Universal augmentation schemes for network navigability

Overcoming the \sqrt{n} - barrier

Pierre FRAIGNIAUD (CNRS & U. Paris 7, France) Cyril GAVOILLE (U. Bordeaux, France) Adrian KOSOWSKI (U. Gdansk, Poland) Emmanuelle LEBHAR (CNRS & U. Paris 7, France) Zvi LOTKER (U. Ben Gurion, Israël)

Network navigability: the small world effect

- Very short paths exists.
- People are able to discover them locally.

Kleinberg model (2000)

 $Pr(u \rightarrow v) \propto 1/|u-v|^2$

- Mesh: global geographical knowledge
- Red random arcs: local and private knowledge

Navigability in Kleinberg model

A routing algorithm is claimed decentralized if:

- 1. it knows all links of the mesh,
- 2. it discovers locally the extra random links.

Navigability in Kleinberg model

A routing algorithm is claimed decentralized if:

- 1. it knows all links of the mesh,
- 2. it discovers locally the extra random links.

 \Rightarrow Greedy routing computes paths of expected length $O(\log^2 n)$ between any pair in this model.

Augmented graphs f(n)-navigability

Problem:

- A graph G + one random link/node
- Which graph and which distribution s.t. greedy routing computes paths of length f(n)?

Augmented graphs f(n)-navigability

Problem:

- A graph G + one random link/node
- Which graph and which distribution s.t. greedy routing computes paths of length f(n)?

 \Rightarrow Ex: d-dimensional meshes are $O(\log^2 n)$ -navigable (with d-harmonic distribution of links).

• Bounded growth graphs [Duchon et al. 05]

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham&Gavoille 06]

0000

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham&Gavoille 06]

<u>BUT</u> : not all graphs can be augmented.

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham&Gavoille 06]

<u>BUT</u> : not all graphs can be augmented.

For some graphs, greedy paths are of length at least $\Omega(n^{1/\sqrt{\log n}})$ for any augmentation. [Fraigniaud et al. 06]

- Lower bound: $\Omega(n^{1/\log n})$.
- Upper bound: $O(n^{1/2})$ with uniform augmentation.

- Lower bound: $\Omega(n^{1/\log n})$.
- Upper bound: $O(n^{1/2})$ with uniform augmentation.

- Lower bound: $\Omega(n^{1/\sqrt{\log n}})$.
- Upper bound: $O(n^{1/2})$ with uniform augmentation.

- Lower bound: $\Omega(n^{1/\sqrt{\log n}})$.
- Upper bound: $O(n^{1/2})$ with uniform augmentation.

- Lower bound: $\Omega(n^{1/\sqrt{\log n}})$.
- Upper bound: $O(n^{1/2})$ with uniform augmentation.

Improvement of the upper bound to $\tilde{O}(n^{1/3})$

<u>Theorem:</u>

Any graph can be augmented by one link/node s.t. greedy routing computes paths of expected length $\tilde{O}(n^{1/3})$ between any pair.

Improvement of the upper bound to $\tilde{O}(n^{1/3})$

<u>Theorem:</u>

Any graph can be augmented by one link/node s.t. greedy routing computes paths of expected length $\tilde{O}(n^{1/3})$ between any pair.

• <u>Augmentation process</u>:

1. Node u picks a level k in O...log n (u.a.r.)

2. Node u picks a node v in $B(u, 2^k)$ (u.a.r)

Proof idea: O(n^{2/5})

<u>Ex:</u>

1. with proba. 1/2 pick v u.a.r. in G

2. with proba. 1/2 pick v u.a.r in B(u,n^{2/5})

Proof idea: O(n^{2/5})

<u>Ex:</u>

1. with proba. 1/2 pick v u.a.r. in G

2. with proba. 1/2 pick v u.a.r in B(u,n^{2/5})

 $E(\# \text{ steps}) \leq O(n^{2/5}) + O(n^{1/5})x n^{1/5} = O(n^{2/5}).$

Another perspective: matrix augmentation

- A gap remains between $\tilde{O}(n^{1/3})$ and $\Omega(n^{1/\sqrt{\log n}})$.
- A new perspective to augment arbitrary graphs: a priori augmentation by giving a matrix of links distribution.

An augmentation matrix

 $p_{i,j}$ = probability that the link of node i is node j

destinations of the links

			2	3	4	5	6	
Nodes		0	1/2	1/4	1/4	0	0	$\rightarrow \Sigma \leq 1$
	2	1/3	1/3	1/3	0	0	0	
	3	1/5	0	I/5	I/5	I/5	I/5	
	4	1/2	0	0	0	0	1/2	
	5	0	1/8	I/8	1/8	1/8	1/2	
	6	1/6	1/3	1/6	1/6	0	1/6	

 $M = (p_{i,j})_{1 \le i,j \le 6}$

An augmentation matrix

 $p_{i,j}$ = probability that the link of node i is node j

5

destinations of the links

			2	3	4	5	6		
Nodes		0	1/2	1/4	1/4	0	0	$\rightarrow \Sigma \leq 1$	ç
	2	1/3	1/3	1/3	0	0	0		3
	3	1/5	0	1/5	1/5	1/5	1/5		
	4	1/2	0	0	0	0	1/2		
	5	0	1/8	1/8	1/8	1/8	1/2		
	6	1/6	1/3	1/6	1/6	0	1/6		

 $M = (p_{i,j})_{1 \le i,j \le 6}$

- Distribution of links given by the matrix without looking at the graph.
- Without further information, what improvement can be hoped?

- Distribution of links given by the matrix without looking at the graph.
- Without further information, what improvement can be hoped?

<u>Theorem:</u>

If the matrix is given independently from the graph labeling, the uniform matrix is optimal.

Lemma: in any augmentation matrix, there is a set of $\int n$ indices s.t. $\sum p_{i,j} < 1$ on this set.

Lemma: in any augmentation matrix, there is a set of $\int n$ indices s.t. $\sum p_{i,j} < 1$ on this set.

• BUT: $\Sigma p_{i,j}$ on a set of indices I is the expected number of links going out from I into I.

Lemma: in any augmentation matrix, there is a set of $\int n$ indices s.t. $\sum p_{i,j} < 1$ on this set.

Lemma: in any augmentation matrix, there is a set of $\int n$ indices s.t. $\sum p_{i,j} < 1$ on this set.

Lemma: in any augmentation matrix, there is a set of $\int n$ indices s.t. $\sum p_{i,j} < 1$ on this set.

• An adversary can label an interval with the bad set of indices.

• The expected number of shortcuts is <1 inside the interval: $\Omega(\sqrt{n})$ greedy steps.

• <u>The idea</u>: keep the a priori augmentation (given matrix) but associate a proper labeling scheme.

• <u>The idea</u>: keep the a priori augmentation (given matrix) but associate a proper labeling scheme.

• <u>The idea</u>: keep the a priori augmentation (given matrix) but associate a proper labeling scheme.

Here: different labels, paths may rise up to $\Omega(\sqrt{n})$

 <u>The key of efficient augmentations</u>: find good separators in the graphs to distribute the links hierarchically.

• Matrix augmentation with labeling:

• <u>Matrix augmentation with labeling:</u>

1. Build an augmentation matrix with "hierarchical" distribution among indices,

• <u>Matrix augmentation with labeling</u>:

1. Build an augmentation matrix with "hierarchical" distribution among indices,

2. Build a labeling scheme that decomposes the graph along separators to assign nodes the right labels of M.

• <u>Matrix augmentation with labeling</u>:

1. Build an augmentation matrix with "hierarchical" distribution among indices,

2. Build a labeling scheme that decomposes the graph along separators to assign nodes the right labels of M.

→ Done through a path-decomposition.

<u>Theorem:</u>

There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M,L), greedy routing performs in: O(min(log²n x pathshape(G) , √n)) steps.

<u>Theorem:</u>

There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M,L), greedy routing performs in: O(min(log²n x pathshape(G) , √n)) steps.

For The Improvement from $O(\int n)$ to $O(\log^2 n)$ for paths.

<u>Theorem:</u>

There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M,L), greedy routing performs in: O(min(log²n x pathshape(G) , √n)) steps.

- → Improvement from $O(\int n)$ to $O(\log^2 n)$ for paths.
- New O(polylog n)-navigable graphs: interval, AT-free...

 Augmentation of arbitrary graphs: still a gap between Õ(n^{1/3}) and Ω(n^{1/Jlog n}).

- Augmentation of arbitrary graphs: still a gap between Õ(n^{1/3}) and Ω(n^{1/√log n}).
 - A secret hope: $\tilde{O}(n^{1/k})$ for any $k < \int \log n$?

- Augmentation of arbitrary graphs: still a gap between Õ(n^{1/3}) and Ω(n^{1/√log n}).
 - A secret hope: $\tilde{O}(n^{1/k})$ for any $k < \int \log n$?
 - But raises big graph decomposition Q°.

- Augmentation of arbitrary graphs: still a gap between Õ(n^{1/3}) and Ω(n^{1/Jlog n}).
 - A secret hope: $\tilde{O}(n^{1/k})$ for any $k < \int \log n$?
 - But raises big graph decomposition Q°.
- Matrix augmentation : can we get rid of $O(\int n)$ in the bound?