, the labels of the nodes of the active thread form a non-

Pemma 9 The construction of the sequence-decomposition
given in Algorithm 2 produces a set of threads in which every
intermediate node appears exactly once.
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increasing sequencg,...,p; frompg = n+1top, =0 Indeed,§ = d(z, X,,+1). Moreover,y’ € X,, 1 by the set-
such that the number of times that= p;_; is at mostp. ting of m when backtracking through’ and asy’ = py 1.
Therefored < d(z,y’). Conversely, by the same arguments

Proof. From Lemma 2, Case 1 ensures that; = u;12 < to those of the proof of Claim 3

u; = pz. In Case 2, ifs does not exist, thep;11 = w,41 =
0 < p;. S0 assume that exists. There is no setting of the o1

active thread in Case 2.2. In case 2.1.1, a jump occurs ang(z /) < (§' — 1) + Z (kj — £;)
pr+1 < p¢ by definition. In case 2.1.2, a jump occurs also and

) . j=m/+1
< .

pr+1 < p: from Lemma 4. The number of jumps is at mest +2(0" —m') 4+ (ko — ).

Lemma 11 The number of nodes either in dead-end threads

or in the active thread is at most+ o. The size of the jump/’ is7 — 1 + Zj;ﬁ,ﬂ(kj —{;), and
Proof. By similar arguments to those in the proof of Lemma 7, thus the total size of the two jumps is at most

and using the same notation, the number of nodes of a dead- o

end thread corresponding to the s&ig1,..., X, isatmost (&' — 1) + Z | X;| +2(c —m)

(K — ') + X701 1X;| + i plus the number of jumps i=mt1

occurring in the portiorpy41,...,p: of W. This implies o

that a total number of nodes in dead-end threads of at most + Z 1 Xi| +2(a" —m).
5:1 ‘Xz| +o=n+op. i=m/+1

Now, as observed in the strict LIRS case, one can combine
the bound for dead-end threads with the bound for the activéf 5’ > 2, then one can apply oé the same arguments as
thread. Letr € Uf:m+1 X, be the last node of the active those that were applied fér This implies that the number of
thread (different fromw,,1). The total number of nodes in nodes that belong to the set of jumped threads occurring at the
the active thread is at mosk’ — i') + >.7_ ., |X;| +j, samevertex € Y. isatmostl + 3.7 | [Xi[+2(0c —7)
wherej is the number of jumps of the active thread. The setswhereY,, contains the extremity of the last jump occurred at
Xm+2,. .., X, were not used to enumerate the nodes in thez.
dead-end threads and the total number of jumps cannot exceed The analysis is the same for the jumped threads created in
o. Therefore, the total number of nodes either in the activeCase 2.2, by proceeding as if the jump occurred between
thread or in dead-end threads is at most o. and the last node df, _; (recall thatp, 1 € X,).
The worst case is reached when every jump is over a single
The cost (in term of number of nodes) of such a jump is

1+]X;| +2 = | X;|+ 3. This implies a total number of nodes
Proof. This is a direct consequence of Lemma 11 as the numin jumped threads of at mo3t7_, [X;| + 3o.

ber of nodes in the auxiliary thread does not exceed the number The three previous lemmas, together with Lemma 9, show
of nodes either in the active thread or in dead-end threads. N, o—1 ’ ’

. X - at) oY <3 50 < 8n, and thugW| < 9n. If the
deed, at most one node is dropped in the auxiliary thread fog 2i=1 |Vil < 3n + 50 < 8n W] < 9n
every node entering the active thread. Some nodes formerl
in the active thread become member of a dead-end thread.

Lemma 12 The number of nodes in the auxiliary thread is at - -
mostn + o. ‘

ource node is not the node labeled 1, thervlet 1 be the
Mabel of the source. From Lemma 2, the message complexity
of the upward copy is at moStn — v) whereas the message

Lemma 13 The number of nodes in the jumped threads is atcomplexity of the downward copy is at mast.

mostn + 3. We finally obtain the following theorem.
Proof. Let us first consider a jump created by application of Theorem 2 The message-complexity of the up/down broad-
Case 2.1. Lef be ajump corresponding to the sats,,1,...,  cast protocol in a network of ordes supporting a LIRS is
Xs- Assume that/ occurred between c Y'T andy c Yo_’ at mostin. As a consequence, networks Supporting a LIRS
r<o<s. allows broadcasting witl) (n) message-complexity.

If o < s, then the jump was over at most;_, , £; — 1
intermediate nodes, with.7_ ., £ < >0 4 ki +2(0 — .
m) + & by definition ofs. 5 Interval routing schemes

If o = s, thenletY, = vy,...,vp,, y = v;. This implies

, 1 As opposed to LIRS, the labels of the nodes resulting from
i< K+2=0+ke+ 3 (ki —6) +2(s —m). an IRS play all the same role, meaning that another labeling
. Thereforg, in both cases, thegnumber of jumped intermexan be obtained by adding (modutd any identical value to
diate nodes is at mosé — 1) + >_7_, ., [Xi| +2(c —m). gl the labels of a given labeling. It is therefore not surprising
If 6 > 2, then this setting corresponds to another jutip  that results such as Corollary 1 or Corollary 2 do not hold. For

that occurred at previously, say betweenandy’ € Y,» = instance, let us consider the chainrofiodes (i.e., the graph
ut, ..., up, y = u;. Letm’ andé’ be the value of the mark  of node-sef{x1, ..., z,} such that there is an edge between
and the value of the distance, respectively, when this jummodes of consecutive indices). The nodes of the chain can be
occurred. We have labeled as followsz; = 1, andz; = n —i + 2 fori > 2. Let

o'—1 I; be the interval offx;, z;41) atx;, i = 1,...,n—1,and let
§< (8 —1)+ Z (kj — ;) +2(0" —m) + (ko — ). J; be the interval ofjz;_1, z;) atz;,i = 2,...,n. The setting

41 I, =[2,n+1—14],J; = [n—i+3,1],fori > 3,andJ; = [1, 1]
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satisfies the properties of a shortest path IRS. In this setting?roof. This is similar to the proof of Lemmas 3 and 4, by
d(1,2) = n — 1, meaning that the difference between any applying Lemma 14 instead of Lemmas 1 and 2.

two consecutive labels cannot be bounded. Nevertheless, the .
labeling of our example satis;fi@’;1 d(i,i+ 1) = O(n), The previous results suggest that the sequence-
and therefore the up/down protocol still has a linear messag ecomposition of Algorithms 1 and 2 may be applied by in-

complexity in this case. We will show that this is true for every roducing a relabeling of thé,’s in the appropriate places.
IRS. More precisely, the sequence decomposition for strict IRS is

obtained from the one for strict LIRS by modifying conditions

Assume first that the source is labelledgain, in order to j:réCases 2.1.1, and 2.1.2, as follows:

analyze the broadcast protocol, we make use of the sequen
W defined in (1). For every € {0,...,n — 1}, we define Case2.1.TThere existsy € {vy,..., 0,1} U (Us—l Y;),

1=m-+1
Ly: {1,....n} > {1,...,n} such thatw € Y, andL,_(w) < L,_(p).
such that Case 2.1.2For anyw € {v,...,v,—1} U (Uipi1 Vo),

Ly(u)=1+ ((n—i—u —x —1) mod n) we havew € Yo = Lq, (w) 2 La, (pe)-

Similarly, the sequence decomposition for IRS is obtained

We havel,(z) = nandL,(z + 1) = 1. These “rotations” of  from the one for LIRS by modifying conditions in Cases 2.1.1,
the labels allow us to obtain the following lemma. and 2.1.2, as follows:

Lemma 14 LetG be a network supporting an IRS. Lef = Case 2.1.1There existsy € {v1,...,v,} U (Uf;lnﬂ(yi \

T,Up, ..., up = x+1(resp.vg = z,vy,...,0, =x— 1) be 1)) such thatw € Y. and, < _
the shortest path from node labeledo node labeled: + 1 {z:1) 7 2o (W) S Lo, (pr)

(resp. to node labeled — 1) set by this IRS. Case2.1.Foranyw € {vy,...,v.} U (Uf;iﬁl(Y,-\{z,»})),

o Ifthe IRSisstrict, thef, () = n > Ly(u1) > Lo(uz) > ~ Wehavew € Yo = Ly (w) > Ly, (pr).
oo > Lo(ug—1) > Ly(z + 1) = 1 (resp.Ly—1(z) = The resulting algorithms satisfy the same properties as
1 < Lyy(v1) < Le—1(v2) < ... < Lg—1(vm-1) < Algorithms 1 and 2, respectively. There is only one difference:
szl(l".— 1) =n). ) ) when ajumptakes place inan IRS decomposition, say between

e Otherwise, for every, k > i > L, we h.aveL.w(uj,) >1, €Y, andw € Y,, then, by Lemma 15, (w) < L, (p:)
and L (u;) < Lq(u;) foreveryj, 1 < j <i—2(esp.,  in the strict IRS decomposition antl, (w) < L, (p;) in
foreveryi, 1 <i < m, Ly_1(vi) <n,andL.1(vi) >  the IRS decomposition. This means that, by using rotations
Ly—1(v;) foreveryj, 1 < j <i—2). of L,'s, the labels of the intermediate nodes between two

Proof. The proof is almostidentical to the proofs of Lemmas 1 CONSecutive targets may be arranged to be in decreasing order.
and 2. If the IRS is strict, then Id be the interval of edge However, we need to check whether this decreasing order is

(i, uis1) atu;, i = 0,...,k — 1. For the same reasons as preserved between different sequences of intermediate nodes,

those given in the proof of Lemma 1, we haver 1 € I; that is if we apply different rotations. The next lemma is the
wisr € Iz ¢ I andu; ¢ I,. Therefore Lo (ts41) < principle of the generalization to IRS networks of the results

Ly(u;) for 0 < i < k — 1. Similarly, one can show that ©btained for LIRS networks.

Ly—1(vi1) > Ly—1(vi) for 0 < i <m — 1. The prooffor | emma 16 Letp; andp;,; be two consecutive nodes of the
arbitrary IRS networks is identical to that of Lemma 2. active thread of the IRS sequence decomposition. Assume that

Lemma 15 Let G be a network supporting an IRS and let i € Yy andp;1 € Yo, r < 0. ThenLy, (pi+1) < La, (pi)

u be any node of7. Letr € {1,...,p} and assume that instrictIRS decomposition antd,, (pi+1) < Lo, (p:), where
d(u, X,) < 6. the maximum number of equalities is at mash IRS decom-

) ] ) position.
o Ifthe IRS is strict, then assume that there existsr such

that S5 (6 — ki) > 6 — 1, andZ‘?‘/_ (i —k) <6—1 Proof. According to the statement of the lemma, there isajump

s— t p; and thus we are considering Case 2.1 of the sequence
for everys', r < s' < s. Letr = ky + 30" (ky — oL o > .
4;) + 6 and letY; = v1,...,vp,. ASSUME thzat,_fo(r every deﬂcomposmon. Thuﬁi ¢ Uj:m+1 Xj'_ More preciselyp; ¢
i€ {r,...,s}, and everyr € X;, Ly (u) > Ly, (). Uj—,41 Xj- Indeed, ifm # r, then this property holds from
Moreover, assume that,, (w) > L., (7;) for everyi ¢  the setting of the mark after a backtrack ending;at(Note

{r,...,s—1} and every intermediate node< Y;. Then  that several backiracks may lead baclp9

Lo (v) < Ly, (w). Let us first consider the strict IRS decomposition. From
o Otherwise, assume that there exists> r such that Lemma 15, we have
Sl —k) > 2s—r+1)+6,andd ] (4 — Ly, (pi+1) < Ly, (pi)-

ki) < 2(s —r+ 1)+ 0 foreverys’, r < s < s.
Letk = ke 4+ 27" (ki — £) + 2(s — 7) + 4, and let
Ys = v1,...,ve,. Assume that, for eveye {r,...,s},
and everyx € X;, L., (u) > L,,(z). Moreover, as-
sume thatL,, (w) > L, (u) for everyi € {r,...,s —
1} and every intermediate node < Y; \ {z;}. Then
min{Lg, (Vx+1), La, (Vet2)} < Lo, (u). L, (p;) < Ly, (pi)-

Moreover, from Lemma 14, we have, (p;) > L, (x, +1).
If Ly, (zs) > Ly, (pi), then we would have that; is equal
to a target node inJ7_,.,, X;, a contradiction. Therefore
L, (x5) < Ly, (pi). Actually, L, (z,) < L, (p;) because,
sincep; ¢ X,, z, # p;- Thus
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By combining the two inequalities o, _(p;), we get asleader electioror distributed spanning tred-or simplicity,

L, (pit1) < Ly, (pi)- we present only straightforward yet asymptotically optimal
The same type of arguments allow to show thaf (p;+1) solutions here. Far more elegant solutions could be devised,
< L, (p;) in the sequence-decomposition for IRS. although they must also us®(n) messages.

Recall that, informally, the leader-election is the problem
dex such thap; € Y, then the active threagh, ps. . . . . p, of moving the network from an initial situation where the

pe+1 resulting from the sequence decomposition for strict IRSnOdes are in the same co_mputaﬂo_nql stgte, to a final S|tgat|on
satisfies, = n + 1, pra1 = 0 and where exactly one node is in a distinguished computational

state (calledeadei and all others are in the same state (called
Ly, (Pi) > Lay, (0j) (4)  defeate)l The election process may be independently started
by any subset of the nodes, called awakened-nodes (any other

From the previous result, we get thafifi) denotes the in-

for any pair(,j), 1 < i < j < t. There might be up to ) : b ; o>
o equalities in the sequence decomposition for IRS. In othelnOde is said to be "asleep”). Every nadéas a distinct input

words, the number of nodes in the active thread of the sequencgUe (x) chosen from some infinite totally ordered set and
decomposition is: for strict IRS networks and: + o for each processor is only aware of its own input value. Similar

arbitrary IRS networks. Bounding the number of nodes in thel©® Most of the solutions commonly used to solve the leader

jumped threads, the dead-end threads, and the auxiliarythreaﬁl,eciionlpmblem’ our strategy elects the node with the lowest
may then be achieved by exactly the same arguments as fRpPut value.

Sections 3 and 4. Finally, (4) holds even if the source node iSheorem 4 Networks supporting a shortest-path interval
not labeled 1. Therefore, we have: routing scheme allow leader-election with(n) message-

Theorem 3 The message-complexity of the up/down broad-complexity.
cast protocol is at mosin in a network of order supporting
a strict IRS and at mosit8n in a network of ordern support-
ing an IRS. As a consequence, networks supporting a shortest. Wake-up node labeled 1 via a down protocol;
path Interval Routing Scheme allows broadcasting With) 2. ldentify the node with the lowest input value via an up
message-complexity. protocol;

3. Broadcast the name of this node from nade

Proof. Our protocol is a 3-phase protocol:

Corollary 3 In a network supporting a shortest path Inter- _ _
val Routing Scheme, the average distance between two nod®#ore precisely, every awaken nodstarts by sending a mes-

labeled by two consecutive integers is bounded by a constansage(W, r) to noder — 1 where'IV” stands forwake upand
x is the label of the node in the IRS. Every intermediate node

Remark. The inherent serial behavior of the up/down proto- executes the broadcast protocol “down” on messages of type
col (by forwarding an increasing token and a decreasing tokenyy . Every target node: receiving the messag@V, = + 1)
imposes(2(n) hops in any network. We could however intro- awakes, if not yet awakened. An awakened nedehich has
duce a variant of the up/down protocol to reduce the numbep|ready sent a messa¢#’, =) to = — 1 does not forward the

of hops by using more copies of the message. For instancenessagév, = + 1), but removes it from the network. A node

a new protocol could be obtained by modifying the up/downwaking up proceeds as specified before, i.e., it sends a mes-
protocol as follows (we only consider the changes regardingage(1¥, ) to nodez — 1. When node 1 receives the message
the up copy, the modification for the down copy may be ob-(yy/ 2) as a target node, it awakes (if not yet awakened). This
tained similarly). Each header now contains an intejwgl] completes Phase 1.

of consecutive targets to reach. The minimum labekp- Once awakened, node 1 starts Phase 2, and initiates an
resents the current target to reach. Initially, the originator «uyp” protocol with messagéE, I(1), 1) where “E” stands
setsa to v + 1 andb to n, and sends the up copy toward for elect Every node executes protocol “up” on messages of
v + 1. Any intermediate node: which receives a message type E with the following modification. When a target noge
with header(a, b] proceeds as follows. It ¢ [a,b], thenz  receives a message, I, y), it proceeds as follows: if(z) <
simply forwards the message towardIf = € [a,b] thenz | thens replacesthe message, I,y) by (E, I(z),z). When
creates two copies of the message, one which is sent towardreceives the messag®, I, z) as a target node, it electsas

z + 1 with the headefz + 1,b], and another which is sent |eader iff < I(n), or itself otherwise. Phase 2 is completed.
towarda with headerla,  — 1]. A message of header, z] Phase 3 consists of a broadcast from nodéthe identity
reaching node is removed from the network. The asymptotic of the leader selected by node

message-complexity of this variant of the up/down protocol  phase 1 does not generate more tfn) messages; the

is not higher than the asymptotilc message-complexity of th%umber of messages generated by Phas{}l;ﬁfsf d(i,i+1)
original version (i.e., at mo§C;~" d(i,i + 1)), butthe num- a5 an awakened node sends(WV,z) to = — 1 only once.

ber of hops of this variant can be significantly smaller than therherefore, from Corollary 3, Phase 1 generatds) mes-
number of hops of the original version in some networks.  sages. Phase 2 does not generate moredhan messages

as its message-complexity is equal to the message-complexity
of a broadcast from node 1. Phase 3 is a broadcast, and thus
it does not generate more thén) messages. Therefore, the
message-complexity of the whole protoco(ién)

6 Related problems

The fact that:-node networks supporting shortest path inter-
val routing schemes allow broadcasting wittin) message- In the distributed spanning tree problem, every node of a
complexity can be directly used to solve other problems, sucmetwork G = (V, E) must select some of its neighbors (at
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least one) such that the graph= (V, E’) whereE’ isthe set  node labeled: to node labeled + 1 set by this routing. Lef;
of edges linking every node with its selected neighbors, is &e the interval of the edde;, u; 1) atu;. We havec+1 € I;.
tree spannings. However, there is no evidence that,; € I; as the routing

. . from u; to u;41 may go through a path of length at mast
Theorem 5 Networks supporting a shortest-path interval i makes it difficult to generalize our approach to stretches
routing scheme allow dlstrlbl_Jted spanning tree to be solved, - o
with O(n) message-complexity. Finally, letG be an edge-weighted network supporting a

Proof. As in the leader election protocol, a preliminary phaseStrict LIRS. Letug = z, u1, ... ,ux = z +1 be the path from
is performed to wake up the node labeled 1. Once awake, Nod@gode labeled: to node labeled + 1 set by this routing. Lef;
labeled 1 broadcasts a message “construct’. Upon receptiop€ the interval of the edde;, ;1) atu;. We haver+1 € I;.
from w of the message “construct’, a (non necessarily targetf*dain, there is no evidence thaf,, < I; as the routing from

nodev proceeds as follows: u; 10 u;41 may go through a path whose weighted sum equals
. o . the weight of the edgéu;, u;+1).
o [fitisthefirsttime that received the message “construct”, In conclusion, our technique does not seem to generalize
then . ., easily. More powerful tools and new protocols seem to be re-
1. v selectsu as “parent’, and quired to investigate these three problems. As a consequence,
2. v sends a message “parent’ddo letu know thatv e |eave these possible extensions as open problems.
selected it as its parent, o As a last remark, we point out that our protocols are very
* v executes the instructions of protocol “up” applied to the sensitive to faults. For instance, if node 2 is faulty, then broad-
message “construct”. casting from node 1 using Protocol up/down would completely
Once the protocol “up” completes at node noden initi- fail. We believe that the design of fault-tolerant routing and/or

ates a protocol “down” to broadcast a message “end” to infroadcasting protocols based on standard IRS is a challenge
form that the tree-construction is completed. Once node 1 rethat would be worthy of addressing in the future.
ceives the message “end” as a target node, the whole process

is completed. Every node defines its neighbors in the tree ,b)&cknowledgementsThe authors are thankful to the anonymous ref-

selecting (1) its parent, and (2) all the nodes from which itgees for their comments which allow significant improvements of
receives a “parent” message (if any). This protocol ©&s) the presentation.

message-complexity?(n) messages “construct?)(n) mes-
sages “end”, and — 1 messages “parent”.
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