Universal augmentation schemes for network
 navigability

Overcoming the \sqrt{n} - barrier

Pierre FRAIGNIAUD (CNRS \& U. Paris 7, France)
Cyril GAVOILLE (U. Bordeaux, France)
Adrian KOSOWSKI (U. Gdansk, Poland)
Emmanuelle LEBHAR (CNRS \& U. Paris 7, France)
Zvi LOTKER (U. Ben Gurion, Israël)

Network navigability: the small world effect

Milgram 1967

- Very short paths exists.
- People are able to discover them locally.

Kleinberg model (2000)

$$
\operatorname{Pr}(u \rightarrow v) \propto 1 /|u-v|^{2}
$$

- Mesh: global geographical knowledge
- Red random arcs: local and private knowledge

Navigability in Kleinberg model

A routing algorithm is claimed decentralized if:

1. it knows all links of the mesh,
2. it discovers locally the extra random links.

Navigability in Kleinberg model

A routing algorithm is claimed decentralized if:

1. it knows all links of the mesh,
2. it discovers locally the extra random links.
\Rightarrow Greedy routing computes paths of expected length $O\left(\log ^{2} n\right.$) between any pair in this model.

Augmented graphs f(n)-navigability

Problem:

- A graph G + one random link/node
- Which graph and which distribution s.t. greedy routing computes paths of length $f(n)$?

Augmented graphs $f(n)$-navigability

Problem:

- A graph G + one random link/node
- Which graph and which distribution s.t. greedy routing computes paths of length $f(n)$?
\Rightarrow Ex: d-dimensional meshes are $O\left(\log ^{2} n\right)$-navigable (with d-harmonic distribution of links).

Polylog(n)-navigability

- Bounded growth graphs [Duchon et al. 05]

Polylog(n)-navigability

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]

Polylog(n)-navigability

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]

Polylog(n)-navigability

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham\&Gavoille 06]

Polylog(n)-navigability

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham\&Gavoille 06]

BUT : not all graphs can be augmented.

Polylog(n)-navigability

- Bounded growth graphs [Duchon et al. 05]
- Bounded treewidth graphs [Fraigniaud 05]
- Bounded doubling dimension metrics [Slivkins 05]
- Graphs excluding a fixed minor [Abraham\&Gavoille 06]

BUT : not all graphs can be augmented.
For some graphs, greedy paths are of length at least $\Omega\left(n^{1 / \sqrt{\log } n}\right)$ for any augmentation. [Fraiqniaud et al. 06]

Navigability of arbitrary graphs

- Lower bound: $\Omega\left(n^{1 / \sqrt{\log } n}\right)$.
- Upper bound: $O\left(n^{1 / 2}\right)$ with uniform augmentation.

Navigability of arbitrary graphs

- Lower bound: $\Omega\left(n^{1 / \int \log n}\right)$.
- Upper bound: $O\left(n^{1 / 2}\right)$ with uniform augmentation.

Navigability of arbitrary graphs

- Lower bound: $\Omega\left(n^{1 / \int \log n}\right)$.
- Upper bound: $O\left(n^{1 / 2}\right)$ with uniform augmentation.

Navigability of arbitrary graphs

- Lower bound: $\Omega\left(n^{1 / \int \log n}\right)$.
- Upper bound: $O\left(\mathrm{n}^{1 / 2}\right)$ with uniform augmentation.

Navigability of arbitrary graphs

- Lower bound: $\Omega\left(n^{1 / \int \log n}\right)$.
- Upper bound: $O\left(\mathrm{n}^{1 / 2}\right)$ with uniform augmentation.

Improvement of the

upper bound to $\tilde{O}\left(n^{1 / 3}\right)$

Theorem:

Any graph can be augmented by one link/node s.t. greedy routing computes paths of expected length $\tilde{O}\left(n^{1 / 3}\right)$ between any pair.

Improvement of the

upper bound to $\tilde{O}\left(n^{1 / 3}\right)$

Theorem:

Any graph can be augmented by one link/node s.t. greedy routing computes paths of expected length $\tilde{O}\left(n^{1 / 3}\right)$ between any pair.

- Augmentation process:

1. Node u picks a level k in $0 . . . \log n$ (u.a.r.)
2. Node u picks a node v in $B\left(u, 2^{k}\right)$ (u.a.r)

Proof idea: $O\left(n^{2 / 5}\right)$

Ex:

1. with proba. $1 / 2$ pick v u.a.r. in G
2. with proba. $1 / 2$ pick v u.a.r in $B\left(u, n^{2 / 5}\right)$

Proof idea: $O\left(n^{2 / 5}\right)$

Ex:

1. with proba. $1 / 2$ pick v u.a.r. in G
2. with proba. $1 / 2$ pick v u.a.r in $B\left(u, n^{2 / 5}\right)$

Proof idea: $O\left(n^{2 / 5}\right)$

Ex:

1. with proba. $1 / 2$ pick v u.a.r. in G
2. with proba. $1 / 2$ pick v u.a.r in $B\left(u, n^{2 / 5}\right)$

Proof idea: $O\left(n^{2 / 5}\right)$

Ex:

1. with proba. $1 / 2$ pick v u.a.r. in G
2. with proba. $1 / 2$ pick v u.a.r in $B\left(u, n^{2 / 5}\right)$

$$
\begin{gathered}
\operatorname{Pr}(u \rightarrow \text { blue }) \\
\geq
\end{gathered}
$$

$(1 / 2) \times\left(n^{2 / 5} / 2\right) / B_{u}\left(n^{2 / 5}\right)$
$=\Omega\left(1 / n^{1 / 5}\right)$

Proof idea: $O\left(n^{2 / 5}\right)$

Ex:

1. with proba. $1 / 2$ pick v u.a.r. in G
2. with proba. $1 / 2$ pick v u.a.r in $B\left(u, n^{2 / 5}\right)$

$$
\begin{gathered}
\operatorname{Pr}(u \rightarrow \text { blue }) \\
\geq
\end{gathered}
$$

$(1 / 2) \times\left(n^{2 / 5} / 2\right) / B_{u}\left(n^{2 / 5}\right)$ $=\Omega\left(1 / n^{1 / 5}\right)$

At most $\mathrm{n}^{1 / 5}$ blue intervals

Proof idea: $O\left(n^{2 / 5}\right)$

Ex:

1. with proba. $1 / 2$ pick v u.a.r. in G
2. with proba. $1 / 2$ pick v u.a.r in $B\left(u, n^{2 / 5}\right)$

$$
\begin{gathered}
\operatorname{Pr}(u \rightarrow \text { blue }) \\
\geq
\end{gathered}
$$

$(1 / 2) \times\left(n^{2 / 5} / 2\right) / B u\left(n^{2 / 5}\right)$ $=\Omega\left(1 / n^{1 / 5}\right)$

At most $n^{1 / 5}$ blue intervals

$$
E(\# \text { steps }) \leq O\left(n^{2 / 5}\right)+O\left(n^{1 / 5}\right) \times n^{1 / 5}=O\left(n^{2 / 5}\right)
$$

Another perspective: matrix augmentation

- A gap remains between $\tilde{O}\left(n^{1 / 3}\right)$ and $\Omega\left(n^{1 / \sqrt{\log } n}\right)$.
- A new perspective to augment arbitrary graphs: a priori augmentation by giving a matrix of links distribution.

An augmentation matrix

$p_{i, j}=$ probability that the link of node i is node j destinations of the links

Nodes		1	2	3	4	5	6	$\rightarrow \Sigma \leq 1$	
	1	0	I/2	1/4	I/4	0	0		
	2	I/3	I/3	1/3	0	0	0		
	3	1/5	0	1/5	I/5	1/5	1/5		
	4	1/2	0	0	0	0	1/2		
	5	0	I/8	1/8	I/8	1/8	1/2		
	6	1/6	I/3	1/6	I/6	0	1/6		

An augmentation matrix

$p_{i, j}=$ probability that the link of node i is node j destinations of the links

Name-independent matrix augmentation

- Distribution of links given by the matrix without looking at the graph.
- Without further information, what improvement can be hoped?

Name-independent matrix augmentation

- Distribution of links given by the matrix without looking at the graph.
- Without further information, what improvement can be hoped?

Theorem:
If the matrix is given independently from the graph labeling, the uniform matrix is optimal.

Name-independent matrix augmentation

Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{\mathrm{i}, j<1}$ on this set.

Name-independent matrix augmentation

Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{\mathrm{i}, j<1}$ on this set.

- BUT: $\sum p_{i, j}$ on a set of indices I is the expected number of links going out from I into I.

Name-independent matrix augmentation

Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{i, j}<1$ on this set.

Name-independent matrix augmentation

Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{i, j<1}$ on this set.

Name-independent

matrix augmentation

Lemma: in any augmentation matrix, there is a set of \sqrt{n} indices s.t. $\sum p_{i, j<1}$ on this set.

- An adversary can label an interval with the bad set of indices.
- The expected number of shortcuts is <1 inside the interval: $\Omega(\sqrt{n})$ greedy steps.

Matrix augmentation with labeling

- The idea: keep the a priori augmentation (given matrix) but associate a proper labeling scheme.

Matrix augmentation with labeling

- The idea: keep the a priori augmentation (given matrix) but associate a proper labeling scheme.

Ex: the matrix fits well with the labels, paths $O\left(\log ^{2} n\right)$

Matrix augmentation with labeling

- The idea: keep the a priori augmentation (given matrix) but associate a proper labeling scheme.

Ex: the matrix fits well with the labels, paths $O\left(\log ^{2} n\right)$

Here: different labels, paths may rise up to $\Omega(\sqrt{n})$

Matrix augmentation with labeling

- The key of efficient augmentations: find good separators in the graphs to distribute the links hierarchically.

Matrix augmentation with labeling

- Matrix augmentation with labeling:

Matrix augmentation with labeling

- Matrix augmentation with labeling:

1. Build an augmentation matrix with
"hierarchical" distribution among indices,

Matrix augmentation with labeling

- Matrix augmentation with labeling:

1. Build an augmentation matrix with
"hierarchical" distribution among indices,
2. Build a labeling scheme that decomposes the graph along separators to assign nodes the right labels of M.

Matrix augmentation with labeling

- Matrix augmentation with labeling:

1. Build an augmentation matrix with
"hierarchical" distribution among indices,
2. Build a labeling scheme that decomposes the graph along separators to assign nodes the right labels of M.
\Rightarrow Done through a path-decomposition.

Matrix augmentation with labeling

Theorem:

There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M, L), greedy routing performs in:
$O\left(\min \left(\log ^{2} n \times\right.\right.$ pathshape $\left.\left.(G), \sqrt{n}\right)\right)$ steps.

Pathshape: min(pathwidth, pathlength) distance \leq pathlength size \leq pathwidth

Matrix augmentation with labeling

Theorem:

There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M, L), greedy routing performs in:

$$
O\left(\min \left(\log ^{2} n \times \text { pathshape }(G), \sqrt{n}\right)\right) \text { steps. }
$$

Pathshape: min(pathwidth, pathlength) distance \leq pathlength size \leq pathwidth
\Rightarrow Improvement from $O(\sqrt{n})$ to $O\left(\log ^{2} n\right)$ for paths.

Matrix augmentation with labeling

Theorem:

There is a matrix M and a labeling scheme L s.t. in any graph G augmented with (M, L), greedy routing performs in:

$$
O\left(\min \left(\log ^{2} n \times \text { pathshape }(G), \sqrt{n}\right)\right) \text { steps. }
$$

Pathshape: min(pathwidth, pathlength) distance \leq pathlength size \leq pathwidth
\Rightarrow Improvement from $O(\sqrt{n})$ to $O\left(\log ^{2} n\right)$ for paths.
\Rightarrow New O(polylog n)-navigable graphs: interval, AT-free...

Conclusion \& Perspectives

- Augmentation of arbitrary graphs: still a gap between $\tilde{O}\left(n^{1 / 3}\right)$ and $\Omega\left(n^{1 / S \log n}\right)$.

Conclusion \& Perspectives

- Augmentation of arbitrary graphs: still a gap between $\tilde{O}\left(n^{1 / 3}\right)$ and $\Omega\left(n^{1 / \sqrt{\log } n}\right)$.
- A secret hope: $\tilde{O}\left(n^{1 / k}\right)$ for any $k<\sqrt{\log n} n$?

Conclusion \& Perspectives

- Augmentation of arbitrary graphs: still a gap between $\tilde{O}\left(n^{1 / 3}\right)$ and $\Omega\left(n^{1 / \sqrt{\log } n}\right)$.
- A secret hope: $\tilde{O}\left(n^{1 / k}\right)$ for any $k<\sqrt{\log n} n$
- But raises big graph decomposition Q°.

Conclusion \&

Perspectives

- Augmentation of arbitrary graphs: still a gap between $\tilde{O}\left(n^{1 / 3}\right)$ and $\Omega\left(n^{1 / \sqrt{\log } n}\right)$.
- A secret hope: $\tilde{O}\left(n^{1 / k}\right)$ for any $k<\sqrt{\log n} n$?
- But raises big graph decomposition Q°.
- Matrix augmentation : can we get rid of $O(\sqrt{n})$ in the bound?

