
Distrib. Comput. (2009) 21:395–403
DOI 10.1007/s00446-008-0076-y

Distributed computing with advice: information sensitivity
of graph coloring

Pierre Fraigniaud · Cyril Gavoille · David Ilcinkas ·
Andrzej Pelc

Received: 5 October 2007 / Accepted: 2 December 2008 / Published online: 9 January 2009
© Springer-Verlag 2009

Abstract We study the problem of the amount of informa-
tion (advice) about a graph that must be given to its nodes in
order to achieve fast distributed computations. The required
size of the advice enables to measure the information sensitiv-
ity of a network problem. A problem is information sensitive
if little advice is enough to solve the problem rapidly (i.e.,
much faster than in the absence of any advice), whereas it is
information insensitive if it requires giving a lot of informa-
tion to the nodes in order to ensure fast computation of the

A preliminary version of this paper appeared in the proceedings of the
34th International Colloquium on Automata, Languages and
Programming (ICALP), July 2007. A part of this work was done
during the stay of David Ilcinkas at the Research Chair in Distributed
Computing of the Université du Québec en Outaouais, as a
postdoctoral fellow.
P. Fraigniaud received additional support from the ANR project
ALADDIN.
A. Pelc was supported in part by NSERC discovery grant and by the
Research Chair in Distributed Computing of the Université du Québec
en Outaouais.

P. Fraigniaud (B)
LIAFA, Université Paris Diderot, Paris 7,
Case 7014, 75205 Paris Cedex 13, France
e-mail: pierre.fraigniaud@liafa.jussieu.fr

C. Gavoille · D. Ilcinkas
LaBRI, Universite Bordeaux 1, 351 cours de la Liberation,
33405 Talence Cedex, France
e-mail: gavoille@labri.fr

D. Ilcinkas
e-mail: David.Ilcinkas@labri.fr

A. Pelc
Département d’informatique et d’ingénierie,
Université du Québec en Outaouais, C.P. 1250, succ. Hull,
Gatineau, QC J8X 3X7, Canada
e-mail: Andrzej.Pelc@uqo.ca

solution. In this paper, we study the information sensitivity
of distributed graph coloring.

Keywords Network algorithm · Graph coloring ·
Distributed computing

1 Introduction

This work is a part of a recent project aiming at studying the
quantitative impact of knowledge on the efficiency when com-
puting with distributed entities (nodes of a distributed system,
mobile users in ad hoc networks, etc.). Indeed, as observed
by Linial [18], “within the various computational models
for parallel computers, the limitations that follow from the
local nature of the computation are specific to the distrib-
uted context”. Two frameworks have been considered for
analyzing the limitations incurred by the local nature of dis-
tributed computations. One aims at identifying which tasks
can or cannot be computed locally, i.e., when every node
can acquire knowledge only about the nodes that are at con-
stant distance from it. Surprisingly, non-trivial tasks can be
achieved locally [23]. This is for instance the case for weak-
coloring, a basis for a solution to some resource allocation
problems. However, many important problems in distributed
computing do not have a local solution [16]. This is the case
of computing an approximate minimum vertex cover or an
approximate minimum dominating set.

The other framework that has been considered is distrib-
uted computing with advice. In this framework, the com-
puting entities can be given information about the instance
of the considered problem. The traditional approach is actu-
ally qualitative in the sense that algorithms are designed or
impossibility results are proved under the assumption that the
nodes are aware of specific parameters, e.g., the size of the

123

396 P. Fraigniaud et al.

network. It was proved that the impact of knowledge concern-
ing the environment is significant in many areas of distributed
computing, as witnessed by [8,20] where a lot of impossi-
bility results and lower bounds are surveyed, many of them
depending on whether or not the nodes are provided with
partial knowledge of the topology of the network. A quan-
titative approach was recently introduced in [9], in which
limitations of local computation can be estimated by estab-
lishing tradeoffs between the efficiency of the computation
(number of steps, number of messages, etc.) and the amount
of information provided to the nodes about their environment,
independently of what kind of information they receive.

More precisely, we consider network computing with
advice in the following context. A network is modeled as an
undirected graph where links represent communication chan-
nels between nodes. Nodes of n-node networks have distinct
IDs from {1, . . . , n}, and communication ports at a node of
degree d are labeled by distinct integers from {1, . . . , d}. A
priori, every node knows only its own ID and the labels of its
ports. All additional knowledge available to the nodes of the
graph (in particular knowledge concerning the topology and
the labels of the rest of the graph) is modeled by an oracle
providing advice. An oracle is a function O whose arguments
are networks. The value O(G) for a network G = (V, E),
called the advice provided by the oracle to this graph, is a
function f : V → {0, 1}∗. This function assigns a finite
binary string to every node v of the graph. Intuitively, the
oracle looks at the entire labeled graph with IDs and assigns
to every node some information, coded as a string of bits. A
node v is informed by the oracle if the string f (v) is non-
empty. The size of the advice given by the oracle to a given
graph G is the sum of the lengths of all strings it assigns to
nodes. Hence this size is a measure of the amount of informa-
tion about the graph, available to its nodes. Clearly, the size
of advice is not smaller than the number of informed nodes.
The objective is to establish tradeoffs between the size of the
advice and the computational efficiency of the network.

Specifically, we focus on the distributed graph coloring
problem, one of the most challenging problems in network
computing for its practical applications, e.g., in radio net-
works [21], and for its relation with many other problems
such as maximal independent set (MIS) [16,26] and sym-
metry breaking [13]. Initially, each node knows its ID from
{1, . . . , n}. The c-coloring problem requires each node to
compute a color in {1, . . . , c}, under the constraint that any
two adjacent nodes have different colors. Computation pro-
ceeds in rounds following Linial’s model defined in [18]
(a.k.a., LOCAL model [28]). In each round, a node sends
a message to each of its neighbors, receives messages from
each of its neighbors, and performs some local computations.
The LOCAL model does not put any limit on the message
size and any restrictions on local computations because it is
designed to estimate limitations of locality. The complexity

Size of advice
O(n log c)

Execution time

Information
sensitive

Information
insensitive

t(n,c)

Fig. 1 Tradeoff between the execution time and the size of advice

of c-coloring a graph G is measured by the number of rounds
required to compute a proper c-coloring. There is an obvious
relation between the complexity of c-coloring and the maxi-
mum distance between two nodes that exchange information
during the computation.

Coloring graphs using advice provided by an oracle O
consists in designing an algorithm that is unaware of the
graph G at hand but colors it distributively, as long as every
node v of the graph G is provided with the string of bits f (v),
where f = O(G). Trivially, an advice of size O(n log c) bits
that provides the appropriate color to each node yields a col-
oring algorithm working in 0 rounds. On the other hand,
an advice of size 0, i.e., providing no information, yields
an algorithm running in t (n, c) rounds where t (n, c) is the
complexity of the coloring problem in the usual distributed
setting (i.e., with no advice).

The main objective of studying network computations
with advice is to establish tradeoffs between these two
extreme cases. Different forms of tradeoffs are illustrated
in Fig. 1. This figure plots the execution time as a function
of the size of advice (i.e., the amount of information given
to the nodes). The execution time decreases as the size of
advice increases, like, e.g., the dashed curve. Depending on
how quickly the curve drops down enables to roughly clas-
sify problems as “sensitive” or “insensitive” to information.
A problem is information sensitive if few bits of information
given to the nodes enable to decrease drastically the execu-
tion time. Conversely, a problem is information insensitive
if the oracle must give a lot of information to the nodes for
the execution time to decrease significantly. In this paper, we
study the information sensitivity of graph coloring.

1.1 Our results

To study the information sensitivity of graph coloring, we
focus on lower bounds on the size of advice necessary for
fast distributed coloring of cycles and trees, two important
cases analyzed in depth by Linial in his seminal paper [18]
(cf. also [12]).

We show that coloring a cycle is information insensitive.
Precisely, we show that, for any constant k, �(n/ log(k) n)

123

Distributed computing with advice: information sensitivity of graph coloring 397

bits of advice are needed in order to beat the �(log∗ n) time
of 3-coloring a cycle, where log(k) n denotes k iterations of
log n. This shows a huge gap between 3-coloring in time
�(log∗ n) and 3-coloring below this time: while the first can
be done without any advice [6], the second requires almost
as much information as if colors were explicitly assigned to
nodes (which would take O(n) bits).

The result for cycles easily extends to oriented trees (i.e.,
rooted trees in which every node in the tree knows its parent
in the tree), proving that, for any constant k, �(n/ log(k) n)

bits of advice are needed in order to beat the O(log∗ n) time
of 3-coloring an oriented tree [12]. Coloring an oriented tree
is thus also information insensitive.

The power of orienting a tree (i.e., giving an orientation of
its edges toward a root), from the point of view of distributed
coloring, was known since Linial [18] proved that no algo-
rithm can color the d-regular unoriented tree of radius r in
time at most 2

3r by fewer that 1
2

√
d colors. Hence 3-coloring

unoriented trees essentially requires �(D) rounds, where D
is the diameter of the tree. Therefore, informing every node
of the port leading to its parent in the tree results in decreasing
the time of 3-coloring from �(D) to O(log∗ n). We revisit
this result using our quantitative approach. Precisely, we aim
at computing the amount of advice required to reach the
O(log∗ n) time bound. It is known that O(n log log n) bits of
advice enable to orient a tree (i.e., to select a root, and to give
to every node the port number of the edge leading to its par-
ent) with an algorithm working in 0 rounds [5], and O(n) bits
of advice enable to orient a tree with an algorithm working
in 1 round [4]. However, 3-coloring a tree in time �(log∗ n)

does not necessarily require to orient the tree. Nevertheless,
we show that, for any constant k, �(n/ log(k) n) bits of advice
are needed in order to 3-color all n-node unoriented trees in
time �(log∗ n). Thus, while for oriented trees 3-coloring in
time O(log∗ n) can be done without any additional infor-
mation [12], achieving the same efficiency for arbitrary trees
requires almost as much information as if colors were explic-
itly assigned to nodes.

Finally, both for cycles and trees, even if oriented, we also
show that �(n) bits of advice are needed for 3-coloring in
constant time (i.e., for 3-coloring to become a locally solvable
problem). Thus constant-time coloring requires essentially
as much information as if colors were explicitly assigned to
nodes. In fact, our lower bounds do not hold only for the
total number of bits of advice given to nodes but also for the
number of nodes that must be informed (i.e., the number of
nodes that are given at least one bit of advice).

Although we formulate our results for the task of
3-coloring, they remain true for coloring with any constant
number of colors, by slight technical modification of the
proofs.

While our lower bound proofs present different technical
challenges in the case of the cycle and that of trees, the under-

lying idea is similar in both cases. Linial [18] constructed the
neighborhood graph N [G] of a graph G in order to estimate
the time of coloring G using the chromatic number of N [G].
Since in our case there is an oracle giving advice to nodes, we
have to use a more complex tool in the lower bound argument.
We also argue about the chromatic number of a suitably cho-
sen graph H in order to bound coloring time of G. However,
in our case, this graph depends on the oracle as well as on the
number of communication rounds, and hence on the graph
G. This makes it very irregularly structured. We show that,
if the number of nodes of G informed by the oracle is not too
large, then H has a large chromatic number, and thus forces
large coloring time of G. (Equivalently, if G can be colored
fast then the advice must be large.) The main difficulty in our
argument is to show the existence of a regularly structured
subgraph (whose chromatic number can be bounded from
below) in the highly irregularly structured graph H .

1.2 Related work

Because of the intrinsic difficulty of computing the chro-
matic number of a graph in the sequential setting [14], or even
to approximate it [3,7], the distributed computing literature
dealing with graph coloring mostly focuses on the (� + 1)-
coloring problem, where � denotes the maximum degree
of the graph. In fact, the interest expressed for the (� + 1)-
coloring problem is also due to its intriguing relation with the
maximal independent set (MIS) problem, already underlined
by Linial in [18]. In particular, combining the best known
algorithms for MIS [1,19] with the reduction from (� + 1)-
coloring to MIS by Linial yields a randomized (� + 1)-col-
oring algorithm working in expected time O(log n). Using
techniques described in [2] and [27], one can compute a
(� + 1)-coloring (as well as a MIS) of arbitrary graphs
in deterministic time O(n1/

√
log n). For graphs of maximum

degree bounded by �, (� + 1)-coloring can be achieved in
time O(� log n) [2]. Cole and Vishkin [6] described a PRAM
algorithm that can be easily transformed into an algorithm
working in the LOCAL model, computing a 3-coloring of
oriented cycles in O(log∗ n) rounds. This bound is tight as
proved by Linial [18] (see also [22] for a generalization to ran-
domized algorithms). Similarly, Goldberg and Plotkin[12]
described a 3-coloring of oriented trees working in O(log∗ n)

rounds. The O(�2)-coloring algorithm in [18], working in
O(log∗ n) rounds, can be easily converted into a (�+1)-col-
oring algorithm working in O(�2 + log∗ n) rounds, reaching
the same complexity as the algorithm in [13] (see also [25]).
Kuhn and Wattenhofer [17] analyses what can be achieved
in one round, and proves that no algorithm based on itera-
tions of the application of a 1-round algorithm can achieve
O(�)-coloring in less than �(�/ log2 � + log∗ n) rounds.
On the other hand, [17] presents a (�+1)-coloring algorithm
working in O(� log � + log∗ n) rounds, thus improving

123

398 P. Fraigniaud et al.

[2,13,18]. Recently, the power of orienting the network was
also demonstrated in terms of bit complexity in [15].

One can rephrase many recent results of the literature
in the framework of advising schemes. For instance, a 0-
round algorithm with maximum advice length O(log n) bits
and average advice length O(log log n) is described in [4]
for computing a spanning tree. It is also easy to extract
an O(1)-round algorithm for spanning trees with maximum
advice length 2 bits from the proof of the main result in [5].
Fraigniaud et al. [11] have designed distributed algorithms
with advice for computing minimum spanning trees (MST),
and Nisse and Soguet [24] have designed distributed algo-
rithms with advice for solving the graph searching problem,
a.k.a. the cops-and-robbers problem. Finally, Fraigniaud et
al. [10] considers the competitive ratio of the exploration
time of a robot unaware of the topology compared to a robot
knowing the map of the graph.

2 Coloring cycles with advice

In order to prove the lower bounds listed in Sect. 1.1 on the
size of advice needed for fast 3-coloring of all cycles, we
prove the following result.

Theorem 2.1 Suppose that an oracle O informs at most q
nodes in any n-node cycle. Then the time of 3-coloring of
n-node cycles using oracle O is �(log∗(n/q)). This result
holds even if the cycle is oriented, i.e., even if the nodes have
a consistent notion of clockwise and counterclockwise direc-
tions.

Before proving Theorem 2.1, we make the following
observation. A lower bound argument for a scenario in which
an oracle is giving advice as a function of the instance can-
not rely on arguments based solely on the existence of large
sets of nodes without advice. Indeed, these specific large sets
may not need any advice. A lower bound proof must combine
arguments demonstrating the existence of large sets receiv-
ing no advice, with arguments about the difficulty of coloring
these sets. The following example should help understanding
this fact.

Example Let K2 be the graph consisting in two nodes linked
by an edge. If nodes are labeled by IDs in {1, . . . , 5}, then
3-coloring K2 in zero rounds (i.e., without communication)
is impossible. Indeed, for any function f mapping {1, . . . , 5}
to {0, 1, 2}, there is a pair x and y of distinct IDs such that
f (x) = f (y), and thus there is an assignment of the IDs
that causes the two neighboring nodes of K2 to be mapped
to the same color. Now, consider a cycle with five nodes, C5,
with distinct node IDs in {1, . . . , 5}. If an oracle informs at
most two nodes, then there are two adjacent nodes of C5 that
receive no information from the oracle. Using the fact that

coloring K2 in zero rounds is impossible, it may seem at a
first glance that 3-coloring a cycle of length 5 with an oracle
that informs at most 2 nodes is impossible because there is a
copy of K2 in C5 that receives no advice, and coloring such
a K2 is impossible. There is a flaw in this reasoning because
the 2 adjacent nodes that receive no information may actually
be easy to color. In fact, 3-coloring C5 without communica-
tion, using an oracle that informs only 2 nodes is possible.
Here is the algorithm:

1. Nodes receiving no advice are colored 0 or 1, depending
on the parity of their IDs;

2. Nodes receiving advice are colored 2.

And here is the oracle strategy for assigning advices:

1. select two adjacent nodes x and y that have IDs with
different parity;

2. let x ′ (resp., y′) be the neighbors of x (resp., y) that is
different from y (resp., x);

3. Nodes x ′ and y′ are the two nodes that receive advice.

This algorithm with advice does 3-color the cycle. Indeed,
(1) nodes x and y get different colors 0 and 1 because they
have different parity; (2) nodes x ′ and y′ get color 2; and
(3) the common neighbor z of x ′ and y′ gets a color 0 or 1
depending on its parity.

The above example illustrates the fact that even if there
exists a path P of length n/q in Cn that receives no advice,
this is not sufficient to conclude that �(log∗(n/q)) rounds
are required to 3-color Cn . Indeed, 3-coloring this specific
path P may actually be quite easy. We now give a complete
proof of Theorem 2.1.

Proof Recall the definition of the directed graph Bt,n from
[18]. Let s = 2t + 1 < n − 1. The nodes of the graph are
sequences of length s of distinct integers from {1, . . . , n}.
Intuitively, node (x1, x2, . . . , xs) of the graph Bt,n represents
the information acquired in time t by node xt+1 of a labeled
directed cycle containing a segment (x1, x2, . . . , xs). Out-
neighbors of node (x1, x2, . . . , xs) are all nodes (x2, x3, . . . ,

xs, y), where y �= x1. Note that the chromatic number
χ(Bt,n) is a lower bound on the number of colors with which
an n-node cycle may be colored distributively in time t . Thus,
by restricting attention to 3-coloring algorithms, this yields
a lower bound on the time of 3-coloring.

It was proved in [18] that χ(Bt,n) ≥ log(2t) n.
For any set X ⊆ {1, . . . , n} of size > s + 1, we define

Bt,n(X) as the subgraph of Bt,n induced by all nodes
(x1, x2, . . . , xs) with xi ∈ X , for all 1 ≤ i ≤ s. The graph
Bt,n(X) is isomorphic to Bt,|X |. To see why, just sort the ele-
ments of X in, say, increasing order, and consider the map-
ping ρ : X → {1, . . . , |X |} defined by ρ(x) = rankX (x). By

123

Distributed computing with advice: information sensitivity of graph coloring 399

extension, ρ induces an isomorphism ρ̂ between Bt,n(X) and
Bt,|X |, defined by ρ̂(x1, x2, . . . , xs) = (ρ(x1), ρ(x2), . . . ,

ρ(xs)).
Fix an oracle O giving advice to all cycles of length n.

Let q be the maximum number of nodes informed by ora-
cle O in any of these cycles. Without loss of generality we
may assume that the number of bits given to any node is
not more than needed to code all directed labeled cycles of
length n, i.e.,
log(n −1)!�. Consider a 3-coloring algorithm
for cycles of length n using oracle O and running in time
t . If t ≥ n/(2q) − 1, we are done. Hence suppose that t <

n/(2q) − 1 which implies s < n/q. We define the directed
graph Bt,n,O that will be crucial in our argument. The nodes
of the graph are sequences ((x1, α1), (x2, α2), . . . , (xs, αs)),
where xi are distinct integers from {1, . . . , n} and αi are
binary strings of length at most
log(n−1)!�. Intuitively, node
((x1, α1), (x2, α2), . . . , (xs, αs)) represents the total infor-
mation acquired in time t by node xt+1 of a labeled directed
cycle containing a segment (x1, x2, . . . , xs), including labels
of nodes at distance at most t and advice given to them by
the oracle. There exists a (directed) edge from node v =
((x1, α1), (x2, α2), . . . , (xs, αs)) to a node w, if w =
((x2, α2), . . . , (xs, αs), (y, β)) and if there exists a labeled
directed cycle of length n containing the segment (x1, x2, . . . ,

xs, y), such that oracle O applied to this cycle gives advice
α1, α2, . . . , αs, β to nodes x1, x2, . . . , xs, y, respectively. We
will say that the segment (x1, x2, . . . , xs, y) of such a cycle
induces this directed edge. Similarly as above, the chro-
matic number χ(Bt,n,O) is a lower bound on the number
of colors with which the cycle may be colored distribu-
tively in time t , using oracle O. Note that a coloring algo-
rithm using oracle O does not need to assign a color to all
nodes ((x1, α1), (x2, α2), . . . , (xs, αs)) of Bt,n,O. Indeed, it
is possible that there is no cycle containing the segment
(x1, x2, . . . , xs), such that oracle O applied to this cycle
gives advice α1, α2, . . . , αs to nodes x1, x2, . . . xs , respec-
tively. However, by definition, such “non-legitimate” nodes
are isolated in the graph Bt,n,O and hence they do not affect
its chromatic number.

We will establish a lower bound on the chromatic number
of Bt,n,O, and then show how to deduce from it a lower bound
on the time of 3-coloring with oracle O. To this end it is suf-
ficient to focus on the subgraph B̃t,n,O of Bt,n,O induced by
the nodes ((x1, α1), (x2, α2), . . . , (xs, αs)), with all αi being
empty strings. By definition, the graph B̃t,n,O is isomorphic
to a subgraph of Bt,n and has the same number of nodes as
Bt,n . By a slight abuse of notation we will identify B̃t,n,O
with this subgraph of Bt,n .

Claim 2.1 For n/q sufficiently large, there exists a set X of

size k =
⌊(

n
q(s+1)

)1/(s+1)
⌋

such that Bt,n(X) is a subgraph

of B̃t,n,O.

We will establish an upper bound on the number of edges
from the graph Bt,n missing in B̃t,n,O. This upper bound will
allow us to prove that B̃t,n,O contains a subgraph Bt,n(X),
for some set X of size k. Fix a directed labeled cycle of length
n. When the oracle O informs a node of this cycle, exactly
s +1 of its segments (those containing the node) induce s +1
edges in Bt,n,O that are different than in Bt,n,O′ , where ora-
cle O′ differs from O by not informing this node. Moreover,
these s + 1 edges in Bt,n,O are outside B̃t,n,O. For a given
cycle, at most q(s + 1) of the edges induced by all the n
possible segments of the cycle are outside B̃t,n,O. There are
(n − 1)! directed labeled cycles of length n. For a given edge
e of Bt,n not to appear in B̃t,n,O, each of the (n − s − 1)!
cycles that induces e in Bt,n must not induce e in B̃t,n,O. That
is, the oracle must give advice to each of these many cycles
in the segment corresponding to edge e. Let µ be the number
of edges in Bt,n that do not appear in B̃t,n,O. Then

µ ≤ q(s + 1) · (n − 1)!
(n − s − 1)! ≤ q · (s + 1) · ns.

Consider all graphs Bt,n(X), for X of size k > s + 1. Every
edge

((x1, x2, . . . , xs), (x2, . . . , xs, xs+1))

of Bt,n belongs to at most
(n−s−1

k−s−1

)
such graphs Bt,n(X),

where all xi are in X . Thus there exist at most q · (s +1) ·ns ·(n−s−1
k−s−1

)
graphs Bt,n(X), for X of size k, such that at least one

of their edges does not appear in B̃t,n,O. We will now prove
that this number of graphs is strictly smaller than the total
number

(n
k

)
of graphs Bt,n(X), for X of a suitably chosen

size k. Indeed,(n
k

)
(n−s−1

k−s−1

) = n(n − 1) · · · (n − s)

k(k − 1) · · · (k − s)
>

(n

k

)s+1
.

Let

k =
⌊(

n

q(s + 1)

)1/(s+1)
⌋

.

Note that we have k > s+1, for n/q sufficiently large. Hence(n
k

)s+1 ≥ q · (s + 1) · ns . Hence there exists a graph Bt,n(X)

all of whose edges appear in B̃t,n,O. This proves Claim 2.1.
In view of Claim 2.1, the chromatic number of Bt,n,O can

be bounded as follows (for n/q sufficiently large):

χ(Bt,n,O) ≥ log(s−1) k = log(s−1)

(
n

q(s + 1)

)1/(s+1)

.

Since t is the running time of a 3-coloring algorithm for
cycles of length n using oracle O, we have χ(Bt,n,O) ≤ 3,
which implies log(s−1)(n

q(s+1)
)1/(s+1) ≤ 3. In order to finish

the argument, it is enough to prove that s ≥ 1
5 log∗(n/q).

Suppose not. Thus n/q ≥ 2216
. For such large n/q we have

log
n

q(s + 1)
> log

n

q
− log log∗ n

q
≥ 1

2
log

n

q
.

123

400 P. Fraigniaud et al.

Hence

1

s + 1
log

n

q(s + 1)
>

1

2(s + 1)
log

n

q
≥ 1

2 log∗ n
q

log
n

q

≥ log log
n

q
.

This implies

(
n

q(s + 1)

)1/(s+1)

> log
n

q
,

and

3 ≥ log(s−1)

(
n

q(s + 1)

)1/(s+1)

> log(s) n

q
.

Thus s ≥ log∗ n
q − 2, which contradicts the assumption

s < 1
5 log∗(n/q). �

Theorem 2.1 has several interesting consequences. The
following corollary proves that transforming the 3-coloring
problem into a locally solvable problem (in the sense of [23])
essentially requires to give the solution to the nodes.

Corollary 2.1 Any distributed algorithm that produces a
3-coloring of all cycles of length n in constant time requires
advice for �(n) nodes.

The next corollary proves that 3-coloring of cycles is infor-
mation insensitive.

Corollary 2.2 Any distributed algorithm that produces a
3-coloring of all cycles of length n in time o(log∗ n) requires
advice for �(n/ log(k) n) nodes, for any constant k.

3 Coloring trees with advice

Theorem 2.1 concerning cycles has an interesting conse-
quence concerning trees, that proves that 3-coloring is
information insensitive in oriented trees. Recall that a tree is
oriented if it is rooted, and every node is aware of which of its
incident edges leads to its parent in the tree. If there exists an
oracle O informing at most q nodes in any n-node oriented
tree, and a 3-coloring algorithm A using O and working in
t (n) rounds, then there exists an oracle O′ informing at most
q + 2 nodes in any n-node oriented cycle, and a 3-color-
ing algorithm A′ using O′ and working in t (n) + 1 rounds.
O′ picks arbitrarily two neighboring nodes x and y in the
cycle. Assume that y is the neighbor of x in the counter-
clockwise direction. O′ gives the advice (tail) to x , and the
advice (t (n), root) to y. The i th node v in the cycle, counting
counterclockwise from x , receives from O′ the advice f (vi)

given by O to the node vi at distance i from the root of the

oriented path P rooted at one of its two extremities, where
f = O(P). A′ proceeds in t (n) + 1 rounds. During rounds
1 to t (n), A′ simply executes A, for which nodes x and y
just act as if they would be respectively the tail and the root
of a directed path from x to y. At round t (n) + 1 of A′, the
root node y checks if its color is different from x . If not, it
takes a color distinct from the colors if its two neighbors.
This simple reduction enables to establish the following cor-
ollary of Theorem 2.1 proving that 3-coloring oriented trees
is information insensitive.

Corollary 3.1 Suppose that an oracle O informs at most q
nodes in any n-node oriented tree. Then the time of 3-color-
ing of n-node oriented trees using oracle O is �(log∗(n/q)).
Thus in particular any distributed algorithm that produces
a 3-coloring of all n-node oriented trees in time o(log∗ n)

requires advice for �(n/ log(k) n) nodes, for any
constant k.

The main result of this section is a lower bound on the size
of advice necessary for fast coloring of all n-node unoriented
trees. In fact we will show that this bound holds already for
the class of all unoriented complete d-regular trees. These
are rooted trees Td,r such that each leaf is at distance r from
the root, and each internal node (i.e., a node that is not a
leaf) has degree d. Thus the root has d children, and all other
internal nodes have d − 1 children. It should be stressed that
the notion of root and children is brought up only to facilitate
the definition. From the point of view of nodes, the tree is not
rooted (a node does not have information which neighbor is
its parent).

Theorem 3.1 Fix d ≥ 37. Any 3-coloring algorithm work-
ing in time t for the class of n-node unoriented complete
d-regular trees requires advice for at least n

dd2t nodes.

Proof Fix d ≥ 37, t > 0, and r > 2t +3. Consider any node
v of the tree Td,r at distance at least t +1 from all leaves. The
number of nodes at distance at most t from v will be denoted
by α(t). We have α(t) = d · ∑t−1

i=0(d − 1)i ≤ 2(d − 1)t − 1.
Consider an edge e of the tree Td,r whose both extremities are
at distance at least t + 1 from all leaves. The subtree induced
by the set of nodes at distance at most t from one of these
extremities will be called the bow-tie of Td,r based on edge e,
denoted by BT(e). The number of nodes in this bow-tie will
be denoted by β(t). We have β(t) = α(t) + 1 + (d − 1)t ≤
3(d − 1)t .

Consider the tree Td,r with a labeling � of nodes and
ports. � labels all nodes by distinct integers from {1, . . . , n},
where n = 1 + α(r), and labels all ports at internal nodes
by integers from {1, . . . , d}. For any such labeled tree, con-
sider its subtrees of the form N (v, t,�), where t is a positive
integer and v is a node of Td,r at distance at least t + 1 from
any leaf of Td,r . N (v, t,�) is defined as the labeled subtree

123

Distributed computing with advice: information sensitivity of graph coloring 401

of Td,r induced by all nodes at distance at most t from v.
Note that if restrictions of labelings � and �′ to the subtree
of Td,r induced by all nodes at distance at most t from v are
identical, then N (v, t,�) = N (v, t,�′).

Consider the following graph, denoted by Gt (Td,r). The
nodes of Gt (Td,r) are all subtrees N (v, t,�) of Td,r for
all possible nodes v, and all possible labelings � of nodes
and ports of Td,r . Two nodes N (v, t,�) and N (v′, t,�′) of
Gt (Td,r) are adjacent, if and only if there exist two adja-
cent nodes w and w′ in Td,r , and a labeling 	, such that
N (v, t,�) = N (w, t,) and N (v′, t,�′) = N (w′, t,).

Note that the graph Gt (Td,r) is a subgraph of the t
-neighborhood graph of Td,r , defined in [18]. Moreover, it
follows from [18] that the chromatic number χ(Gt (Td,r))

is a lower bound on the number of colors with which the
tree Td,r may be colored distributively in time t , and that
χ(Gt (Td,r)) ≥ 1

2

√
d, if t < 2r/3. Also, for any set X ⊆

{1, . . . , n}, we define the graph G(X) as the subgraph of
Gt (Td,r) induced by nodes with labels from the set X . For
|X | = 1 + α(s), for some positive integer s ≤ r , the graph
G(X) is isomorphic to Gt (Td,s). To see why, observe first
that there are precisely 1 + α(s) nodes in Td,s , labeled from
1 to 1 + α(s). To set the isomorphism between G(X) and
Gt (Td,s), just sort the elements of X in, say, increasing order,
and consider the mapping ρ : X → {1, . . . , |X |} defined by
ρ(x) = rankX (x). By extension,ρ induces an isomorphism ρ̂

between G(X) and Gt (Td,s), defined by ρ̂(x1, x2, . . . , xs) =
(ρ(x1), ρ(x2), . . . , ρ(xs)).

Fix an oracle O giving advice to all n-node labeled trees
Td,r . Let q be the maximum number of nodes informed by
oracle O in any of these trees. Without loss of generality we
may assume that the number of bits given to any node is not
more than needed to code all n-node labeled trees Td,r . There
are dα(r−1) port labelings of Td,r , and for each such label-
ing there are n! ways to label nodes. Hence the number of
bits needed to code these trees is at most
log(dα(r−1)n!)�.
Consider a 3-coloring algorithm for n-node labeled trees Td,r

using oracle O and running in time t . We define the following
graph Gt,O(Td,r). Nodes of this graph are pairs of the form
(N (v, t,�), f), where N (v, t,�) is the tree defined above
and f is a function from nodes of this tree into the set of
binary strings of length at most
log(dα(r−1)n!)�. Intuitively,
the value f (w) is the advice given to node w of N (v, t,�)

by the oracle, and the entire pair (N (v, t,�), f) represents
the total information acquired in time t by node v, includ-
ing advice given to nodes of N (v, t,�) by the oracle. Edges
of the graph Gt,O(Td,r) are defined as follows. There is an
(undirected) edge between two nodes of Gt,O(Td,r) if these
nodes are of the form (N (v, t,�), f) and N (v′, t,�), f ′),
for some labeling �, where v and v′ are adjacent in Td,r

and for all nodes w of N (v, t,�) and w′ of N (v′, t,�), the
values f (w) and f ′(w′) are advice strings given to nodes w

and w′, respectively, by oracle O for the tree Td,r labeled by

�. We will say that this edge of Gt,O(Td,r) is induced by
the bow-tie BT({v, v′}) based on edge {v, v′} of the tree Td,r

labeled by �.
The chromatic number χ(Gt,O(Td,r)) is a lower bound

on the number of colors with which the tree Td,r may be col-
ored distributively in time t , using oracle O. Similarly as in
the case of the cycle, there may be “non-legitimate” nodes
in Gt,O(Td,r) but they are isolated and thus do not affect the
chromatic number.

In order to establish a lower bound on the chromatic num-
ber of Gt,O(Td,r), it is sufficient to focus on the subgraph
G̃t,O(Td,r) induced by the nodes (N (v, t,�), f) with f
being a function giving the empty string to all nodes. By
definition, the graph G̃t,O(Td,r) is isomorphic to a subgraph
of Gt (Td,r) and has the same number of nodes as Gt (Td,r).
Similarly as before we will identify G̃t,O(Td,r) with this sub-
graph of Gt (Td,r).

Claim 3.1 Let ν(k) be the number of sets X of size k, such
that the graph G(X) is not a subgraph of G̃t,O(Td,r). Then

ν(k) ≤ 2 · q · n! · d4dt

n · (n − β(t))! ·
(

n − β(t)

k − β(t)

)
.

In order to prove Claim 3.1, consider an edge of Gt,O
(Td,r). Let λ be the number of labeled trees Td,r that contain
a bow-tie B inducing this edge. Let b be the node of B closest
to the root of Td,r . Consider two cases.

Case 1. b is the root of Td,r .
There are β(t) ways of choosing node b in the bow-tie

B. For each such choice there are dα(r−1)−(β(t)−1) ways of
fixing port numbers in Td,r because for every internal node
other than the root the port leading to its parent has to be
chosen and this has already been done for these nodes that
appear in the bow-tie B. Finally for each such choice there
are (n − β(t))! ways of labeling all nodes outside B. Hence
in Case 1, there are β(t) ·dα(r−1)−β(t)+1 ·(n − β(t))! labeled
trees Td,r that contain B.

Case 2. b is not the root of Td,r .
In this case b must be a leaf of B. The number of leaves

of B is 2(d − 1)t . For any choice of b there are dα(r−1)−β(t)

ways of fixing the port number leading to the parent, for
all internal nodes in Td,r other than the root and outside B.
For any such choice there are d · ∑r−(2t+3)

i=0 (d − 1)i ways of
choosing the port numbers on the (unique) path from the root
to b (index i corresponds to the distance between the root and
node b). Finally, we have to consider again the (n − β(t))!
ways of labeling all nodes outside B. Hence in Case 2, there
are 2(d−1)t ·d ·∑r−(2t+3)

i=0 (d−1)i ·dα(r−1)−β(t) ·(n − β(t))!
labeled trees Td,r that contain B.

123

402 P. Fraigniaud et al.

Consequently we have

λ =
(
β(t) · dα(r−1)−β(t)+1 + 2(d − 1)t · d

·
r−(2t+3)∑

i=0

(d − 1)i · dα(r−1)−β(t)

⎞
⎠ · (n − β(t))!

=
⎛
⎝β(t) + 2(d − 1)t ·

r−(2t+3)∑
i=0

(d − 1)i

⎞
⎠ dα(r−1)−β(t)+1

· (n − β(t))!
≥ 2(d − 1)t · (d − 1)r−(2t+3) · dα(r−1)−β(t) · (n−β(t))! .

Fix an n-node labeled tree Td,r . When the oracleO informs
a node of this tree, exactly α(t + 1) bow-ties (those con-
taining the node) induce α(t + 1) edges in Gt,O(Td,r) that
are different than in Gt,O′(Td,r), where oracle O′ differs
from O by not informing this node. Moreover, these α(t +1)

edges in Gt,O(Td,r) are outside G̃t,O(Td,r). For a given tree,
at most q · (α(t + 1) of the edges induced by all possible
bow-ties are outside G̃t,O(Td,r). There are dα(r−1) · n! n-
node labeled trees. For a given edge e of Gt (Td,r) not to
appear in G̃t,O(Td,r), each of the λ trees that induces e in
Gt (Td,r) must not induce e in G̃t,O(Td,r). That is, the oracle
must give advice to each of these many trees in the bow-tie
corresponding to edge e. Let µ be the number of edges in
Gt (Td,r) that do not appear in G̃t,O(Td,r). Then, recalling
the bounds on λ and α(t),

µ ≤ q · α(t + 1) · dα(r−1) · n!
2(d − 1)t · (d − 1)r−(2t+3) · dα(r−1)−β(t) · (n − β(t))!

≤ q · n! · dβ(t)

(d − 1)r−(2t+3) · (n − β(t))!
≤ 2 · q · n! · d4dt

n · (n − β(t))! .

The last inequality follows from n ≤ (d−1)r and dβ(t)+(2t+3)

≤ d4dt
. Consider all graphs G(X), for X of size k = α

(� 3
2 t+1�). Every edge of Gt (Td,r) belongs to at most

(n−β(t)
k−β(t)

)
such graphs G(X). Thus there exist

ν(k) ≤ 2 · q · n! · d4dt

n · (n − β(t))! ·
(

n − β(t)

k − β(t)

)

sets X of size k, such that the graph G(X) is not a subgraph
of G̃t,O(Td,r). This proves Claim 3.1.

Suppose that ν(k) <
(n

k

)
. Then there exists a set X of size k

for which G(X) is a subgraph of G̃t,O(Td,r). Since k = α(s)
for s > 3t/2, it follows from [18] that the chromatic number
of the graph G(X) (and thus also of the graph Gt,O(Td,r))
is at least 1

2

√
d, which is larger than 3 for d ≥ 37. This

contradicts the fact that we consider a 3-coloring algorithm
running in time t . Hence we may assume ν(k) ≥ (n

k

)
. From

Claim 3.1, this implies

2 · q · n! · d4dt

n · (n − β(t))! ·
(

n − β(t)

k − β(t)

)
≥

(
n

k

)

and hence the number q of informed nodes satisfies

q ≥ n · (k − β(t))!
2 · d4dt · k! ≥ n

2 · d4dt · kβ(t)
.

Since k = α(� 3
2 t + 1�) ≤ d

7
2 t and β(t) ≤ 3(d − 1)t , we

have

q ≥ n

2 · d4dt · d
7
2 t ·3(d−1)t

≥ n

dd2t

which completes the proof. �
Remark By considering trees of a sufficiently large constant
degree (instead of just degree d ≥ 37) we can generalize the
above result to the case of c-coloring, for any constant c.

Theorem 3.1 has several interesting consequences. The
following corollary proves that lack of cycles does not help
in coloring a network since transforming the 3-coloring prob-
lem in trees into a locally solvable problem essentially
requires, as for cycles, to give the solution to the nodes.

Corollary 3.2 Any distributed algorithm that produces a
3-coloring of all n-node trees in constant time requires advice
for �(n) nodes.

The next corollary proves that reaching the O(log∗ n)

bound in unoriented trees requires lot of advice. This should
be contrasted with the fact that O(log∗ n) is the complexity
of 3-coloring of oriented trees, without advice.

Corollary 3.3 Any distributed algorithm that produces a
3-coloring of all n-node unoriented trees in time O(log∗ n)

requires advice for �(n/ log(k) n) nodes, for any constant k.

4 Conclusion

We presented lower bounds on the amount of advice that
has to be given to nodes of cycles and of trees in order to
produce distributively a fast 3-coloring of these networks.
Although our lower bounds are very close to the obvious
upper bound O(n), some interesting detailed questions con-
cerning the trade-offs between the size of advice and the time
of coloring remain open, even for cycles and trees. In particu-
lar, what is the minimum number of bits of advice to produce
a 3-coloring of every n-node cycle or tree in a given time t
= o(log∗ n)? More generally, what is the information sensi-
tivity of coloring arbitrary graphs? For arbitrary graphs, it is
natural to consider the maximum degree � as a parameter,
and seek distributed (� + 1)-coloring. It was proved in [17]
that a (�+1)-coloring can be produced in time O� log �+

123

Distributed computing with advice: information sensitivity of graph coloring 403

log∗ n). What is the minimum number of bits of advice to
produce a (� + 1)-coloring in time O(log∗ n)? And in con-
stant time? We conjecture that for the former task O(n) bits
of advice are sufficient, and for the latter �(n log �) bits of
advice are needed. Finally, an intriguing question is whether
the notion of oracle can be generalized to randomized algo-
rithms. In particular, it would be interesting to generalized
the lower bound in [22] to a context in which advices are
given to nodes.

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized paral-
lel algorithm for the maximal independent set problem. J. Algo-
rithms 7(4), 567–583 (1986)

2. Awerbuch, B., Goldberg, A., Luby, M., Plotkin, S.: Network
decomposition and locality in distributed computation. In: 30th
Symp. on Foundations of Computer Science (FOCS), pp. 364–369,
(1989)

3. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and
nonapproximability—towards tight results. SIAM J. Com-
put. 27(3), 804–915 (1998)

4. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.:
Label-guided graph exploration by a finite automaton. In: 32nd Int.
Colloquium on Automata, Languages and Programming (ICALP),
LNCS 3580, pp. 335–346 (2005)

5. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.:
Labeling schemes for tree representation. In: 7th Int. Work-
shop on Distributed Computing (IWDC), LNCS 3741, pp. 13–24
(2005)

6. Cole, R., Vishkin, U.: Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algo-
rithms. In: 18th ACM Symp. on Theory of Computing (STOC),
pp. 206–219 (1986)

7. Feige, U., Kilian, J.: Zero knowledge and the chromatic number.
J. Comput. Syst. Sci. 57(2), 187–199 (1998)

8. Fich, F., Ruppert, E.: Hundreds of impossibility results for distrib-
uted computing. Distrib. Comput. 16, 121–163 (2003)

9. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new mea-
sure of difficulty for communication tasks. In: 25th ACM Symp.
on Principles of Distributed Computing (PODC), pp. 179–187
(2006)

10. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with an ora-
cle. In: 31st Int. Symp. on Mathematical Foundations of Computer
Science (MFCS), LNCS 4162, Springer, pp. 24–37 (2006)

11. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST computation
with short advice. In: 19th Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA) (2007)

12. Goldberg, A., Plotkin, S.: Efficient parallel algorithms for (�+1)-
coloring and maximal independent set problems. In: 19th ACM
Symp. on Theory of Computing (STOC), pp. 315–324 (1987)

13. Goldberg, A., Plotkin, S., Shannon, G.: Parallel symmetry-breaking
in sparse graphs. In: 19th ACM Symp. on Theory of Computing
(STOC), pp. 315–324 (1987)

14. Karp, R.: Reducibility Among Combinatorial Problems. In: Com-
plexity of Computer Computations, pp. 85–103 (1972)

15. Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Dis-
tributed coloring in O(

√
log n) bit rounds. In: 20th IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS)
(2006)

16. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be com-
puted Locally! In: 23th ACM Symp. on Principles of Distributed
Computing, (PODC), pp. 300–309 (2004)

17. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph
coloring. In: 25th ACM Symp. on Principles of Distributed Com-
puting (PODC), pp. 7–15 (2006)

18. Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193–201 (1992)

19. Luby, M.: A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput. 15(4), 1036–1053 (1986)

20. Lynch, N.: A hundred impossibility proofs for distributed comput-
ing. In: 8th ACM Symp. on Principles of Distributed Computing
(PODC), pp. 1–28 (1989)

21. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio net-
works. In: 17th ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pp. 39–48 (2005)

22. Naor, M.: A lower bound on probabilistic algorithms for distribu-
tive ring coloring. SIAM J. Discrete Math. 4(3), 409–412 (1991)

23. Naor, M., Stockmeyer, L.: What can be computed locally? In: 25th
ACM Symposium on Theory of Computing (STOC), pp. 184–193
(1993)

24. Nisse, N., Soguet, D.: Graph searching with advice. In: 14th Inter-
national Colloquium on Structural Information and Communica-
tion Complexity (SIROCCO), June 2007

25. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for
sparse networks. Distrib. Comput. 14, 97–100 (2001)

26. Panconesi, A., Srinivasan, A.: Improved distributed algorithms
for coloring and network decomposition problems. In: 24th ACM
Symp. on Theory of Computing (STOC), pp. 581–592 (1992)

27. Panconesi, A., Srinivasan, A.: On the complexity of distributed
network decomposition. J. Algorithms 20(2), 356–374 (1996)

28. Peleg, D.: Distributed computing: a locality-sensitive approach.
SIAM Monographs on Discrete Mathematics and applications.
Philadelphia, PA (2000)

123

	Distributed computing with advice: information sensitivityof graph coloring
	Abstract
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Coloring cycles with advice
	3 Coloring trees with advice
	4 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

