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La notion de graphes augmentés a été introduite dans le but d’analyser le phénomène des ”six degrés de séparation
entre individus” observé empiriquement par le psychologue Milgram dans les années 60. De façon formelle, un graphe
augmenté est une paire (G,ϕ), où G est un graphe et ϕ une collection de distributions de probabilité {ϕu,u∈V (G)}. Un
lien supplémentaire est attribué à chaque noeud u ∈V (G), pointant vers un noeud v, appelé contact longue-distance de
u. La destination v de ce lien est choisie aléatoirement selon Pr{u → v}= ϕu(v). Dans un graphe augmenté, le routage
glouton correspond au processus de routage sans mémoire dans lequel chaque noeud intermédiaire choisit parmi ses
voisins (dont le voisin supplémentaire) celui qui est le plus proche de la cible selon la distance mesurée dans le graphe
de départ G, et lui envoie le message. Grossièrement, les graphes augmentés ont pour but de modéliser la structure des
réseaux sociaux tandis que le routage glouton a pour but de modéliser le procédé de recherche utilisé dans l’expérience
de Milgram.
Notre objectif est de concevoir des schémas d’augmentation universels efficaces, c’est-à-dire des schémas d’augmen-
tation qui attribuent à tout graphe G une collection de distributions de probabilité ϕ telle que le routage glouton dans
(G,ϕ) soit rapide. Il est connu que le schéma d’augmentation uniforme ϕunif est un schéma universel qui garantit que,
pour tout graphe G de n noeuds, le routage glouton dans (G,ϕunif) s’achève en O(

√
n) étapes en espérance. Notre résultat

principal est la conception d’un schéma d’augmentation universel ϕ tel que le routage glouton dans (G,ϕ) s’achève en
Õ(n1/3) étapes en espérance pour tout graphe G de n noeuds. Nous montrons également que sous l’hypothèse d’un
modèle plus restreint, la borne

√
n ne peut être diminuée.

La version complète de cet article est [1].
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1 Introduction
Augmented graphs were formally defined in [3] for the purpose of understanding the ”small world phe-

nomenon” which consists in the distributed discovery of very short chains between any two nodes. The
concept of augmented graphs has recently gained interest, and gave rise to an abundant literature. We refer
to Kleinberg’s survey [4] on complex networks for more details on this concept.

Formally, an augmented graph is a pair (G,ϕ) where G is an n-node connected graph, and ϕ is a collection
of probability distributions {ϕu,u ∈V (G)}. Every node u ∈V (G) is given an extra link, called a long range
link, pointing to some node v, called the long range contact of u, chosen at random according to ϕu as
follows : Pr{u → v}= ϕu(v). The links of the underlying graph G are called local links.

Greedy routing in (G,ϕ) is the oblivious routing protocol where the routing decision taken at the current
node u for a message of destination t consists in forwarding the message to the neighbor v of u (being local
or long range contact) that is the closest to t according to the distance in G. This process assumes that every
node has a knowledge of the distances in G, but every node is unaware of the long range links added to G,
except its own long range link. Hence the nodes have no notion of the distances in the augmented graph.
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The greedy diameter of (G,ϕ) is defined as diam(G,ϕ) = maxs,t∈V (G) E(ϕ,s, t), where E(ϕ,s, t) is the
expected number of steps for traveling from s to t using greedy routing in (G,ϕ). Let f : IN → IR be
a function. An n-node graph G is f -navigable if there exists a collection of probability distributions ϕ

such that diam(G,ϕ) ≤ f (n). Lots of effort have been devoted to characterize the family of graphs that
are polylog(n)-navigable (cf. [4]). For instance, the d-dimensional meshes are O(log2 n)-navigable for any
fixed d ≥ 1 [3]. More generally, it was proved that all graphs of bounded doubling dimension or bounded
growth are polylog(n)-navigable. Similarly, all graphs of bounded treewidth, and more generally all graphs
excluding a fixed minor are polylog(n)-navigable. All the augmentation schemes proposed in the afore-
mentioned papers are however specifically designed to apply efficiently to each of the considered classes of
graphs.

An augmentation scheme is universal if it applies to all graphs. The uniform augmentation scheme
consists in adding long-range links whose extremities are chosen uniformly at random among all the nodes
in the graph. Peleg noticed that any n-node graph is O(

√
n)-navigable using this scheme. To see why, consi-

der the ball B of radius
√

n centered at the target. The expected number of nodes visited until the long range
contact of the current node belongs to B is n/|B|, and thus at most

√
n. Once in B, the distance to the target is

at most
√

n. Up to our knowledge, this O(
√

n) upper bound was the best known bound for arbitrary graphs
until this paper. On the other hand, it was recently proved that a function f such that every n-node graph
is f -navigable satisfies f (n) = Ω(n1/

√
logn) [2]. A crucial problem in the field of network navigability is to

close the gap between these upper and lower bounds for the f -navigability of arbitrary graphs.

1.1 Our results.

We first consider augmentation schemes defined a priori from n×n matrices A = (ai, j), where ai, j is the
probability that the node labeled i chooses the node labeled j as its long range contact.

– An augmentation of a labeled graph G assigning the links according to the distribution given by A is
said name-independent since there is no relationship between the labels of A and the ones of G. We
prove that, for name-independent schemes, the uniform matrix is optimal in the sense that, for any
n× n matrix A, there is a node labeling of the n-node path P from 1 to n such that greedy routing in
(P,A) performs in Ω(

√
n) expected number of steps.

– To overcome the inefficiency of name-independent schemes, even for graphs as simple as paths, we
consider matrix-based augmentation schemes using specific node labelings in {1, . . . ,n}. We thus
consider augmentation schemes ϕ defined as pairs (M,L) where M is a matrix, and L is a node-
labeling. We describe such a scheme, and analyze its performances in terms of a new parameter, called
pathshape, achieving tradeoff between pathwidth and pathlength. Precisely, for any n, we describe
an n× n matrix M, and a labeling L of the nodes of any n-node graph G, such that greedy routing
in (G,(M,L)) performs in O(min{ps(G) · log2 n,

√
n}) expected number of steps, where ps(G) de-

notes the pathshape of G. In particular, the scheme (M,L) yields polylogarithmic expected number
of steps of greedy routing for large classes of graphs such as trees and AT-free graphs, including co-
comparability graphs, interval and permutation graphs that were not captured by previous results.

In the second part of the paper, we consider augmentation schemes defined a posteriori, that are fully
depending on the structure of the graph. We design a universal augmentation scheme that overcomes the
O(
√

n) barrier. Precisely, we design a universal scheme ϕ such that greedy routing in (G,ϕ) performs in
Õ(n1/3) expected number of steps for any n-node graph G, where the big-Õ notation ignores the polyloga-
rithmic factors.

2 Matrix-Based Augmentation Schemes
Definition 1. An augmentation matrix of size n is an n× n matrix A = (pi, j)i, j∈[1,n] such that 0 ≤ pi, j ≤ 1
for any i, j ∈ [1,n], and ∑

n
j=1 pi, j ≤ 1 for any i ∈ [1,n].

An augmentation matrix of size n can be used to design augmentation schemes of n-node graphs whose
nodes are labeled from 1 to n as follows : node i chooses node j as long range contact with probability pi, j.



2.1 Name-Independent Schemes
As we already mentioned in the Introduction, the uniform matrix yields a name-independent augmenta-

tion scheme with greedy diameter O(
√

n) for n-node graphs. The following result shows that this is optimal
among all matrix-based name-independent augmentation schemes.

Theorem 1. For any augmentation matrix A of size n, the corresponding name-independent augmentation
scheme applied to the n-node path yields greedy diameter Ω(

√
n).

Proof sketch. We show that, for any augmentation matrix A of size n, there is a labeling of the n-node path
with integers in {1, . . . ,n} such that the greedy diameter of the labeled path augmented using A is Ω(

√
n).

Precisely, for any n×n augmentation matrix A = (pi, j)1≤i, j≤n, we show that there exists a set I ⊆ {1, . . . ,n}
of cardinality

√
n such that ∑i, j∈I,i6= j pi, j < 1. Then, assigning the labels of I to

√
n consecutive nodes on

a n-node path, we get that the expected number of long range links on this interval of nodes is strictly less
than one. The proof is then completed by showing that this enforces a Ω(

√
n) greedy diameter for this path.

2

The previous result shows that no name-independent scheme can yield greedy diameter better than
Ω(
√

n), even for paths. Yet they remain useful. Indeed, in addition to their simplicity, they can be com-
bined with name-dependent schemes that perform well for specific classes of graphs but poorly in general.
Next section proves that the uniform scheme can be combined with a scheme that is efficient for large
classes of graphs, in order to preserve the O(

√
n) greedy diameter for general graphs.

2.2 Matrix-Based Augmentation Schemes
In this section, we design a matrix-based augmentation scheme (the matrix is coupled with an appropriate

labeling of the nodes) that achieves much better performance than the uniform augmentation scheme for
large classes of graphs. Our scheme is based on the new notions of treeshape and pathshape that establish a
tradeoff between the two important notions of treewidth and treelength. These two latter notions have been
proved important in many contexts, including algorithm design, routing, and labeling.

Recall that a tree-decomposition of a graph G is a pair (T,X) where T is a tree with node set I of finite
size, and X = {Xi, i ∈ I} is a collection of subsets of nodes. T and X must satisfy the three following
conditions :

– For any u ∈V (G), there exists i ∈ I for which u ∈ Xi ;
– For any e ∈ E(G), there exists i ∈ I for which both extremities of e belong to Xi ;
– For any u ∈V (G), the set {i ∈ I | u ∈ Xi} induces a subtree of T .

The third constraint can be rephrased as : for any triple (i, j,k) ∈ I3, if j is on the path between i and k
in T , then Xi ∩Xk ⊆ X j. The Xis are called bags. When the tree T is restricted to be a path, the resulting
decomposition is called path-decomposition. The quality of the tree-decomposition depends on the measure
that is applied to the bags Xis. Two measures have been investigated in the past, the width and the length :
width(Xi) = |Xi|− 1, and length(Xi) = maxx,y∈Xi distG(x,y), where distG denotes the distance function in
the graph G. (Note that length(Xi) may be much smaller than the diameter of the subgraph induced by Xi ;
In fact Xi may even not be connected). We introduce a new measure, the shape, that will be proved very
relevant to augmentation schemes.

Definition 2. The shape of a bag Xi of a tree-decomposition (T,X) of a graph G is defined by shape(Xi) =
min{width(Xi), length(Xi)}.

The shape of the tree-decomposition is the maximum of the shapes of all its bags. Finally, the treeshape
of G (resp., the pathshape of G), denoted by ts(G) (resp., ps(G)), is the minimum, taken over all tree-
decompositions (resp., path-decompositions) of G, of the shape of the decomposition.

We show that path-decompositions with small shape can be used to augment efficiently all graphs using
a generic matrix and an appropriate labeling that depends on the path-decomposition.

Theorem 2. For any n ≥ 1, there exists an n× n matrix M and a labeling L of the nodes of any n-node
graph G by integers in {1, . . . ,n}, such that (G,(M,L)) has greedy diameter

O
(

min{ps(G) · log2 n,
√

n}
)
.
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Proof sketch. To prove this Theorem, we first construct a labeling of G nodes that describes their relative
positions in a path decomposition of G. This labeling is done appropriately so that the bits positions reflects
the hierarchy of the decomposition. Then, we consider an augmentation matrix M which is the combination
M = (A +U)/2 of a matrix A which roughly corresponds to the augmentation matrix of a path along
Kleinberg distribution, and of a uniform matrix U . For small pathshape, matrix A combined with the labeling
will produce an augmented graph where greedy routing is efficient. But for large pathshape, it turns out that
the uniform augmentation remains more efficient, this is the purpose of matrix U . 2

An important corollary of Theorem 2 is that the augmentation scheme (M,L) offers a much better beha-
vior than name-independent schemes for large classes of graphs, namely all those having small pathshape.
Note that all classes mentioned in the corollary bellow include paths, for which all name-independent aug-
mentation schemes have Ω(

√
n) greedy diameter. Note also that the mentioned class of AT-free graphs

includes co-comporability graphs, interval graphs, and permutation graphs.

Corollary 1. The universal augmentation scheme of Theorem 2 applied to n-node trees yields greedy dia-
meter O(log3 n). Applied to AT-free graphs, it yields greedy diameter O(log2 n).

This corollary is due to the fact that trees have treewidth 1, thus pathwidth at most O(logn), and hence
pathshape at most O(logn). AT-free graphs have constant pathlength, hence they have pathshape O(1).

As we mentioned in the proof of Theorem 2, nodes may not be assigned different labels by the labeling
L . A natural question is whether the label set, and hence the matrix size, could be significantly reduced. The
following theorem shows that this is impossible if one wants to preserve polylogarithmic greedy diameter
for the classes of graphs mentioned in Corollary 1, or even just for paths. The proof of this Theorem uses
similar ideas as Theorem 1 proof.

Theorem 3. Any matrix-based augmentation-labeling scheme using labels of size ε logn for the n-node
path, 0 ≤ ε < 1, yields a greedy diameter Ω(nβ) for any β < 1

3 (1− ε).

3 An Õ(n1/3)-Step Universal Augmentation Scheme
Neither the uniform scheme nor the augmentation scheme of Theorem 2 enables greedy routing to per-

form better than Ω(n1/2) expected number of steps for all graphs. The existence of a universal augmentation
scheme overcoming the Ω(n1/2) barrier was actually open for some time. In this section, we show that there
do exist faster schemes.

Theorem 4. There exists a universal augmentation scheme ϕ yielding greedy diameter Õ(n1/3) for n-node
graphs.

Proof sketch. We describe the augmentation scheme ϕ explicitely. Let G be any (connected) graph. For any
node u∈V (G), and any integer r≥ 0, let B(u,r) = {v∈V (G) | distG(u,v)≤ r} be the ball of radius r cente-
red at u. G is augmented as follows. First, every node chooses independently an integer k ∈ {1, . . . ,dlogne}
uniformly at random. Then, the long range contact v of a node u that has chosen integer k is selected
uniformly at random in Bk(u) = B(u,2k). 2

One major open problem in this field is therefore to close the gap between the Ω(n1/
√

logn) lower bound,
and the Õ(n1/3) upper bound.
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