
Distrib. Comput. (2001) 14: 217–229

c© Springer-Verlag 2001

Interval routing schemes allow broadcasting
with linear message-complexity

Pierre Fraigniaud1,∗, Cyril Gavoille 2,∗∗, Bernard Mans3,∗∗∗

1 Laboratoire de Recherche en Informatique, Bˆat. 490, Universit´e Paris-Sud, 91405 Orsay cedex, France
2 Laboratoire Bordelais de Recherche en Informatique, Universit´e Bordeaux I, 33405 Talence cedex, France
3 Department of Computing, Division of ICS, Macquarie University, Sydney, NSW 2109, Australia

Received: December 2000 / Accepted: July 2001

Summary. The purpose ofcompact routingis to provide a la-
beling of the nodes of a network and a way to encode the rout-
ing tables, so that routing can be performed efficiently (e.g., on
shortest paths) whilst keeping the memory-space required to
store the routing tables as small as possible. In this paper, we
answer a long-standing conjecture by showing that compact
routing may also assist in the performance of distributed com-
putations. In particular, we show that a network supporting
a shortest pathinterval routing schemeallows broadcasting
with a message-complexity ofO(n), wheren is the number
of nodes of the network. As a consequence, we prove that
O(n) messages suffice to solve leader-election for any graph
labeled by a shortest path interval routing scheme, improving
the previous known bound ofO(m + n). A general conse-
quence of our result is that a shortest path interval routing
scheme contains amplestructural informationto avoid devel-
oping ad-hoc or network-specific solutions for basic problems
that distributed systems must handle repeatedly.

Key words: Compact routing – Interval routing – Broadcast-
ing – Distributed computing

1 Introduction

This paper addresses a problem originally formulated by
D. Peleg that can be informally summarized as follows: “Do
networks supporting shortest path compact routing schemes
present specific ability in term of distributed computation?
E.g., broadcasting, leader election, etc.” This paper answers

Part of this work was completed while the third author was visiting
the Computer Science Department of University Paris-Sud at LRI,
supported by the Australian-French ARC-IREX/CNRS cooperation
#99N92/0523. A preliminary version of this paper was presented at
the 19th ACM Symposium on Principles of Distributed Computing
(PODC 2000).

∗ Additional support by the CNRS
∗∗ Additional support by the Aquitaine Region project #98024002
∗∗∗ Additional support by the ARC

this question in the affirmative, by showing thatn-node net-
works supporting interval routing schemes [27,28] (IRS for
short), allow broadcasting withO(n) message-complexity.

Formally, a networkG = (V,E) (in this paper, bynet-
work, wewill alwaysmeanaconnectedundirectedgraphwith-
out self loops and multi-edges) supports an IRS if the nodes
of that network can be labeled from 1 ton = |V | in such a
way that the following is satisfied: given any nodex ∈ V of
degreed and label
, there is a set ofd intervalsI1, . . . , Id of
{1, . . . , n}, one for each edgee1, . . . , ed incident tox, such
that (1){1, . . . , n} \ {
} ⊆ ⋃d

i=1 Ii, (2) Ii ∩ Ij = ∅ for every
i 	= j and (3)
′ ∈ Ii implies that there is a shortest path from
x to the node labeled
′ passing through the edgeei. (IRS
encode shortest path routing tables with the property that the
set of destination-addresses using a given link is a set of con-
secutive integers.) IRS are well-known in the framework of
compact routing since a network of maximum degree∆, and
supporting an IRS, has routing tables of sizeO(∆ log n) bits,
in comparison to theΘ(n log∆) bits of a table returning, for
every destination labeli ∈ {1, . . . , n}, the output port corre-
sponding to that label. For more about IRS, we refer to [7,11,
18,20,23,24], and to the survey [17]. For more about compact
routing in general, we refer to [13–15,19,21,26]. In the re-
mainder of this paper, given a network supporting an IRS, we
will make no distinction between the nodes and their labels. In
other words, we will assumeV = {1, . . . , n} where the label
of nodex in the IRS is preciselyx ∈ {1, . . . , n}.

Broadcasting for an arbitrary node of a network is the in-
formation dissemination problem which consists of sending a
givenmessage to all the other nodes. Themessage-complexity
of broadcasting is betweenΩ(n) andO(m),m = |E|, since
the reception of the message by every node but the source re-
quiresat leastn−1messages, andyet, broadcastingcanalways
be performed by flooding the network (meaning, upon recep-
tion of themessage, every node forwards thatmessage through
all its incident edges apart from the one through which it has
received themessage). Improved upper and lower boundsmay
be derived as a function of the knowledge of the nodes of the
network and of themaximal size of themessage-headers (e.g.,
see [1,2,5]). In this paper, the only knowledge of every node
is its label in some IRS and the intervals attached to its inci-
dent edges in the same IRS. The size of each message-header

218 P. Fraigniaud et al.

transmitted by our broadcast protocol is�log2 n� + 1 bits. (In
respect to the time-complexity of broadcasting, we refer the
reader to [3,12,22].)

The relationship between IRS and broadcasting has been
previously investigated.VanLeeuwenandTan [28] proved that
minimum spanning tree construction (and therefore broad-
casting) and other related distributed problems such as leader-
election, may be solved by exchangingO(n) messages in a
ring whose nodes are labeled according to an IRS andO(m+
n) messages for arbitrary graphs whose nodes are labeled ac-
cording toan IRS.Let us recall that leader-electionwithout any
network knowledge requiresΘ(n log n) messages for a ring
andΘ(m+n log n)messages for anarbitrarygraph [16].More
generally, the question of howmuch a labeling can help in the
solution of distributed problems was studied in [9,10] in the
framework of Sense of Direction [8]. It was shown in [6] that
the message-complexity of the broadcast problem isn− 1 for
the restricted class of networks supportingall-shortest-path
IRS (an IRS where all the shortest paths are represented) with
additional restrictions on the intervals (strictness and linear-
ity). Finally, de la Torre, Narayanan and Peleg [4] showed that
the same result holds in IRS networks satisfying the so-called
ssr-tree property. (Informally, this property states that, for
any nodex, the set of paths induced by the IRS originated at
x and ending at all the other nodes, is a tree.) In this paper, we
improve these results by showing that a network supporting
standard shortest path IRS supports a broadcast protocol of
message-complexityΘ(n).

Our result hasmany consequences on other problems such
as leader-electionor distributed spanning tree. For instance,
Korach et al. [25] have shown that the leader-election prob-
lem may be solved using(b(n) + n)(log2 n + 1) mes-
sages whereb(n) is the message-complexity of broadcasting
in ann-node network. This result, combined with our own,
shows thatn-node networks supporting shortest path IRS al-
low the leader-election problem to be solved withO(n log n)
message-complexity. In fact, we will prove, by giving a spe-
cific algorithm based on ourO(n)-message broadcast proto-
col, thatO(n) messages suffice to solve leader-election for
any graphs whose nodes are labeled according to a shortest
path IRS. This improves theO(m+n) previous bound of van
Leeuwen and Tan [28]. Note that the set of networks support-
ing IRS formsawide classof graphs including, e.g., unitary in-
terval and circular-arc graphs, hypercubes, multi-dimensional
tori (see [17]).

This paper is organized according to several hypotheses
on the IRS. These hypotheses will be relaxed as the paper
proceeds. We distinguish two types of intervals: an interval
[a, b] = {a, . . . , b} with b ≥ a is said to belinear, whereas an
interval[a, b] with b < a refers to the set{a, . . . , n, 1, . . . , b}
and is said to becyclic. The class of networks supporting linear
IRS (LIRS for short), those inwhich all intervals of the IRSare
linear, is strictly included in the class of networks supporting
IRS.We also distinguish the caseV \{x} =

⋃d
i=1 Ii for every

nodex1, from the case in whichx appears in the interval
of one of its incident edges, for at least one nodex. In the
former case, the IRS is said to bestrict. Hence we get four
types of interval routing schemes: IRS, LIRS, strict IRS, and

1 Recall that we assumedV = {1, . . . , n} and we make no dis-
tinction between the nodes and their labels.

strict LIRS. The following section presents some preliminary
results. Section 3 is dedicated to networks supporting strict
LIRS. Section 4 relaxes the strictness requirement. Section 5
relaxes the linearity requirement and presents our main result
about IRS. Section 6 contains some remarks about related
problems, specifically leader electionanddistributed spanning
tree computation. Finally, Sect.7 contains some concluding
remarks about possible extensions based on the results of this
paper.

2 Preliminary results

In this section, we will present a distributed broadcast proto-
col for a network supporting an IRS. This protocol is simple
though efficient, since its message-complexity will be shown
to beO(n). We refer to this protocol as the up/down proto-
col. The second part of the section will present tools for the
analysis of this protocol.

2.1 The up/down broadcast protocol

Let ν be the source of the broadcast, identified by its label
in the IRS. The source initiates the broadcast by sending two
copies of the message, one meant for the nodeν − 1 and the
other meant for the nodeν + 1. The latter copy is called the
“up” copy and the former the “down” copy. (Ifν = 1orν = n,
then the source sends only one copy.) There will be at most
two copies of the message circulating in the network. First we
concentrate on the up copy meant forν +1. The message will
eventually reachν + 1 by the shortest path set by the IRS. It
may possibly cross intermediate nodes but these nodes will
simply forward the message to its destination, disregarding
of its content. Onceν + 1 receives the message, it reads its
content, modifies the header by replacingν + 1 by ν + 2 and
forwards it towards the node labeledν + 2. More generally,
once anode labeledx,ν < x < n, receives themessagemeant
for x, it reads its content, modifies the header by replacingx
by x + 1 and forwards it toward node labeledx + 1. When
the node labeledn receives the message, it reads its content
and removes it from the network. The same strategy is applied
for the down copy, by replacingx + 1 by x − 1, 1 < x < ν,
until it reaches the node labeled 1, which reads its content
and removes it from the network. Again, at every given time,
a copy of the message is meant for only one specific node,
called thetarget, and when a node different from that target
receives the message, it does not take the opportunity to read
its content, but just forwards the message to the target along
the shortest path set by the IRS leading to that target.

The up/down protocol uses headers of size�log2 n� + 1
bits: the label of the destination has�log2 n� bits and there is
one bit indicating whether it is a down copy or an up copy. The
message-complexity of the up/downprotocol is

∑n−1
i=1 d(i, i+

1) whered(x, y) is the distance between the node labeledx
and the node labeledy inG. To the knowledge of the authors,
no improvedboundsond(i, i+1) for networks supporting IRS
are known. Note that it is known [6] thatd(i, i + 1) = 1 for
networks supporting anall-shortest-pathsstrict LIRS (that is
for networks such that a strict LIRSencodesall shortest paths).
Theclassof networks supportingall-shortest-paths strict LIRS

Interval routing schemes allow broadcasting with linear message-complexity 219

Fig. 1.Notations

is very restricted and, as we will see, only weaker results may
be proved for (single shortest path) LIRS or IRS.

Assume, for the sake of clarity, that the source is the node
labeled1 (the general casewill be considered in later sections).
LetW = w1, w2, . . . , wτ be the sequence of nodes visited by
the message from its sourcew1 (labeled 1) to its final destina-
tionwτ (labeledn). The same node may appear several times
inW , however, a nodex can only appear once as a target node.
The possible other occurrences of nodex correspond to steps
of the protocol in whichx is traversed by a message meant
for a target nodey 	= x. Let us complement the sequenceW
by two virtual nodes,w0 = n + 1 andwτ+1 = 0. These two
nodes are not target nodes. More precisely,W can be written
as:

W = Y0, X1, Y1, X2, Y2, . . . , X�−1, Y�−1, X�, Y� (1)

whereXi, i = 1, . . . , �, is a maximal sequence of consecutive
target nodes andYi, i = 1, . . . , �− 1, is the sequence of non-
target nodes between the last node ofXi and the first node of
Xi+1.We setY0 = w0, andY� = wτ+1. The nodes of theYi’s
are calledintermediatenodes.

Notation. For everyi, throughout the paper, we will always
make use of the following notation (see Fig.1).

• ki = |Xi| and
i = |Yi|;
• xi = the last node ofXi;
• yi = the last node ofYi; and
• zi = the first node ofYi.

2.2 Intermediate node sequences

The next four lemmas give some properties satisfied by the
intermediate nodes in theYi’s. These properties will be shown
to be helpful in computing the message complexity of the
up/down protocol.

Lemma 1 LetG be a network supporting a strict LIRS. Let
u0 = x, u1, . . . , uk = x + 1 (resp.v0 = x, v1, . . . , vm =
x − 1) be the shortest path from nodex to nodex + 1 (resp.
to nodex − 1) set by the strict LIRS. Then

u1 > u2 > . . . > uk−1 > x + 1.

(Respectively,v1 < v2 < . . . < vm−1 < x − 1.)

Proof. Let Ii be the interval of edge(ui, ui+1) at ui, i =
0, . . . , k − 1. We havex + 1 ∈ Ii by definition of the path
u0 = x, u1, . . . , uk = x + 1 andui+1 ∈ Ii as(ui, ui+1) is
the unique shortest path fromui to ui+1. Also,x /∈ Ii, i > 0,
by definition of the pathu0 = x, u1, . . . , uk = x + 1, and
ui /∈ Ii, 0 ≤ i ≤ k − 1, as the LIRS is strict. In particular,
[x + 1, u1] ⊆ I0, andx /∈ I0 implies thatu1 > x as I0
is linear. More generally, fori ≥ 1, [x + 1, ui+1] ⊆ Ii and
x /∈ Ii impliesui+1 > x becauseIi is linear. Now,ui > x

andui /∈ Ii impliesui > ui+1. Therefore,x+1 < ui+1 < ui

for 0 < i < k − 1.
Similarly, one can show thatx − 1 > vi+1 > vi for

0 < i < m − 1.

A direct consequence of Lemma 1 is thatd(x, x + 1) ≤
n − x, andd(x, x − 1) ≤ x − 1, and hence we have:

Corollary 1 In a network supporting a strict LIRS,d(i, i +
1) ≤ min{i, n − i}.

This corollary does not yield any satisfactory upper bound
on the message-complexity of the up/down protocol for
strict LIRS as it merely induces the trivial upper bound∑n−1

i=1 d(i, i + 1) = O(n2). Lemma 1 is, however, impor-
tant as it states that, in strict LIRS, once a target nodex has
received the up copy of the message in the up/down protocol,
no node of label smaller or equal tox will be visited any-
more, and symmetrically for the down copy. Note that this
is not enough to conclude that the message-complexity of the
up/down protocol has amessage-complexityO(n) as nodes of
large labels may be visited a non-constant number of times in
the up/down protocol. Nevertheless, Lemma 1 will be exten-
sively used throughout this paper. The following results allow
a reader to understand the subtle difference between LIRS and
strict LIRS.

Lemma 2 LetG be a network supporting a LIRS. Letu0 =
x, u1, . . . , uk = x + 1 (resp.v0 = x, v1, . . . , vm = x − 1)
be the shortest path from nodex to nodex + 1 (resp. to node
x− 1) set by the LIRS. Then, for everyi, k > i > 1, we have:

(i) ui > x + 1,

and

(ii) ui < uj for everyj, 1 < j ≤ i − 2.

(Respectively, for everyi, 1 < i < m: (i) vi < x− 1, and (ii)
vi > vj for everyj, 1 < j ≤ i − 2.)

Proof. Let Ii be the interval of edge(ui, ui+1) at ui, i =
0, . . . , k−1. By definition, we havex+1 ∈ Ii andui+1 ∈ Ii.
For i ≥ 1 we also havex /∈ Ii (otherwise there would exist a
shorter path fromx to x+ 1). Thusui > x+ 1 for 1 < i < k
as the intervals are linear. So Property(i) holds.

For proving Property(ii), we note that, ifi ≥ 1, then
uj /∈ Ii for everyj ≤ i − 1 by definition of the pathx =
u0, u1, . . . , uk = x + 1. Therefore, sinceuj > x + 1 for all
j, 1 < j < k, we haveui+1 < uj for everyj, 1 < j ≤ i − 1.

The results for thevi’s are obtained in a similar way.

As a consequence of Lemma 2, we haved(x, x + 1) ≤
n − x + 1, andd(x, x − 1) ≤ x, and hence we get a result
similar to Corollary 1:

Corollary 2 In a network supporting an LIRS,d(i, i + 1) ≤
1 + min{i, n − i}.

220 P. Fraigniaud et al.

We now analyze the relation between the labels of nodes
in two consecutive sequences of intermediate nodes,Yr−1 =
{u1, . . . , u�r−1} andYr = {v1, . . . , v�r} say. Let us consider
the two following examples:

– AssumeXr = {x} and
r ≥ 2. (Recall that the form of
W isW = . . . Yr−1, Xr, Yr . . .) If the network supports a
strict LIRS, then, by considering the interval on(x, v1) at
x if v1 	= u�r−1 or the interval on(v1, v2) atv1, otherwise,
one can easily check thatu�r−1 > v2.

– AssumeXr = {x, x + 1} and
r ≥ 3. If the network
supports a strict LIRS then one can check similarly that
u�r−1 > v3.

Remark.The two previous examples show that, by “jumping”
over some intermediate nodes, one can find a strictly decreas-
ing sequence of intermediate nodes. The problem is however
more complex ifXr = {x}with
r = 1, or ifXr = {x, x+1}
with
r ≤ 2. In both cases, there is not enough intermediate
nodes to jump inYr in order to find an intermediate node of
label smaller thanu�r−1 . Nevertheless, ifXr = {x, x + 1},
Yr = {v1, v2}, Xr+1 = {x + 2} and if
r+1 = |Yr+1| is
large enough, then one can check thatu�r−1 > w2 where
Yr+1 = {w1, . . . , w�r+1}. However, if
r+1 is too small, say

r+1 = 1, then onemust consider the next sequenceYr+2, and
so on. In fact, as we will see, looking for a node label smaller
thanu�r−1 depends on the partial sums

s∑
i=r

(|Yi| − |Xi|) =
s∑

i=r

(
i − ki)

for s ≥ r. More precisely, this operation depends on the first
smallest indexs such that this sum is large enough. Roughly
speaking, as suggested by the examples above, ifu�r−1 is
the last node ofYr−1, then the next node smaller thanu�r−1

may be found inYr if |Yr| > |Xr|; otherwise, inYr+1 if
|Yr| + |Yr+1| > |Xr| + |Xr+1|; and so on. In general, one
needs to jump at least as many intermediate nodes as target
nodes, in order to make sure to find a node smaller thanu�r−1 .
The next two lemmas formally state this relationship between
consecutive sequences of intermediate nodes. Again, the goal
is to answer the following: given an intermediate nodewi ∈
W , where can we find another intermediate nodewj ∈ W ,
j > i, whose label is smaller, or at least not larger, than the
label ofwi? (Lemma 1 answers this question ifwi is not the
last node of an intermediate sequence in a strict LIRSnetwork,
and Lemma 2 answers this question ifwi is neither the last nor
the penultimate node of an intermediate sequence in a LIRS
network.)

For any set of nodesS ⊆ V and any nodeu ∈ V ,
we denote byd(u, S) the distance betweenu andS, that is
d(u, S) = minv∈S d(u, v). Recall that� is the number of
target sequencesXi’s.

Lemma 3 LetG be a network supporting a strict LIRSand let
u be a node ofG. Letr ∈ {1, . . . , �} and assumed(u,Xr) ≤
δ. Assume that there existss ≥ r such that

∑s
i=r(
i − ki) >

δ−1 and
∑s′

i=r(
i −ki) ≤ δ−1 for everys′, r ≤ s′ < s. Let
κ = ks+

∑s−1
i=r (ki−
i)+δ and letYs = v1, . . . , v�s . Assume

thatu > x for everyx ∈ ⋃s
i=r Xi and assume thatw ≥ u for

every intermediate nodew ∈ ⋃s−1
i=r Yi. Thenu > vκ.

We first note that
∑s

i=r(
i − ki) ≥ δ implies thatκ ≤
s.
Note also that, ifs > r, then

∑s−1
i=r (
i − ki) ≤ δ − 1 implies

thatκ ≥ ks + 1 ≥ 2. If s = r, thenκ = ks + δ ≥ ks ≥ 1.
Therefore,vκ is well defined. To prove Lemma 3, we use the
following result:

Claim 1 Under the hypothesis of Lemma 3,d(u, xs) ≤ κ−1.

Proof. If s = r thend(u, xs) ≤ d(u,Xr)+ks −1 ≤ δ+ks −
1 = κ − 1. Let us show that the same result holds ifs > r.
For that purpose, we show by induction oni that, assuming
s > r, we have

d(u, yi) ≤ (δ − 1) +
i∑

j=r

(kj −
j)

for everyi = r, . . . , s − 1. (2)

• Initial step i = r. Let Yr = u1, . . . , u�r
. Note thatyr =

u�r . LetI1 be the interval on theedge(xr, u1)atxr and, for
i > 1, let Ii be the interval on the edge(ui−1, ui) atui−1.
For everyi ≥ 1, we havexr + 1 ∈ Ii, andxr /∈ Ii. From
Lemma 1, we also haveu1 > . . . > u�r

> xr +1. By hy-
pothesis of Lemma 3,u > x for everyx ∈ ⋃s

i=r Xi, and
u ≤ u�r . Thus, sinceui ∈ Ii, we get thatu ∈ Ii for every
i = 1, . . . ,
r. Therefore, a shortest path fromxr tou goes
throughu1, . . . , u�r . As a consequence
r + d(yr, u) ≤
kr +d(u,Xr)−1, and thusd(u, yr) ≤ (δ−1)+(kr −
r).

• Induction step.Assume thatd(u, yi) ≤ (δ − 1) +∑i
j=r(kj −
j) for somei, r ≤ i < s − 1, and let us

show thatd(u, yi+1) ≤ (δ− 1)+
∑i+1

j=r(kj −
j). For the
same reasons as for the casei = r, a shortest path from
the last nodexi+1 ofXi+1 to u goes through all nodes of
Yi+1. We get that

i+1 + d(u, yi+1) ≤ d(xi+1, u) ≤ ki+1 + d(u, yi)

≤ (δ − 1) + ki+1 +
i∑

j=r

(kj −
j).

And thusd(u, yi+1) ≤ (δ − 1) +
∑i+1

j=r(kj −
j). This
completes the proof of (2).

A consequence of (2) is thatd(u, xs) ≤ (δ − 1) + ks +∑s−1
j=r(kj −
j) = κ − 1, which completes the proof of the

claim.

Proof of Lemma 3.Let I1 be the interval on edge(xs, v1) at
xs, and, fori > 1, let Ii be the interval on edge(vi−1, vi) at
vi−1. We havexr + 1 ∈ Ii, vi ∈ Ii, andxr /∈ Ii. Therefore,
sinceu > x + 1, we have: ifu < vi thenu ∈ Ii. Thus if
u < vi for everyi ∈ {1, . . . , κ− 1}, thend(u, xs) > κ− 1, a
contradiction with Claim 1. Thusu ≥ vi for somei ≤ κ − 1,
and thereforeu > vκ by Lemma 1.

The difference between Lemma1and Lemma2engenders
the following adaptation of Lemma 3 for networks supporting
non strict LIRS.

Lemma 4 LetGbeanetwork supporting anLIRSand letube
a node ofG. Letr ∈ {1, . . . , �} and assume thatd(u,Xr) ≤
δ. Assume that there exists ans ≥ r such that

∑s
i=r(
i−ki) ≥

Interval routing schemes allow broadcasting with linear message-complexity 221

2(s− r + 1) + δ and
∑s′

i=r(
i − ki) < 2(s′ − r + 1) + δ for
everys′, r ≤ s′ < s. Letκ = ks +

∑s−1
i=r (ki −
i) + 2(s −

r) + δ and letYs = v1, . . . , v�s . Assume thatu > x for every
x ∈ ⋃s

i=r+1 Xi and thatw > u for every intermediate node

w ∈ ⋃s−1
i=r (Yi \ {zi}). Then,min{vκ+1, vκ+2} ≤ u.

Again, we note that
∑s

i=r(ki −
i) ≤ 2(r − s − 1) − δ
impliesκ ≤
s−2.Moreover, ifs = r thenκ = ks+δ ≥ 1and
otherwise

∑s−1
i=r (ki −
i) > 2(r−s)−δ impliesκ > ks ≥ 1.

Thusκ is well defined.

Proof. We proceed in a similar way to the proof of Lemma 3.
We first claim thatd(u, zs) ≤ κ. This inequality holds for
s = r asd(u, zr) ≤ d(u,Xr) + kr ≤ δ + kr = κ. The
proof fors > r is based on an inductive proof of the following
property (analogous to the proof of Claim 1).Assumings > r,
we have

d(u, yi) ≤
i∑

j=r

(kj −
j) + 2(i − r) + (δ + 1)

for everyi ∈ {r, . . . , s − 1}. (3)

• Initial stepi = r. The shortest path fromzr tou set by the
IRS goes through all nodes ofYr. Thus
r −1+d(yr, u) ≤
kr + d(u,Xr), and henced(yr, u) ≤ (kr −
r) + (δ + 1).
Therefore (3) holds fori = r.

• Induction step.We assume (3) holds fori and show that
it holds fori + 1. Again, the shortest path fromzi+1 to u
set by the IRS goes through all nodes ofYi+1, and thus

i+1 −1+d(yi+1, u) ≤ ki+1 +1+d(u, yi) and therefore
d(yi+1, u) ≤ ∑i+1

j=r(kj −
j) + (δ + 1) + 2(i + 1 − r),
and (3) holds fori + 1.

The claimd(u, zs) ≤ κ then holds by application of (3)
since it yields

d(zs, u) ≤ ks + 1 +
s−1∑
i=r

(ki −
i) + (δ + 1) + 2(s − r − 1)

= κ.

Now, sinced(u, zs) ≤ κ, there is a node in{v2, . . . , vκ+1}
such thatvi ≤ u. Otherwise, the path set by the IRS fromzs

to u would go throughv2, . . . , vκ+1, and thus would not be
a shortest path. Leti be the smallest index in{2, . . . , κ + 1}
such thatvi ≤ u. If i < κ+1, thenvκ+2 < u from Lemma 2.
If i = κ + 1, thenvκ+1 ≤ u (actually,vκ+1 = u).

3 Strict linear interval routing schemes

In this section, we show that the message-complexity of the
up/down protocol is at most3n on a network of ordern sup-
porting a strict LIRS.

3.1 Partition: a sequence-decomposition algorithm

Assume first that the source is node 1. We make use of the
sequenceW as introduced in (1). Since the total number of
target nodes isn, we have

∑�
i=1 |Xi| = n. Therefore, the

aim of the remainder of the proof is to bound the total num-
ber

∑�
i=0 |Yi| of intermediate nodes. For that purpose, wewill

partition the intermediate nodes ofW into three types of (pair-
wise disjoint) subsequences.We call the result of this partition
thesequence-decomposition. Every intermediatenodeappears
exactly once in this decomposition. The target nodes do not
appear in the decomposition. More precisely, the decomposi-
tion will be composed of anactive thread, dead-end threads
andjumped threads. Here the terminology “thread” refers to
a sequence on non-necessarily consecutive nodes ofW . The
active thread is built by a walk starting fromw0 up towτ+1.
Along the construction of the sequence-decomposition, some
parts of the active thread become dead-end threads.At the end
of the decomposition, the two extremities of the active thread
arew0 andwτ+1 and the total number of nodes in the active
thread will be at mostO(n). Also, at the end of the construc-
tion, the sum of the lengths of the dead-end threads and the
sum of the lengths of the jumped threads will be both bounded
by O(n). Therefore, the total number of intermediate nodes
will be O(n), and |W | = O(n). A careful analysis of the
constants will actually show that|W | ≤ 3n.

Let us be more specific. Again, the decomposition is per-
formed by visiting all intermediate nodes of the sequenceW
from w0 to wτ+1, and in this way constructing the active
thread. One may “jump” over some intermediate nodes if the
length of the jump is able to be bounded. The terminology
“jump” refers to the remark in Sect.2. Jumped intermediate
nodes form a jumped thread. One may also backtrack along
the active thread for a bounded number of nodes. The nodes
along which the backtrack occurs form a dead-end thread.

The decomposition requires two parameters: themarkm
and thedirectiond. The role of the mark is to keep track of
the progression along the sequenceW . In general, the mark
indicates the current position, or, more precisely, the index
i of the current setYi. The mark is an important parameter
because of the backtracks.When a backtrack occurs, the mark
is set to hold the current maximum position ever reached in
the sequenceW . The direction indicates whether or not one is
currently backtracking. In theaffirmative,d = −1andd = +1
otherwise.

Initially, the active thread is reduced tow0 and there is no
dead-end thread nor jumped thread. The markm is set to0,
and the direction is set to+1.

The construction of the sequence-decomposition is pre-
cisely described in Algorithm 1. The explanations of the sev-
eral steps of the construction are given below.

In Case 1, the construction is currently visiting someYr.
While the last node of this sequence of intermediate nodes
is not reached, the active thread is updated by adding all the
forthcoming nodes of the current sequence. Informally, from
Lemma 1, the size of the active thread will not increase too
much since the labels of the nodes are in a strictly decreasing
order.

Case 2 happens in particular when the last node of the cur-
rent sequenceYr is reached (see Fig.2a). The definition ofs
is motivated by Lemma 3. Ifs does not exist, the construc-
tion stops. The jumped thread has then a length bounded by∑�

i=r+1 |Xi|. In general, every jumped threadb will have a
length bounded by

∑
i∈Ib

|Xi| for some index setIb, so that
Ib ∩ Ib′ = ∅ if b′ 	= b. If s does exist, then we make a jump

222 P. Fraigniaud et al.

Fig. 2. Construction of the
sequence-decomposition

in the sequenceW as explained hereafter. (Note that, as in
Lemma 3,2 ≤ κ ≤
s.)

In Case 2.1.1, we simply jump at the next intermediate
nodew whose label is smaller than the label of the current
node. Case 2.1.2 can be seen as an extremal case of Case 2.1.1.
We know from Lemma 3 that jumping atvκ is sufficient as the
label of that node is smaller than the label of the current node
pt. The mark is updated to contain the index of the sequence
of intermediate nodesYσ reached after the jump.

Case 2.2 is in fact the most difficult case to explain (see
Fig.2b) primarily because a backtrack occurs. This backtrack
is motivated by the fact that one cannot find an intermediate
node with a label smaller than that ofpt. Informally, we back-
track along the active threadp0, p1, . . . , pt until we reach a
nodept′ , t′ < t, for which Lemma 3 may be applied. Note
thatt′ is well defined sincep0 /∈ ⋃�

i=1 Xi = {1, . . . , n}. We
will show that the length of a dead-end thread that results from
a backtrack is bounded by

∑σ
i=m+1 |Xi|.Wewill also see that

thepossible jumped threadset from thevalueofpt′ hasa length
bounded by

∑σ−1
i=m+1 |Xi|. Fig.2b illustrates the specific case

in which the backtrack goes across a former jump.
Now, let us analyze the construction of the sequence-

decomposition.

Claim 2 At any step of the decomposition, ifd = +1, then
pt ∈ Ym.

Proof. Initially this claim holds. Assume the claim holds be-
fore some stepi and consider the several cases ofAlgorithm 1.
In Case 1,pt+1 will still be in Ym, andd will still be +1. In
Case 2.1, the direction is set to+1 andpt+1 ∈ Ym by defini-
tion of the setting of themarkm in bothCases 2.1.1, and 2.1.2.
Case 2.2 setsd to−1. The claim also holds after stepi.

Lemma 5 The construction of the sequence-decomposition
given in Algorithm 1 produces a set of threads in which every
intermediate node appears exactly once.

Proof.After every stepi, let us definemi as the resultingmark
and

qi =
{
pt if pt ∈ Ymi

;
last node ofYmi

otherwise.

We claim that, at every stepi, all intermediate nodes beforeqi

appears exactly once in the sequence-decomposition. Initially
this claim holds.Assume it holds before stepi. In Case 1, from
Claim 2,qi−1 = pt ∈ Ymi−1 . The active thread is upgraded

by adding the next node of the sequence,Ymi = Ymi−1 , and
thus the claim holds after stepi. In Case 2.1,mi is set such
thatpt+1 ∈ Ymi and thusqi = pt+1. Every intermediate node
between the last node ofYmi−1 (that isqi−1) andpt+1 (that is
qi) are put in a jumped thread and so the claim holds after step
i. In Case 2.2, some part of the active thread becomes a dead-
end thread. By the setting ofmi, all the intermediate nodes
not yet assigned to any type of threads, that is all intermediate
nodes in

⋃mi

j=mi−1+1 Yj , are put in a jumped thread. Thus
every intermediate nodebetweenqi−1 andqi is put in a jumped
thread. Therefore, the claim holds after stepi, thus completing
the proof of the claim.

We complete the proof of the lemma by noticing that,
after every step, either the active thread is increased, or a
part of the active thread, is put in a dead-end thread. By the
setting of the mark, an intermediate-node put in a dead-end
thread or a jumped thread will not be considered anymore in
the further steps. Therefore the construction of the sequence-
decomposition of Algorithm 1 ends after a finite number of
steps.

3.2 Message-complexity of the up/down protocol

From the sequence-decomposition algorithm, we now com-
pute the message-complexity of the up/down protocol.

Lemma 6 The number of intermediate nodes in the active
thread is at mostn, excludingw0 andwτ+1. More precisely,
the labels of the nodes of the active thread, includingw0 and
wτ+1, form a decreasing subsequence inn + 1, . . . , 0.

Proof. To prove the lemma, let us again go through the several
cases of every step of the decomposition. Letpt be the last
node of the current active thread. In Case 1, Lemma 1 ensures
that pt+1 < pt. In Case 2, ifs does not exist, then the next
node of the active thread iswτ+1 = 0 which is smaller than
every other node of the current active thread. Let us assume
thats exists. Since Case 2.2 does not add a new node to the
active thread, we focus on case 2.1. In Case 2.1.1, the new
node added to the active thread is, by definition, smaller than
pt. In Case 2.1.2,vκ < pt by application of Lemma 3.

Lemma 7 The number of nodes in the dead-end threads is at
mostn.

Proof. A dead-end thread is composed of a sequence of nodes
that were formerly in the active thread and through which

Interval routing schemes allow broadcasting with linear message-complexity 223

Algorithm 1 One step of the construction of the sequence-
decomposition for a strict LIRS

The current active thread isP = p0, p1, . . . , pt, with p0 = w0. Let
r be such thatpt ∈ Yr, and letYr = u1, . . . , u�r .

Case 1:pt = ui, i <
r andd = +1. Here, the active thread is up-
dated top0, p1, . . . , pt, ui+1. There is neither a new dead-end
thread nor a new jumped thread. The mark and the direction are
not modified.

Case 2:pt = u�r or d = −1. Letδ = d(pt, Xm+1) ands ≥ m+1
be the smallest index such that

∑s
i=m+1(
i − ki) > δ −

1. If s does not exist, then the active thread is updated to
p0, p1, . . . , pt, wτ+1, there is no new dead-end thread, all in-
termediate nodes between the last node ofYm andwτ+1 form a
new jumped thread and the construction stops. Ifs exists, then let
κ = δ+ks +

∑s−1
i=m+1(ki −
i).Assume thatYs = v1, . . . , v�s ,

two cases are considered:
Case 2.1:pt /∈ ⋃s

i=m+1 Xi. Then again two cases may occur.
Case 2.1.1: There existsw ∈ {v1, . . . , vκ−1} ∪

(
⋃s−1

i=m+1 Yi) such thatw < pt.

Then pick the first nodew of that type. The active
thread is updated top0, p1, . . . , pt, w, and all interme-
diate nodes between the last node ofYm andw form a
new jumped thread. Assumew ∈ Yσ, then the markm
is set toσ.

Case 2.1.2: For anyw ∈ {v1, . . . , vκ−1} ∪ (
⋃s−1

i=m+1 Yi),
w ≥ pt.

Then the active thread is updated top0, p1, . . . , pt, vκ,
and all intermediate nodes between the last node ofYm

andvκ form a new jumped thread. The markm is set
to s.

In both cases, there is no new dead-end thread and the direc-
tion d is set to+1.

Case 2.2:pt ∈ ⋃s
i=m+1 Xi. Then the directiond is set to−1.

Let t′ ∈ {0, . . . , t − 1} be the largest index such that
pt′ /∈ ⋃s

i=m+1 Xi. All nodes pt′+1, . . . , pt form a new
dead-end thread. Assumept′+1 ∈ Xσ, then ifσ > m + 1,
all intermediate nodes of

⋃σ−1
i=m+1 Yi form a new jumped

thread. The markm is updated toσ − 1.

a backtrack occurred. Every backtrack is driven by a set of
target nodes

⋃σ
i=m+1 Xi wherept′+1 ∈ Xσ. LetXσ = x +

1, . . . , x + k andpt′+1 = x + i, 1 ≤ i ≤ k. Assume that
pt ∈ Xm′+1 for somem′. LetXm′+1 = x′ + 1, . . . , x′ + k′,
thenpt = x′ + i′, 1 ≤ i′ ≤ k′.

From Lemma 6, the number of nodes of the dead-end
thread corresponding toXm+1, . . . , Xσ is bounded by(k′ −
i′)+

∑σ−1
j=m′+2 |Xj |+i because the active thread, traversed in

the reverse direction, produced a sequence of nodes of increas-
ing labels. Now,m is updated toσ − 1 after the backtrack,
and thusXm+1, . . . , Xσ−1 will not be considered anymore
when counting the number of nodes in the dead-end threads.
Xσ may be considered again in another dead-end thread since
possiblypt ∈ Xm, that ism′ = mmay occur. However, only
thek− i last nodes ofXσ will be involved.As a consequence,
the total number of nodes in dead-end threads is bounded by∑�

i=1 |Xi| = n.

Claim 3 Assume that two jumpsJ ′ and J successively oc-
curred atx (that is J ′ occurred and then, later in the de-

composition, a backtrack led back tox andJ occurred). Let
y′ ∈ Yσ′ = u1, . . . , u�σ′ andy ∈ Yσ be the respectiveextremi-
tiesofJ ′ andJ , andassumey′ = ui. Letmandδ (resp.m′ and
δ′) be the setting of themark and thedistancewhenJ (resp.J ′)
occurred. Thenδ ≤ (δ′ −1)+

∑σ′−1
j=m′+1(kj −
j)+(kσ′ − i).

Proof. By definition,δ = d(x,Xm+1). We havey′ ∈ Xm+1
by the setting ofm when backtracking throughJ ′ since
pt′+1 = y′. Thus

δ ≤ d(x, y′).

Since the jumpJ ′ occurred atx we havex > x̂ for any

x̂ ∈ ⋃σ′

j=m′+1 Xj , andx ≤ ŷ for anyŷ ∈ ⋃σ′−1
j=m′+1 Yj . There-

fore, by similar arguments to those proving (2) in the proof
of claim 1,d(ym′+1, x) +
m′+1 ≤ km′+1 − 1 + δ′ and thus
d(ym′+1, x) ≤ (δ′ − 1) + (km′+1 −
m′+1). More generally,
againbysimilar arguments to thoseproving (2),d(yσ′−1, x) ≤
(δ′ −1)+

∑σ′−1
j=m′+1(kj −
j). Sincey′ = ui, still by the same

arguments, we havei+ d(y′, x) ≤ kσ′ + d(yσ′−1, x). There-
fore,

d(x, y′) ≤ (δ′ − 1) +
σ′−1∑

j=m′+1

(kj −
j) + (kσ′ − i).

Combining the two inequalities satisfiedbyd(x, y′) completes
the proof of the claim.

Lemma 8 The number of nodes in the jumped threads is at
mostn.

Proof. Similarly to the dead-end threads, the jumped threads
are characterized by disjoint sets of target nodes of the form⋃s

i=m+1 Xi. Let us first consider the jumped threads created
by applying Case 2.1 of Algorithm 1. Assume that a jumpJ
occurred betweenx ∈ Yr andy ∈ Yσ, r < σ ≤ s. If σ < s,
then the number of nodes of the jumped thread is at most∑σ

i=m+1
i − 1, that is at most(δ − 1) +
∑σ

i=m+1 |Xi| by
definition ofδ. If σ = s, then assume thatYs = v1, . . . , v�s ,
y = vi with i ≤ κ = δ + ks +

∑s−1
i=m+1(ki −
i). Thus,

the number of nodes of the corresponding jumped thread is at
most

∑s−1
i=m+1
i + κ − 1 ≤ (δ − 1) +

∑s
i=m+1 |Xi|. So, in

any case, the number of nodes of the jumped thread is at most
(δ−1)+

∑σ
i=m+1 |Xi|. If δ > 1, then this setting corresponds

to another jumpJ ′ that occurred atx previously, say between
x andy′ ∈ Yσ′ = u1, . . . , u�′ , y′ = ui. Let m′ andδ′ be
the value of the mark and of the distance whenJ ′ occurred
respectively. From Claim 3, we have

δ ≤ (δ′ − 1) +
σ′−1∑

j=m′+1

(kj −
j) + (kσ′ − i).

The size of the jump aty′ is i−1+
∑σ′−1

j=m′+1
j . This implies
that the number of node for the two jumps is at most(δ′ −1)+∑σ′

i=m′+1 |Xi|+
∑σ

i=m+1 |Xi|.We repeat the same argument
for δ′ until we have considered all jumps that successively
occurred atx. It yields that the total number of nodes of the
set of jumped threads occurring at the same vertexx is at most∑σ

i=r+1 |Xi|whereYσ contains the other extremity of the last
jump occurred atx.

224 P. Fraigniaud et al.

The analysis is the same for the jumped threads created in
Case 2.2 by proceeding as if the jump occurred betweenpt′

and the last node ofYσ−1 (recall thatpt′+1 ∈ Xσ).
We conclude the proof by noticing that due to the setting

of the markm, no two jumps correspond to the same set of
target nodes. Therefore the total number of nodes is at most∑�

i=1 |Xi| = n.

Combining Lemmas 6, 7 and 8 with Lemma 5 allows to
conclude that the total number of intermediate nodes is atmost
3n.

Remark. At the end of the decomposition, letx be the ex-
tremity of the active thread whens cannot be defined, that
is when

∑s−1
i=m+1(
i − ki) ≤ δ − 1 for everys, m + 1 ≤

s ≤ �. As x ∈ ⋃�
i=m+1 Xi, all nodes of the active thread be-

long to
⋃�

i=m+1 Xi by application of Lemma 6. By the same
lemma, the total number of nodes in the active thread is atmost∑�

i=m+1 |Xi|. Since the setsXm+1, . . . , X� were not used to
bound the total number of dead-end threads, we can conclude
that the sum of the number of nodes in the active thread plus
the number of nodes in the dead-end threads is at mostn.

As a consequence, the total number of nodes in the
sequence-decomposition, and the total number of intermedi-
ate nodes, is at most2n. Therefore, the total number of nodes
in the sequenceW is at most3n and the message-complexity
of the up/down protocol is at most3n.

If the source node is not the node labeled 1, then letν >
1 be the label of the source. From Lemma 1, the message
complexity of the copy going upward is at most3(n − ν)
whereas themessage complexity of the copy going downward
is at most3ν.

We finally obtain the following theorem.

Theorem 1 The message-complexity of the up/down broad-
cast protocol is at most3n in a network of ordern supporting
a strict LIRS. As a consequence, networks supporting a strict
LIRS allows broadcasting withO(n)message-complexity.

Remark.Thecompletebipartite graphK2,n−2 supportsastrict
LIRS for which the up/down protocol uses2n − 4 messages.

4 Linear interval routing schemes

In order to analyze the up/down protocol in networks support-
ing LIRS, we partition the sequenceW in a manner similar
to that in the previous section. This decomposition is given in
Algorithm 2. Assume first that the source is labeled1.

Initially, the active thread is reduced tow0 and there is
neither a dead-end thread nor a jumped thread. According to
Lemma 2, the active thread will include every other alter-
nate node. A fourth type of thread is introduced: theauxil-
iary thread. Every other alternate node of the active thread is
dropped in the auxiliary thread. Initially, the auxiliary thread
is empty and the markm is set to0.

Let us point out the main differences appearing at every
step of the sequence-decomposition. Case 1 is almost the same
as Case 1 in Algorithm 1, that is the decomposition uses the
current intermediate sequence to construct the active thread.
The only modifications are that every other alternate node is

Algorithm 2 One step of the construction of the sequence-
decomposition for an LIRS

The current active thread isP = p0, p1, . . . , pt, with p0 = w0. Let
r be such thatpt ∈ Yr, and letYr = u1, . . . , u�r .

Case 1:pt = ui, i <
r − 1 andd = +1. Here, the active thread is
updated top0, p1, . . . , pt, ui+2 and nodeui+1 is put in the aux-
iliary thread. There is neither a new dead-end thread nor a new
jumped thread. The mark and the direction are not modified.

Case 2:pt = u�r or pt = u�r−1 or d = −1. Then let δ =
d(pt, Xm+1) and s ≥ m + 1 be the smallest index such
that

∑s
i=m+1(
i − ki) ≥ 2(s − m) + δ. If s does not exist,

then the active thread is updated top0, p1, . . . , pt, wτ+1,
there is no new dead-end thread, all intermediate nodes be-
tween the last node ofYm and wτ+1 form a new jumped
thread and the construction stops. Ifs exists, then let
κ = δ + ks +

∑s−1
i=m+1(ki −
i) + 2(s − m − 1). If

pt = u�r−1 andd = +1, thenu�r is put in the auxiliary thread.
Assume thatYs = v1, . . . , v�s , two cases are considered:
Case 2.1:pt /∈ ⋃s

i=m+1 Xi. Then again two cases may occur.
Case 2.1.1: There existsw ∈ {v1, . . . , vκ} ∪

(
⋃s−1

i=m+1(Yi \ {zi})) such thatw ≤ pt.

Pick the first nodew of that type. The active thread is
updated top0, p1, . . . , pt, w, andall intermediatenodes
between the last node ofYm andw form a new jumped
thread. Assumew ∈ Yσ, the markm is updated toσ.

Case 2.1.2: For anyw ∈ {v1, . . . , vκ} ∪ (
⋃s−1

i=m+1(Yi \
{zi})), w > pt.

Then the active thread is updated by settingpt+1 =
min{vκ+1, vκ+2}. All intermediate nodes between the
last node ofYm andpt+1 form a new jumped thread.
The markm is set tos.

In both cases, there is no new dead-end thread and the direc-
tion d is set to+1.

Case 2.2:pt ∈ ⋃s
i=m+1 Xi. The directiond is set to−1. Let

t′ ∈ {0, . . . , t − 1} be the largest index such thatpt′ /∈⋃s
i=m+1 Xi. All nodespt′+1, . . . , pt form a new dead-end

thread. Assume thatpt′+1 ∈ Xσ, then ifσ > m + 1, all in-
termediate nodes of

⋃σ−1
i=m+1 Yi form a new jumped thread.

The markm is updated toσ − 1.

dropped in the auxiliary thread, and that onemay stop atu�r−1
or u�r . Therefore, Case 2 considers also the casept = u�r−1,
which, if true, implies thatu�r is put in the auxiliary thread.
Case2also differs fromCase2 inAlgorithm1by thedefinition
of both s andκ. These settings are motivated by Lemma 4.
Otherwise, the general structure ofAlgorithm 2 is the same as
Algorithm 1.

Lemma 9 The construction of the sequence-decomposition
given in Algorithm 2 produces a set of threads in which every
intermediate node appears exactly once.

The proof of this lemma follows exactly the same lines as
the proof of Lemma 5. It is therefore omitted. Recall that�
denotes the number of sequencesXi inW .

Lemma 10 The number of intermediate nodes in the active
thread is at mostn + �, excludingw0 andwτ+1. More pre-
cisely, the labels of the nodes of the active thread form a non-

Interval routing schemes allow broadcasting with linear message-complexity 225

increasing sequencep0, . . . , pt from p0 = n + 1 to pt = 0
such that the number of times thatpi = pi−1 is at most�.

Proof. From Lemma 2, Case 1 ensures thatpt+1 = ui+2 <
ui = pt. In Case 2, ifs does not exist, thenpt+1 = wτ+1 =
0 < pt. So assume thats exists. There is no setting of the
active thread in Case 2.2. In case 2.1.1, a jump occurs and
pt+1 ≤ pt by definition. In case 2.1.2, a jump occurs also and
pt+1 ≤ pt from Lemma 4. The number of jumps is at most�.

Lemma 11 The number of nodes either in dead-end threads
or in the active thread is at mostn + �.

Proof. By similar arguments to those in the proof of Lemma7,
and using the same notation, the number of nodes of a dead-
end thread corresponding to the setsXm+1, . . . , Xσ is at most
(k′ − i′) +

∑σ−1
j=m′+1 |Xj | + i plus the number of jumps

occurring in the portionpt′+1, . . . , pt of W . This implies
that a total number of nodes in dead-end threads of at most∑�

i=1 |Xi| + � = n + �.
Now, as observed in the strict LIRS case, one can combine

the bound for dead-end threads with the bound for the active
thread. Letx ∈ ⋃�

i=m+1 Xi be the last node of the active
thread (different fromwτ+1). The total number of nodes in
the active thread is at most(k′ − i′) +

∑�
i=m+2 |Xi| + j,

wherej is the number of jumps of the active thread. The sets
Xm+2, . . . , X� were not used to enumerate the nodes in the
dead-end threads and the total number of jumps cannot exceed
�. Therefore, the total number of nodes either in the active
thread or in dead-end threads is at mostn + �.

Lemma 12 The number of nodes in the auxiliary thread is at
mostn + �.

Proof. This is a direct consequence of Lemma 11 as the num-
ber of nodes in theauxiliary threaddoesnot exceed thenumber
of nodes either in the active thread or in dead-end threads. In-
deed, at most one node is dropped in the auxiliary thread for
every node entering the active thread. Some nodes formerly
in the active thread become member of a dead-end thread.

Lemma 13 The number of nodes in the jumped threads is at
mostn + 3�.

Proof. Let us first consider a jump created by application of
Case 2.1. LetJ bea jump corresponding to the setsXm+1, . . .,
Xs. Assume thatJ occurred betweenx ∈ Yr andy ∈ Yσ,
r < σ ≤ s.

If σ < s, then the jump was over at most
∑σ

i=m+1
i − 1
intermediate nodes, with

∑σ
i=m+1
i <

∑σ
i=m+1 ki + 2(σ −

m) + δ by definition ofδ.
If σ = s, then letYs = v1, . . . , v�s , y = vi. This implies

i ≤ κ + 2 = δ + ks +
∑s−1

i=m+1(ki −
i) + 2(s − m).
Therefore, in both cases, the number of jumped interme-

diate nodes is at most(δ − 1) +
∑σ

i=m+1 |Xi| + 2(σ − m).
If δ > 2, then this setting corresponds to another jumpJ ′
that occurred atx previously, say betweenx andy′ ∈ Yσ′ =
u1, . . . , u�′ , y′ = ui. Letm′ andδ′ be the value of the mark
and the value of the distance, respectively, when this jump
occurred. We have

δ ≤ (δ′ − 1) +
σ′−1∑

j=m′+1

(kj −
j) + 2(σ′ − m′) + (kσ′ − i).

Indeed,δ = d(x,Xm+1). Moreover,y′ ∈ Xm+1 by the set-
ting ofm when backtracking throughJ ′ and asy′ = pt′+1.
Therefore,δ ≤ d(x, y′). Conversely, by the same arguments
to those of the proof of Claim 3,

d(x, y′) ≤ (δ′ − 1) +
σ′−1∑

j=m′+1

(kj −
j)

+2(σ′ − m′) + (kσ′ − i).

The size of the jumpJ ′ is i − 1 +
∑σ′−1

j=m′+1(kj −
j), and
thus the total size of the two jumps is at most

(δ′ − 1) +
σ∑

i=m+1

|Xi| + 2(σ − m)

+
σ′∑

i=m′+1

|Xi| + 2(σ′ − m′).

If δ′ > 2, then one can apply onδ′ the same arguments as
those that were applied forδ. This implies that the number of
nodes that belong to the set of jumped threads occurring at the
same vertexx ∈ Yr is at most1 +

∑σ
i=r+1 |Xi| + 2(σ − r)

whereYσ contains the extremity of the last jump occurred at
x.

The analysis is the same for the jumped threads created in
Case 2.2, by proceeding as if the jump occurred betweenpt′

and the last node ofYσ−1 (recall thatpt′+1 ∈ Xσ).
Theworst case is reachedwhen every jump is over a single

Xi. The cost (in term of number of nodes) of such a jump is
1+ |Xi|+2 = |Xi|+3. This implies a total number of nodes
in jumped threads of at most

∑�
i=1 |Xi| + 3�.

The three previous lemmas, together with Lemma 9, show
that

∑�−1
i=1 |Yi| ≤ 3n + 5� ≤ 8n, and thus|W | ≤ 9n. If the

source node is not the node labeled 1, then letν > 1 be the
label of the source. From Lemma 2, the message complexity
of the upward copy is at most9(n − ν) whereas the message
complexity of the downward copy is at most9ν.

We finally obtain the following theorem.

Theorem 2 The message-complexity of the up/down broad-
cast protocol in a network of ordern supporting a LIRS is
at most9n. As a consequence, networks supporting a LIRS
allows broadcasting withO(n)message-complexity.

5 Interval routing schemes

As opposed to LIRS, the labels of the nodes resulting from
an IRS play all the same role, meaning that another labeling
can be obtained by adding (modulon) any identical value to
all the labels of a given labeling. It is therefore not surprising
that results such as Corollary 1 or Corollary 2 do not hold. For
instance, let us consider the chain ofn nodes (i.e., the graph
of node-set{x1, . . . , xn} such that there is an edge between
nodes of consecutive indices). The nodes of the chain can be
labeled as follows:x1 = 1, andxi = n− i+ 2 for i ≥ 2. Let
Ii be the interval on(xi, xi+1) atxi, i = 1, . . . , n− 1, and let
Ji be the interval on(xi−1, xi) atxi, i = 2, . . . , n. The setting
Ii = [2, n+1−i],Ji = [n−i+3, 1], for i ≥ 3, andJ2 = [1, 1]

226 P. Fraigniaud et al.

satisfies the properties of a shortest path IRS. In this setting,
d(1, 2) = n − 1, meaning that the difference between any
two consecutive labels cannot be bounded. Nevertheless, the
labeling of our example satisfies

∑n−1
i=1 d(i, i + 1) = O(n),

and therefore the up/down protocol still has a linear message
complexity in this case.Wewill show that this is true for every
IRS.

Assume first that the source is labeled1. Again, in order to
analyze the broadcast protocol, we make use of the sequence
W defined in (1). For everyx ∈ {0, . . . , n − 1}, we define
Lx : {1, . . . , n} → {1, . . . , n}
such that

Lx(u) = 1 +
(
(n + u − x − 1) mod n

)
.

We haveLx(x) = n andLx(x+1) = 1. These “rotations” of
the labels allow us to obtain the following lemma.

Lemma 14 LetG be a network supporting an IRS. Letu0 =
x, u1, . . . , uk = x+ 1 (resp.v0 = x, v1, . . . , vm = x− 1) be
the shortest path from node labeledx to node labeledx + 1
(resp. to node labeledx − 1) set by this IRS.

• If the IRS is strict, thenLx(x) = n > Lx(u1) >Lx(u2) >
. . . > Lx(uk−1) > Lx(x + 1) = 1 (resp.Lx−1(x) =
1 < Lx−1(v1) < Lx−1(v2) < . . . < Lx−1(vm−1) <
Lx−1(x − 1) = n).

• Otherwise, for everyi, k > i > 1, we haveLx(ui) > 1,
andLx(ui) < Lx(uj) for everyj, 1 < j ≤ i − 2 (resp.,
for everyi, 1 < i < m, Lx−1(vi) < n, andLx−1(vi) >
Lx−1(vj) for everyj, 1 < j ≤ i − 2).

Proof. The proof is almost identical to the proofs of Lemmas 1
and 2. If the IRS is strict, then letIi be the interval of edge
(ui, ui+1) at ui, i = 0, . . . , k − 1. For the same reasons as
those given in the proof of Lemma 1, we havex + 1 ∈ Ii,
ui+1 ∈ Ii, x /∈ Ii and ui /∈ Ii. Therefore,Lx(ui+1) <
Lx(ui) for 0 < i < k − 1. Similarly, one can show that
Lx−1(vi+1) > Lx−1(vi) for 0 < i < m − 1. The proof for
arbitrary IRS networks is identical to that of Lemma 2.

Lemma 15 Let G be a network supporting an IRS and let
u be any node ofG. Let r ∈ {1, . . . , �} and assume that
d(u,Xr) ≤ δ.

• If the IRS is strict, then assume that there existss ≥ r such

that
∑s

i=r(
i − ki) > δ − 1, and
∑s′

i=r(
i − ki) ≤ δ − 1
for everys′, r ≤ s′ < s. Let κ = ks +

∑s−1
i=r (ki −

i) + δ and letYs = v1, . . . , v�s . Assume that, for every
i ∈ {r, . . . , s}, and everyx ∈ Xi, Lxi(u) > Lxi(x).
Moreover, assume thatLxi(w) ≥ Lxi(u) for everyi ∈
{r, . . . , s− 1} and every intermediate nodew ∈ Yi. Then
Lxs(vκ) < Lxs(u).

• Otherwise, assume that there existss ≥ r such that∑s
i=r(
i − ki) ≥ 2(s − r + 1) + δ, and

∑s′

i=r(
i −
ki) < 2(s′ − r + 1) + δ for every s′, r ≤ s′ < s.
Let κ = ks +

∑s−1
i=r (ki −
i) + 2(s − r) + δ, and let

Ys = v1, . . . , v�s . Assume that, for everyi ∈ {r, . . . , s},
and everyx ∈ Xi, Lxi

(u) > Lxi
(x). Moreover, as-

sume thatLxi(w) > Lxi(u) for everyi ∈ {r, . . . , s −
1} and every intermediate nodew ∈ Yi \ {zi}. Then
min{Lxs(vκ+1), Lxs(vκ+2)} ≤ Lxs(u).

Proof. This is similar to the proof of Lemmas 3 and 4, by
applying Lemma 14 instead of Lemmas 1 and 2.

The previous results suggest that the sequence-
decomposition of Algorithms 1 and 2 may be applied by in-
troducing a relabeling of theLx’s in the appropriate places.
More precisely, the sequence decomposition for strict IRS is
obtained from the one for strict LIRS bymodifying conditions
in Cases 2.1.1, and 2.1.2, as follows:

Case2.1.1Thereexistsw ∈ {v1, . . . , vκ−1} ∪ (
⋃s−1

i=m+1 Yi),
such that:w ∈ Yσ andLxσ

(w) < Lxσ
(pt).

Case 2.1.2For anyw ∈ {v1, . . . , vκ−1} ∪ (
⋃s−1

i=m+1 Yi),
we have:w ∈ Yσ ⇒ Lxσ (w) ≥ Lxσ (pt).

Similarly, the sequence decomposition for IRS is obtained
from the one for LIRS bymodifying conditions inCases 2.1.1,
and 2.1.2, as follows:

Case 2.1.1There existsw ∈ {v1, . . . , vκ} ∪ (
⋃s−1

i=m+1(Yi \
{zi})) such that:w ∈ Yσ andLxσ (w) ≤ Lxσ (pt).

Case2.1.2Foranyw ∈ {v1, . . . , vκ} ∪ (
⋃s−1

i=m+1(Yi\{zi})),
we have:w ∈ Yσ ⇒ Lxσ (w) > Lxσ (pt).

The resulting algorithms satisfy the same properties as
Algorithms 1 and 2, respectively. There is only one difference:
whena jump takesplace inan IRSdecomposition, saybetween
pt ∈ Yr andw ∈ Yσ, then, by Lemma 15,Lxσ (w) < Lxσ (pt)
in the strict IRS decomposition andLxσ

(w) ≤ Lxσ
(pt) in

the IRS decomposition. This means that, by using rotations
of Lx’s, the labels of the intermediate nodes between two
consecutive targets may be arranged to be in decreasing order.
However, we need to check whether this decreasing order is
preserved between different sequences of intermediate nodes,
that is if we apply different rotations. The next lemma is the
principle of the generalization to IRS networks of the results
obtained for LIRS networks.

Lemma 16 Let pi andpi+1 be two consecutive nodes of the
active thread of the IRS sequence decomposition. Assume that
pi ∈ Yr andpi+1 ∈ Yσ, r < σ. ThenLxσ

(pi+1) < Lxr
(pi)

in strict IRS decomposition andLxσ
(pi+1) ≤ Lxr

(pi), where
the maximum number of equalities is at most�, in IRS decom-
position.

Proof.According to thestatementof the lemma, there isa jump
at pi and thus we are considering Case 2.1 of the sequence
decomposition. Thuspi /∈ ⋃σ

j=m+1 Xj . More precisely,pi /∈⋃σ
j=r+1 Xj . Indeed, ifm 	= r, then this property holds from

the setting of the mark after a backtrack ending atpi. (Note
that several backtracks may lead back topi.)

Let us first consider the strict IRS decomposition. From
Lemma 15, we have

Lxσ (pi+1) < Lxσ (pi).

Moreover, from Lemma 14, we haveLxr (pi) > Lxr (xr +1).
If Lxr

(xσ) > Lxr
(pi), then we would have thatpi is equal

to a target node in
⋃σ

j=r+1 Xj , a contradiction. Therefore
Lxr (xσ) ≤ Lxr (pi). Actually,Lxr (xσ) < Lxr (pi) because,
sincepi /∈ Xσ, xσ 	= pi. Thus

Lxσ
(pi) < Lxr

(pi).

Interval routing schemes allow broadcasting with linear message-complexity 227

By combining the two inequalities onLxσ
(pi), we get

Lxσ
(pi+1) < Lxr

(pi).
The same type of arguments allow to show thatLxσ (pi+1)

≤ Lxr (pi) in the sequence-decomposition for IRS.

From the previous result, we get that iff(i) denotes the in-
dex such thatpi ∈ Yf(i), then the active threadp0, p1, . . . , pt,
pt+1 resulting from the sequence decomposition for strict IRS
satisfiesp0 = n + 1, pt+1 = 0 and

Lxf(i)(pi) > Lxf(j)(pj) (4)

for any pair(i, j), 1 ≤ i < j ≤ t. There might be up to
� equalities in the sequence decomposition for IRS. In other
words, thenumber of nodes in theactive threadof the sequence
decomposition isn for strict IRS networks andn + � for
arbitrary IRS networks. Bounding the number of nodes in the
jumped threads, thedead-end threads, and theauxiliary thread,
may then be achieved by exactly the same arguments as in
Sections 3 and 4. Finally, (4) holds even if the source node is
not labeled 1. Therefore, we have:

Theorem 3 The message-complexity of the up/down broad-
cast protocol is at most6n in a network of ordern supporting
a strict IRS and at most18n in a network of ordern support-
ing an IRS. As a consequence, networks supporting a shortest
path Interval Routing Scheme allows broadcasting withO(n)
message-complexity.

Corollary 3 In a network supporting a shortest path Inter-
val Routing Scheme, the average distance between two nodes
labeled by two consecutive integers is bounded by a constant.

Remark.The inherent serial behavior of the up/down proto-
col (by forwardingan increasing tokenandadecreasing token)
imposesΩ(n) hops in any network. We could however intro-
duce a variant of the up/down protocol to reduce the number
of hops by using more copies of the message. For instance,
a new protocol could be obtained by modifying the up/down
protocol as follows (we only consider the changes regarding
the up copy, the modification for the down copy may be ob-
tained similarly). Each header now contains an interval[a, b]
of consecutive targets to reach. The minimum labela rep-
resents the current target to reach. Initially, the originatorν
setsa to ν + 1 and b to n, and sends the up copy toward
ν + 1. Any intermediate nodex which receives a message
with header[a, b] proceeds as follows. Ifx /∈ [a, b], thenx
simply forwards the message towarda. If x ∈ [a, b] thenx
creates two copies of the message, one which is sent toward
x + 1 with the header[x + 1, b], and another which is sent
towarda with header[a, x − 1]. A message of header[x, x]
reaching nodex is removed from the network. The asymptotic
message-complexity of this variant of the up/down protocol
is not higher than the asymptotic message-complexity of the
original version (i.e., at most

∑n−1
i=1 d(i, i+ 1)), but the num-

ber of hops of this variant can be significantly smaller than the
number of hops of the original version in some networks.

6 Related problems

The fact thatn-node networks supporting shortest path inter-
val routing schemes allow broadcasting withO(n) message-
complexity can be directly used to solve other problems, such

asleader electionordistributed spanning tree. For simplicity,
we present only straightforward yet asymptotically optimal
solutions here. Far more elegant solutions could be devised,
although they must also useO(n) messages.

Recall that, informally, the leader-election is the problem
of moving the network from an initial situation where the
nodes are in the same computational state, to a final situation
where exactly one node is in a distinguished computational
state (calledleader) and all others are in the same state (called
defeated). The election process may be independently started
by any subset of the nodes, called awakened-nodes (any other
node is said to be “asleep”). Every nodex has a distinct input
valueI(x) chosen from some infinite totally ordered set and
each processor is only aware of its own input value. Similar
to most of the solutions commonly used to solve the leader
election problem, our strategy elects the node with the lowest
input value.

Theorem 4 Networks supporting a shortest-path interval
routing scheme allow leader-election withO(n) message-
complexity.

Proof. Our protocol is a 3-phase protocol:

1. Wake-up node labeled 1 via a down protocol;
2. Identify the node with the lowest input value via an up

protocol;
3. Broadcast the name of this node from noden.

More precisely, every awaken nodex starts by sending a mes-
sage(W,x) to nodex− 1 where“W ” stands forwake upand
x is the label of the node in the IRS. Every intermediate node
executes the broadcast protocol “down” on messages of type
W . Every target nodex receiving the message(W,x + 1)
awakes, if not yet awakened. An awakened nodex which has
already sent a message(W,x) to x − 1 does not forward the
message(W,x+1), but removes it from the network. A node
waking up proceeds as specified before, i.e., it sends a mes-
sage(W,x) to nodex−1. When node 1 receives the message
(W, 2) as a target node, it awakes (if not yet awakened). This
completes Phase 1.

Once awakened, node 1 starts Phase 2, and initiates an
“up” protocol with message(E, I(1), 1) where “E” stands
for elect. Every node executes protocol “up” on messages of
typeE with the following modification.When a target nodex
receives amessage(E, I, y), it proceeds as follows: ifI(x) <
I, thenx replaces themessage(E, I, y)by(E, I(x), x).When
n receives themessage(E, I, x) as a target node, it electsx as
leader ifI < I(n), or itself otherwise. Phase 2 is completed.

Phase 3 consists of a broadcast from noden of the identity
of the leader selected by noden.

Phase 1 does not generate more thanO(n) messages; the
number of messages generated by Phase 1 is

∑n−1
i=1 d(i, i+1)

as an awakened nodex sends(W,x) to x − 1 only once.
Therefore, from Corollary 3, Phase 1 generatesO(n) mes-
sages. Phase 2 does not generate more thanO(n) messages
as its message-complexity is equal to themessage-complexity
of a broadcast from node 1. Phase 3 is a broadcast, and thus
it does not generate more thanO(n)messages. Therefore, the
message-complexity of the whole protocol isO(n)

In the distributed spanning tree problem, every node of a
networkG = (V,E) must select some of its neighbors (at

228 P. Fraigniaud et al.

least one) such that the graphT = (V,E′) whereE′ is the set
of edges linking every node with its selected neighbors, is a
tree spanningG.

Theorem 5 Networks supporting a shortest-path interval
routing scheme allow distributed spanning tree to be solved
withO(n)message-complexity.

Proof. As in the leader election protocol, a preliminary phase
is performed towake up the node labeled 1.Once awake,Node
labeled 1 broadcasts a message “construct”. Upon reception
from u of the message “construct”, a (non necessarily target)
nodev proceeds as follows:

• If it is the first time thatv received themessage “construct”,
then
1. v selectsu as “parent”, and
2. v sends a message “parent” tou to let u know thatv

selected it as its parent;
• v executes the instructions of protocol “up” applied to the
message “construct”.

Once the protocol “up” completes at noden, noden initi-
ates a protocol “down” to broadcast a message “end” to in-
form that the tree-construction is completed. Once node 1 re-
ceives the message “end” as a target node, the whole process
is completed. Every node defines its neighbors in the tree by
selecting (1) its parent, and (2) all the nodes from which it
receives a “parent” message (if any). This protocol hasO(n)
message-complexity:O(n)messages “construct”,O(n)mes-
sages “end”, andn − 1 messages “parent”.

7 Conclusion

We have identified three directions in which the results pre-
sented in this paper could be extended.

1. One may consider the case in which there are two or more
intervals at each extremity of every edge. A network sup-
ports ak-IRS, if it supports a shortest-path interval routing
scheme with at mostk intervals at each extremity of every
edge.

2. One may consider the case in which the shortest path con-
straint is relaxed. Thestretch factoris the maximum ratio
between the length of the route set by the routing between
two nodes and the distance between these two nodes.

3. Onemay consider the case of weighted networks, inwhich
every edge has a weight associated to it and the distance
between nodes is computed according to these weights.

Let us illustrate the difficulty of these problems by revis-
iting Lemma 1 in each case.

LetG be a network supporting a strictp-LIRS. Letu0 =
x, u1, . . . , uk = x+1 be the shortest path fromnode labeledx

to node labeledx+1set by this routing. LetIj
i ,j ∈ {1, . . . , p},

be thejth interval of the edge(ui, ui+1) atui. There existsj

such thatx+1 ∈ Ij
i .Also, there existsj

′ such thatui+1 ∈ Ij′
i .

The fact thatj′ 	= j could possibly occur makes it difficult to
rank theui’s. The same techniques as those developed in this
paper may possibly succeed for smallp, but it would be up to
the price of a laborious case-analysis.

LetG be a network supporting a strict LIRS with stretch
factor s. Let u0 = x, u1, . . . , uk = x + 1 be the path from

node labeledx to node labeledx+1 set by this routing. LetIi

be the interval of the edge(ui, ui+1) atui.We havex+1 ∈ Ii.
However, there is no evidence thatui+1 ∈ Ii as the routing
from ui to ui+1 may go through a path of length at mosts.
This makes it difficult to generalize our approach to stretches
s ≥ 2.

Finally, letG be an edge-weighted network supporting a
strict LIRS. Letu0 = x, u1, . . . , uk = x+ 1 be the path from
node labeledx to node labeledx+1 set by this routing. LetIi

be the interval of the edge(ui, ui+1) atui.We havex+1 ∈ Ii.
Again, there is no evidence thatui+1 ∈ Ii as the routing from
ui toui+1 may go through a path whose weighted sum equals
the weight of the edge(ui, ui+1).

In conclusion, our technique does not seem to generalize
easily. More powerful tools and new protocols seem to be re-
quired to investigate these three problems. As a consequence,
we leave these possible extensions as open problems.

As a last remark, we point out that our protocols are very
sensitive to faults. For instance, if node 2 is faulty, then broad-
casting fromnode1usingProtocol up/downwould completely
fail.We believe that the design of fault-tolerant routing and/or
broadcasting protocols based on standard IRS is a challenge
that would be worthy of addressing in the future.

Acknowledgements.The authors are thankful to the anonymous ref-
erees for their comments which allow significant improvements of
the presentation.

References

1. B.Awerbuch, I. Cidon, S. Kutten,Y. Mansour, D. Peleg. Optimal
broadcast with partial knowledge.SIAM J Comput, 28(2):511–
524, 1998

2. B. Awerbuch, O. Goldreich, D. Peleg, R. Vainish. A tradeoff
between information and communication in broadcast protocols.
Journal of the ACM, 37(2):238–256, 1990

3. A. Bar-Noy, S. Guha, J. Naor, B. Schieber. Multicasting in het-
erogeneous networks. In:30th ACM Symposium on Theory of
Computing (STOC ’98), pp448–453, 1998

4. P. de la Torre, L. Naranayan, D. Peleg. Thy neighbor’s interval
is greener: A proposal for exploiting interval routing schemes.
In: 5th International Colloquium on Structural Information and
Communication Complexity (SIROCCO ’98), pp214–228. Car-
leton Scientific, 1998

5. K. Diks, E. Kranakis, D. Krizanc,A. Pelc. The impact of knowl-
edge on broadcasting time in radio networks. In:7th Annual
European Symposium on Algorithms (ESA), Lectures Notes in
Computer Science, Vol1643 , pp41–52. Berlin Heidelberg New
York: Springer 1999

6. T. Eilam, D. Peleg, R. Tan, S. Zaks. Broadcast in linearmessages
in IRS representing all shortest paths. Manuscript, 1997

7. M. Flammini, J. van Leeuwen, A. Marchetti-Spaccamela. The
complexity of interval routing on random graphs. In:20th Inter-
national Symposium onMathematical Foundations of Computer
Sciences (MFCS), Lecture Notes in Computer Science, Vol969,
pp37–49. Berlin Heidelberg NewYork: Springer 1995

8. P. Flocchini, B. Mans, N. Santoro. Sense of direction: Defini-
tions, properties and classes.Networks, 32:165–180, 1998

9. P. Flocchini, B. Mans, N. Santoro. On the impact of Sense
of Direction on Message Complexity.Inform Process Letters,
63(1):23–31, 1997

Interval routing schemes allow broadcasting with linear message-complexity 229

10. P. Flocchini, B. Mans, N. Santoro. Sense of direction in dis-
tributed computing. In:12th International Symposium on Dis-
tributedComputing (DISC), LectureNotes inComputerScience,
Vol1499, pp1–15. Berlin Heidelberg NewYork: Springer 1998

11. P. Fraigniaud, C. Gavoille. Interval routing schemes.Algorith-
mica, 21:155–182, 1998

12. P. Fraigniaud, E. Lazard, Methods and problems of communica-
tion in usual networks.DiscreteAppliedMathematics53:9–133,
1994

13. G. Frederickson. Searching among intervals and compact rout-
ing tables. In:20th International Colloquium on Automata,
Languages and Programming (ICALP), Lecture Notes in Com-
puter Science, Vol700, pp28–39. Berlin Heidelberg NewYork:
Springer 1993

14. G. Frederickson, R. Janardan. Seperator-based strategies for ef-
ficient message routing. In:27th Symposium on Foundations of
Computer Science (FOCS), pp428–437, 1986

15. G. Frederickson, R. Janardan. Designing networkswith compact
routing tables.Algorithmica, 3:171–190, 1988

16. G. Gallager, P. Humblet, P. Spira. A distributed algorithm for
minimal spanning tree.ACMTransProgramLangSyst, 5(1):66–
77, 1983

17. C. Gavoille. A survey on interval routing.Theor Comput Sci
245(2):217–253, 2000

18. C. Gavoille, E. Gu´evremont.Worst case bounds for shortest path
interval routing.J Algorithms, 27:1–25, 1998

19. C. Gavoille, N. Hanusse. Compact routing tables for graphs
of bounded genus. In:26th International Colloquium on Au-
tomata, Languages and Programming (ICALP), Lecture Notes
in Computer Science, Vol1644, pp351–360. Berlin Heidelberg
NewYork: Springer 1999

20. C.Gavoille,D.Peleg.Thecompactnessof interval routing.SIAM
J Discrete Math, 12(4):459–473, 1999

21. C. Gavoille, S. P´erennès. Memory requirement for routing in
distributed networks. In:15th Annual ACMSymposium on Prin-
ciples of Distributed Computing (PODC), pp125–133, 1996

22. S.M. Hedetniemi, S.T. Hedetniemi, A. Liestman. A survey of
gossiping and broadcasting in communication networks,Net-
works18:319–349, 1986

23. E. Kranakis, D. Krizanc. Lower bounds for compact routing. In:
13th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), Lecture Notes in Computer Science,Vol1046,
pp529–540. Berlin Heidelberg NewYork: Springer 1996

24. E. Kranakis, D. Krizanc, S. Ravi. On multi-label linear inter-
val routing schemes. In:19th InternationalWorkshop on Graph
Theoretic Concepts in Computer Science (WG), Lecture Notes
in Computer Science, Vol790, pp338–349. Berlin Heidelberg
NewYork: Springer 1993

25. E. Korach, S. Kutten, S. Moran. A modular technique for the
design of efficient distributed leader finding algorithms,ACM
Trans on Program Lang Syst, 12(1):84–101, 1990

26. D. Peleg, E. Upfal. A trade-off between space and efficiency for
routing tables.J ACM, 36(3):510–530, 1989

27. N. Santoro, R. Khatib. Labelling and implicit routing in net-
works.The Computer Journal, 28(1):5–8, 1985

28. J. van Leeuwen, R. Tan. Interval routing.TheComputer Journal,
30(4):298–307, 1987

