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Network navigability: 
the small world effect

• Very short paths exists.

• People are able to discover them locally.
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 Kleinberg model (2000)

• Mesh:  global geographical knowledge

• Red random arcs: local and private knowledge 
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Navigability in Kleinberg 
model

A routing algorithm is claimed decentralized if:

1. it knows all links of the mesh,

2.it discovers locally the extra random links.
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➡ Greedy routing computes paths of expected 
length O(log2n) between any pair in this model. 



Augmented graphs       
f(n)-navigability

Problem:

• A graph G + one random link/node

• Which graph and which distribution s.t. greedy 
routing computes paths of length f(n)?
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➡ Ex: d-dimensional meshes are O(log2n)-navigable 
(with d-harmonic distribution of links).



Polylog(n)-navigability
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• Bounded growth graphs [Duchon et al. 05]
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• Graphs excluding a fixed minor 
[Abraham&Gavoille 06]

• Bounded treewidth graphs [Fraigniaud 05]

• Bounded growth graphs [Duchon et al. 05]

• Bounded doubling dimension metrics [Slivkins 05]

BUT : not all graphs can be augmented.

For some graphs, greedy paths are of length 
at least Ω(n1/√log n) for any augmentation. 
[Fraigniaud et al. 06]



Navigability of arbitrary 
graphs

• Lower bound: Ω(n1/√log n).

• Upper bound: O(n1/2) with uniform augmentation.
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Navigability of arbitrary 
graphs

• Lower bound: Ω(n1/√log n).

• Upper bound: O(n1/2) with uniform augmentation.

√n

source targetPr≥1/√n



Improvement of the 
upper bound to Õ(n1/3)
Theorem: 

Any graph can be augmented by one link/node 
s.t. greedy routing computes paths of expected 
length Õ(n1/3) between any pair. 
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• Augmentation process: 
1. Node u picks a level k in 0...log n (u.a.r.)

2.Node u picks a node v in B(u,2k)  (u.a.r)



Proof idea: O(n2/5)
1. with proba. 1/2 pick v u.a.r. in G 
2.with proba. 1/2 pick v u.a.r in B(u,n2/5) 
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Ex:

set of size n3/5Shortest path

target

At most n1/5 blue intervals

E(# steps) ≤ O(n2/5)+ O(n1/5)x n1/5 = O(n2/5).

Pr(u→blue)
≥

(1/2) x (n2/5/2) / Bu(n2/5) 
 = Ω(1/n1/5)



Another perspective: 
matrix augmentation

• A gap remains between Õ(n1/3) and Ω(n1/√log n).

• A new perspective to augment arbitrary graphs: 
a priori augmentation by giving a matrix of links 
distribution. 
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An augmentation matrix
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1 2 3 4 5 6

1 0 1/2 1/4 1/4 0 0

2 1/3 1/3 1/3 0 0 0

3 1/5 0 1/5 1/5 1/5 1/5

4 1/2 0 0 0 0 1/2

5 0 1/8 1/8 1/8 1/8 1/2

6 1/6 1/3 1/6 1/6 0 1/6

1 2

3

4

5

6

→ Σ≤1

pi,j= probability that the link of node i is node j

Nodes

destinations of the links

M= (pi,j)1≤i,j≤6
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Nodes

destinations of the links

M= (pi,j)1≤i,j≤6



Name-independent
matrix augmentation

• Distribution of links given by the matrix without 
looking at the graph.

• Without further information, what improvement 
can be hoped?
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Theorem: 
If the matrix is given independently from the 
graph labeling, the uniform matrix is optimal.



Name-independent
matrix augmentation

Lemma: in any augmentation matrix, there is a 
set of √n indices s.t. Σpi,j<1 on this set.
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Σ<1
√n

• BUT: Σpi,j on a set of indices I is the expected 
number of links going out from I into I.



Name-independent
matrix augmentation

Lemma: in any augmentation matrix, there is a 
set of √n indices s.t. Σpi,j<1 on this set.

14

 √n



Name-independent
matrix augmentation

Lemma: in any augmentation matrix, there is a 
set of √n indices s.t. Σpi,j<1 on this set.

14

Source Target

 √n



Name-independent
matrix augmentation

Lemma: in any augmentation matrix, there is a 
set of √n indices s.t. Σpi,j<1 on this set.

14

Source Target
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• An adversary can label an interval with the 
bad set of indices.
• The expected number of shortcuts is <1 inside 
the interval: Ω(√n) greedy steps.



Matrix augmentation 
with labeling

• The idea: keep the a priori augmentation (given 
matrix) but associate a proper labeling scheme.
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1 2 3 4 5 6 7 8 9

Ex: the matrix fits well with the labels, paths O(log2n) 

4 3 7 9 2 5 6 1 8

Here: different labels, paths may rise up to Ω(√n)



Matrix augmentation 
with labeling

• The key of efficient augmentations: find good 
separators in the graphs to distribute the links 
hierarchically.
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1/log n

1/log n
1/log n
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Matrix augmentation 
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• Matrix augmentation with labeling:

1. Build an augmentation matrix with 
“hierarchical” distribution among indices,

 2. Build a labeling scheme that decomposes the 
graph along separators to assign nodes the right 
labels of M.

➡ Done through a path-decomposition.



Matrix augmentation 
with labeling
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Theorem:
There is a matrix M and a labeling scheme L 
s.t. in any graph G augmented with (M,L), 
greedy routing performs in:                           

O(min( log2n x pathshape(G) , √n)) steps.

distance ≤ pathlength size ≤ pathwidth

Pathshape: min(pathwidth, pathlength)
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Matrix augmentation 
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Theorem:
There is a matrix M and a labeling scheme L 
s.t. in any graph G augmented with (M,L), 
greedy routing performs in:                           

➡ Improvement from O(√n) to O(log2n) for paths.
➡ New O(polylog n)-navigable graphs: interval, AT-free...

O(min( log2n x pathshape(G) , √n)) steps.

distance ≤ pathlength size ≤ pathwidth

Pathshape: min(pathwidth, pathlength)
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• Augmentation of arbitrary graphs: still a gap 
between Õ(n1/3) and Ω(n1/√log n).

• A secret hope: Õ(n1/k) for any k< √log n?

• But raises big graph decomposition Q°.

• Matrix augmentation : can we get rid of O(√n) 
in the bound?


