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Abstract. We study the problem of the amount of information (ad-
vice) about a graph that must be given to its nodes in order to achieve
fast distributed computations. The required size of the advice enables
to measure the information sensitivity of a network problem. A problem
is information sensitive if little advice is enough to solve the problem
rapidly (i.e., much faster than in the absence of any advice), whereas it
is information insensitive if it requires giving a lot of information to the
nodes in order to ensure fast computation of the solution. In this paper,
we study the information sensitivity of distributed graph coloring.

1 Introduction

This work is a part of a recent project aiming at studying the quantitative
impact of knowledge on the efficiency when computing with distributed entities
(nodes of a distributed system, mobile users in ad hoc networks, etc.). Indeed,
as observed by Linial [16], ”within the various computational models for parallel
computers, the limitations that follow from the local nature of the computation
are specific to the distributed context”. Two frameworks have been considered for
analyzing the limitations incurring because of the local nature of the distributed
computation. One aims at identifying which tasks can or cannot be computed
locally, i.e., when every node can acquire knowledge only about the nodes that
are at constant distance from it. Surprisingly, non trivial tasks can be achieved
locally [20]. This is for instance the case of weak-coloring, a basis for a solution
to some resource allocation problems. However, many important problems in
distributed computing do not have a local solution [14]. This is the case of
computing an approximate minimum vertex cover or an approximate minimum
dominating set.

The other framework that has been considered is distributed computing with

advice. In this framework, the computing entities can be given information about
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the instance of the considered problem. The traditional approach is actually
qualitative in the sense that algorithms are designed or impossibility results are
proved under the assumption that the nodes are aware of specific parameters,
e.g., the size of the network. It was proved that the impact of knowledge con-
cerning the environment is significant in many areas of distributed computing,
as witnessed by [8, 18] where a lot of impossibility results and lower bounds are
surveyed, many of them depending on whether or not the nodes are provided
with partial knowledge of the topology of the network. A quantitative approach
was recently introduced in [9], in which limitations of local computation can
be estimated by establishing tradeoffs between the efficiency of the computa-
tion (number of steps, number of messages, etc.) and the amount of information
provided to the nodes about their environment, independently of what kind of
information they receive.

More precisely, we consider network computing with advice in the following
context. A network is modeled as an undirected graph, where links represent
communication channels between nodes. Nodes of n-node networks have distinct
IDs from {1, . . . , n}, and communication ports at a node of degree d are labeled
by distinct integers from {1, . . . , d}. A priori, every node knows only its own ID,
and the labels of its ports. All additional knowledge available to the nodes of
the graph (in particular knowledge concerning the topology and the labels of
the rest of the graph), is modeled by an oracle providing advice. An oracle is a
function O whose arguments are networks, and the value O(G), for a network
G = (V, E), called the advice provided by the oracle to this graph, is in turn
a function f : V → {0, 1}∗ assigning a finite binary string to every node v of
the graph. Intuitively, the oracle looks at the entire labeled graph with IDs, and
assigns to every node some information, coded as a string of bits. A node v is
informed by the oracle if the string f(v) is non-empty. The size of the advice
given by the oracle to a given graph G is the sum of the lengths of all strings it
assigns to nodes. Hence this size is a measure of the amount of information about
the graph, available to its nodes. Clearly, the size of advice is not smaller than
the number of informed nodes. The objective is to establish tradeoffs between
the size of the advice and the computational efficiency of the network.

Specifically, we focus on the distributed graph coloring problem, one of the
most challenging problems in network computing for its practical applications,
e.g., in radio networks [19], and for its relation with many other problems such
as maximal independent set (MIS) [14, 22] and symmetry breaking [11]. Initially,
each node knows its ID from {1, . . . , n}. The c-coloring problem requires each
node to compute a color in {1, . . . , c}, under the constraint that any two adjacent
nodes have different colors. Computation proceeds in rounds following Linial’s
model defined in [16] (a.k.a., LOCAL model [24]). At each round, a node sends
a message to each of its neighbors, receives messages from each of its neighbors,
and performs some local computations. The LOCAL model does not put any
limit on the message size and any restrictions on local computations because it is
designed to estimate limitations of local computing. The complexity of c-coloring
a graph G is measured by the number of rounds required to compute a proper
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Fig. 1. Tradeoff between the execution time and the size of advice.

c-coloring. There is an obvious relation between the complexity of c-coloring and
the maximum distance between two nodes that exchange information during the
computation.

Coloring graphs using advice provided by oracle O consists in designing an
algorithm that is unaware of the graph G at hand but colors it distributively,
as long as every node v of the graph G is provided with the string of bits f(v),
where f = O(G). Trivially, an advice of size O(n log c) bits that provides the
appropriate color to each node yields a coloring algorithm working in 0 rounds.
On the other hand, an advice of size 0, i.e., providing no information, yields an
algorithm running in t(n, c) rounds where t(n, c) is the complexity of the coloring
problem in the usual distributed setting (i.e., with no advice).

The theory of network computing with advice allows us to establish tradeoffs
between these two extreme cases. Different forms of tradeoffs are illustrated
in Figure 1. This figure plots the execution time as a function of the size of
advice (i.e., the amount of information given to the nodes). The execution time
decreases as the size of advice increases, for instance such as illustrated by the
dashed curve. Depending on how quickly the time decreases enables to roughly
classify problems as ”sensitive” or ”insensitive” to information. A problem is
information sensitive if few bits of information given to the nodes enable to
decrease drastically the execution time. Conversely, a problem is information

insensitive if the oracle must give a lot of information to the nodes for the
execution time to decrease significantly. In this paper, we study the information
sensitivity of graph coloring.

1.1 Our results

To study the information sensitivity of graph coloring, we focus on lower bounds
on the size of advice necessary for fast distributed coloring of cycles and trees,
two important cases analyzed in depth by Linial in his seminal paper [16] (cf.
also [10]).
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We show that coloring a cycle is information insensitive. Precisely, we show
that, for any constant k, Ω(n/ log(k) n) bits of advice are needed in order to beat

the Θ(log∗ n) time of 3-coloring a cycle, where log(k) n denotes k iterations of
log n. This shows a huge gap between 3-coloring in time Θ(log∗ n) and 3-coloring
below this time: while the first can be done without any advice [6], the second
requires almost as much information as if colors were explicitly assigned to nodes
(which would take O(n) bits).

The result for cycles easily extends to oriented trees (i.e., rooted trees in
which every node in the tree knows its parent in the tree), proving that, for

any constant k, Ω(n/ log(k) n) bits of advice are needed in order to beat the
O(log∗ n) time of 3-coloring an oriented tree [10]. Coloring an oriented tree is
thus also information insensitive.

The power of orienting a tree (i.e., giving an orientation of its edges toward a
root), from the point of view of distributed coloring, was known since Linial [16]
proved that no algorithm can color the d-regular unoriented tree of radius r
in time at most 2

3r by fewer that 1
2

√
d colors. Hence 3-coloring unoriented trees

essentially requires Θ(D) rounds, where D is the diameter of the tree. Therefore,
informing every node of the port leading to its parent in the tree results in
decreasing the time of 3-coloring from Ω(D) to O(log∗ n). We revisit this result
using our quantitative approach. Precisely, we aim at computing the amount of
advice required to reach the O(log∗ n) time bound. It is known that O(n log log n)
bits of advice enable to orient a tree (i.e., to select a root, and to give to every
node the port number of the edge leading to its parent) with an algorithm
working in 0 rounds [5], and O(n) bits of advice enable to orient a tree with an
algorithm working in 1 round [4]. However, 3-coloring a tree in time Θ(log∗ n)
does not necessarily require to orient the tree. Nevertheless, we show that, for
any constant k, Ω(n/ log(k) n) bits of advice are needed in order to 3-color all n-
node unoriented trees in time Θ(log∗ n). Thus, while for oriented trees 3-coloring
in time O(log∗ n) can be done without any additional information [10], achieving
the same efficiency for arbitrary trees requires almost as much information as if
colors were explicitly assigned to nodes.

Finally, both for cycles and trees, even if oriented, we also show that Ω(n) bits
of advice are needed for 3-coloring in constant time (i.e., for 3-coloring to become
a locally solvable problem). Thus constant-time coloring requires essentially as
much information as if colors were explicitly assigned to nodes. In fact, our lower
bounds hold not only for the total number of bits of advice given to nodes but
also for the number of nodes that must be informed (i.e., the number of nodes
that are given at least one bit of advice).

Although we formulate our results for the task of 3-coloring, they remain true
for coloring with any constant number of colors, by slight technical modification
of the proofs.

While our lower bound proofs present different technical challenges in the
case of the cycle and that of trees, the underlying idea is similar in both cases.
Linial [16] constructed the neighborhood graph N [G] of a graph G in order to
estimate the time of coloring G using the chromatic number of N [G]. Since in
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our case there is an oracle giving advice to nodes, we have to use a more complex
tool in the lower bound argument. We also argue about the chromatic number
of a suitably chosen graph H in order to bound coloring time of G. However,
in our case, this graph depends on the oracle as well as on the time of coloring,
and on the graph G, and hence it is very irregularly structured. We show that, if
the number of nodes of G informed by the oracle is not too large, then H has a
large chromatic number, and thus forces large coloring time of G. (Equivalently,
if G can be colored fast then the advice must be large.) The main difficulty
in our argument is to show the existence of a regularly structured subgraph
(whose chromatic number can be bounded from below) in the highly irregularly
structured graph H .

1.2 Related work

Because of the intrinsic difficulty of computing the chromatic number of a graph
in the sequential setting [12], or even to approximate it [3, 7], the distributed
computing literature dealing with graph coloring mostly focuses on the (∆ +
1)-coloring problem, where ∆ denotes the maximum degree of the graph. In
fact, the interest expressed for the (∆ + 1)-coloring problem is also due to its
intriguing relation with the maximal independent set (MIS) problem, already
underlined by Linial in [16]. In particular, combining the best known algorithms
for MIS [1, 17] with the reduction from (∆ + 1)-coloring to MIS by Linial yields
a randomized (∆ + 1)-coloring algorithm working in expected time O(log n).
Using techniques described in [2] and [23], one can compute a (∆ + 1)-coloring

(as well as a MIS) of arbitrary graphs in deterministic time O(n1/
√

log n). For
graphs of maximum degree bounded by ∆, (∆ + 1)-coloring can be achieved in
time O(∆ log n) (see [2]). [6] described a PRAM algorithm that can be easily
transformed into an algorithm working in the LOCAL model, computing a 3-
coloring of oriented cycles in O(log∗ n) rounds. This bound is tight as proved
by Linial [16]. Similarly, [10] described a 3-coloring of oriented trees working in
O(log∗ n) rounds. The O(∆2)-coloring algorithm in [16], working in O(log∗ n)
rounds, can be easily converted into a (∆ + 1)-coloring algorithm working in
O(∆2 + log∗ n) rounds, reaching the same complexity as the algorithm in [11].
[15] analyses what can be achieved in one round, and proves that no algorithm
based on iterations of the application of a 1-round algorithm can achieve O(∆)-
coloring in less than Ω(∆/ log2 ∆ + log∗ n) rounds. On the other hand, [15]
presents a (∆ + 1)-coloring algorithm working in O(∆ log ∆ + log∗ n) rounds,
thus improving [2, 11, 16]. Recently, the power of orienting the network was also
demonstrated in terms of bit complexity in [13].

2 Coloring cycles with advice

In order to prove the lower bounds listed in Section 1.1 on the size of advice
needed for fast 3-coloring of all cycles, we prove the following result.
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Theorem 1. Suppose that an oracle O informs at most q nodes in any n-

node cycle. Then the time of 3-coloring of n-node cycles using oracle O is

Ω(log∗(n/q)). This result holds even if the cycle is oriented, i.e., even if the

nodes have a consistent notion of clockwise and counterclockwise directions.

Proof. Recall the definition of the directed graph Bt,n from [16]. Let s = 2t+1 <
n − 1. The nodes of the graph are sequences of length s of distinct integers
from {1, . . . , n}. Intuitively, node (x1, x2, . . . , xs) of the graph Bt,n represents the
information acquired in time t by node xt+1 of a labeled directed cycle containing
a segment (x1, x2, . . . , xs). Out-neighbors of node (x1, x2, . . . , xs) are all nodes
(x2, x3, . . . , xs, y), where y 6= x1. Note that the chromatic number χ(Bt,n) is a
lower bound on the number of colors with which an n-node cycle may be colored
distributively in time t. Thus, by restricting attention to 3-coloring algorithms,
this yields a lower bound on the time of 3-coloring.

It was proved in [16] that χ(Bt,n) ≥ log(2t) n. For any set X ⊆ {1, . . . , n}
of size > s + 1, define Bt,n(X) to be the subgraph of Bt,n induced by all nodes
(x1, x2, . . . , xs) with xi ∈ X , for all 1 ≤ i ≤ s. It is easy to see that the graph
Bt,n(X) is isomorphic to Bt,|X|.

Fix an oracle O giving advice to all cycles of length n. Let q be the maximum
number of nodes informed by oracle O in any of these cycles. Without loss of
generality we may assume that the number of bits given to any node is not more
than needed to code all directed labeled cycles of length n, i.e., ⌈log(n − 1)!⌉.
Consider a 3-coloring algorithm for cycles of length n using oracle O and running
in time t. If t ≥ n/(2q)−1, we are done. Hence suppose that t < n/(2q)−1 which
implies s < n/q. We define the directed graph Bt,n,O that will be crucial in our
argument. The nodes of the graph are sequences ((x1, α1), (x2, α2), . . . , (xs, αs)),
where xi are distinct integers from {1, . . . , n} and αi are binary strings of
length at most ⌈log(n − 1)!⌉. Intuitively, node ((x1, α1), (x2, α2), . . . , (xs, αs))
represents the total information acquired in time t by node xt+1 of a labeled
directed cycle containing a segment (x1, x2, . . . , xs), including labels of nodes
at distance at most t and advice given to them by the oracle. There exists a
(directed) edge from node v = ((x1, α1), (x2, α2), . . . , (xs, αs)) to a node w, if
w = ((x2, α2), . . . , (xs, αs), (y, β)) and if there exists a labeled directed cycle of
length n containing the segment (x1, x2, . . . , xs, y), such that oracle O applied to
this cycle gives advice α1, α2, . . . , αs, β to nodes x1, x2, . . . , xs, y, respectively. We
will say that the segment (x1, x2, . . . , xs, y) of such a cycle induces this directed
edge. Similarly as above, the chromatic number χ(Bt,n,O) is a lower bound on
the number of colors with which the cycle may be colored distributively in time
t, using oracle O. Note that a coloring algorithm using oracle O does not need to
assign a color to all nodes ((x1, α1), (x2, α2), . . . , (xs, αs)) of Bt,n,O. Indeed, it is
possible that there is no cycle containing the segment (x1, x2, . . . , xs), such that
oracle O applied to this cycle gives advice α1, α2, . . . , αs to nodes x1, x2, . . . xs,
respectively. However, by definition, such “non-legitimate” nodes are isolated in
the graph Bt,n,O and hence they do not affect its chromatic number.

We will establish a lower bound on the chromatic number of Bt,n,O, and then
show how to deduce from it a lower bound on the time of 3-coloring with oracle
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O. To this end it is sufficient to focus on the subgraph B̃t,n,O of Bt,n,O induced
by the nodes ((x1, α1), (x2, α2), . . . , (xs, αs)), with all αi being empty strings.
By definition, the graph B̃t,n,O is isomorphic to a subgraph of Bt,n and has the
same number of nodes as Bt,n. By a slight abuse of notation we will identify

B̃t,n,O with this subgraph of Bt,n.

Claim 1. For n/q sufficiently large, there exists a set X of size

k =

⌊

(

n

q(s + 1)

)1/(s+1)
⌋

such that Bt,n(X) is a subgraph of B̃t,n,O.

Due to lack of space, the proof of Claim 1 is omitted.
In view of Claim 1, the chromatic number of Bt,n,O can be bounded as follows

(for n/q sufficiently large):

χ(Bt,n,O) ≥ log(s−1) k = log(s−1)

(

n

q(s + 1)

)1/(s+1)

.

Since t is the running time of a 3-coloring algorithm for cycles of length n using

oracle O, we have χ(Bt,n,O) ≤ 3, which implies log(s−1)
(

n
q(s+1)

)1/(s+1)

≤ 3. In

order to finish the argument, it is enough to prove that s ≥ 1
5 log∗(n/q). Suppose

not. Thus n/q ≥ 2216

. For such large n/q we have

log
n

q(s + 1)
> log

n

q
− log log∗

n

q
≥ 1

2
log

n

q
.

Hence

1

s + 1
log

n

q(s + 1)
>

1

2(s + 1)
log

n

q
≥ 1

2 log∗ n
q

log
n

q
≥ log log

n

q
.

This implies
(

n

q(s + 1)

)1/(s+1)

> log
n

q
,

and

3 ≥ log(s−1)

(

n

q(s + 1)

)1/(s+1)

> log(s) n

q
.

Thus s ≥ log∗ n
q − 2, which contradicts the assumption s < 1

5 log∗(n/q). ⊓⊔

Theorem 1 has several interesting consequences. The following corollary pro-
ves that transforming the 3-coloring problem into a locally solvable problem (in
the sense of [20]) essentially requires to give the solution to the nodes.

Corollary 1. Any distributed algorithm that produces a 3-coloring of all cycles

of length n in constant time requires advice for Ω(n) nodes.
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The next corollary proves that 3-coloring of cycles is information insensitive.

Corollary 2. Any distributed algorithm that produces a 3-coloring of all cycles

of length n in time o(log∗ n) requires advice for Ω(n/ log(k) n) nodes, for any

constant k.

3 Coloring trees with advice

Theorem 1 concerning cycles has an interesting consequence concerning trees,
that proves that 3-coloring is information insensitive in oriented trees. Recall
that a tree is oriented if it is rooted, and every node is aware of which of its
incident edges leads to its parent in the tree. If there exists an oracle O informing
at most q nodes in any n-node oriented tree, and a 3-coloring algorithm A using
O and working in t(n) rounds, then there exists an oracle O′ informing at most
q + 2 nodes in any n-node oriented cycle, and a 3-coloring algorithm A′ using
O′ and working in t(n) + 1 rounds. O′ picks arbitrarily two neighboring nodes
x and y in the cycle. Assume that y is the neighbor of x in the counterclockwise
direction. O′ gives the advice (tail) to x, and the advice (t(n), root) to y. The
ith node v in the cycle, counting counterclockwise from x, receives from O′ the
advice f(vi) given by O to the node vi at distance i from the root of the oriented
path P rooted at one of its two extremities, where f = O(P ). A′ proceeds in
t(n)+1 rounds. During rounds 1 to t(n), A′ simply executes A, for which nodes
x and y just act as if they would be respectively the tail and the root of a
directed path from x to y. At round t(n) + 1 of A′, the root node y checks if its
color is different from x. If not, it takes a color distinct from the colors if its two
neighbors. This simple reduction enables to establish the following corollary of
Theorem 1 proving that 3-coloring oriented trees is information insensitive.

Corollary 3. Suppose that an oracle O informs at most q nodes in any n-node

oriented tree. Then the time of 3-coloring of n-node oriented trees using oracle

O is Ω(log∗(n/q)). Thus in particular any distributed algorithm that produces

a 3-coloring of all n-node oriented trees in time o(log∗ n) requires advice for

Ω(n/ log(k) n) nodes, for any constant k.

The main result of this section is a lower bound on the size of advice necessary
for fast coloring of all n-node unoriented trees. In fact we will show that this
bound holds already for the class of all unoriented complete d-regular trees.
These are trees Td,r such that each leaf is at distance r from the root, and each
internal node has degree d. It should be stressed that the notion of root and
children is brought up only to facilitate the definition. From the point of view of
nodes, the tree is not rooted (a node does not have information which neighbor
is its parent).

Theorem 2. Fix d ≥ 37. Any 3-coloring algorithm working in time t for the

class of n-node unoriented complete d-regular trees requires advice for at least
n

dd2t nodes.
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Proof. Fix d ≥ 37, t > 0, and r > 2t+3. Consider any node v of the tree Td,r at
distance at least t+1 from all leaves. The number of nodes at distance at most t
from v will be denoted by α(t). We have α(t) = d ·

∑t−1
1=0(d− 1)i ≤ 2(d− 1)t − 1.

Consider an edge e of the tree Td,r whose both extremities are at distance at
least t+1 from all leaves. The subtree induced by the set of nodes at distance at
most t from one of these extremities will be be called the bow-tie of Td,r based
on edge e. The number of nodes in this bow-tie will be denoted by β(t). We have
β(t) = α(t) + 1 + (d − 1)t ≤ 3(d − 1)t.

Consider the tree Td,r with a labeling Φ of nodes and ports. Φ labels all nodes
by distinct integers from {1, . . . , n}, where n = 1 + α(r), and labels all ports at
internal nodes by integers from {1, . . . , d}. For any such labeled tree, consider its
subtrees of the form N(v, t, Φ), where t is a positive integer and v is a node of Td,r

at distance at least t+1 from any leaf of Td,r. N(v, t, Φ) is defined as the labeled
subtree of Td,r induced by all nodes at distance at most t from v. Note that if
restrictions of labelings Φ and Φ′ to the subtree of Td,r induced by all nodes at
distance at most t from v are identical, then N(v, t, Φ) = N(v, t, Φ′). Consider
the following graph Gt(Td,r). The nodes of the graph are all subtrees N(v, t, Φ)
of Td,r for all possible nodes v and labelings Φ of nodes and ports of Td,r. Two
nodes of Gt(Td,r) are adjacent, if and only if, they are of the form N(v, t, Φ)
and N(v′, t, Φ), for some labeling Φ, with v and v′ adjacent in Td,r. Note that
the graph Gt(Td,r) is a subgraph of the t-neighborhood graph of Td,r, defined in
[16]. Moreover, it follows from [16] that the chromatic number χ(Gt(Td,r)) is a
lower bound on the number of colors with which the tree Td,r may be colored

distributively in time t, and that χ(Gt(Td,r)) ≥ 1
2

√
d, if t < 2r/3. Also, for

any set X ⊆ {1, . . . , n}, we define the graph G(X) as the subgraph of Gt(Td,r)
induced by nodes with labels from the set X . Note that, for |X | = 1 + α(s), for
some positive integer s ≤ r, the graph G(X) is isomorphic to Gt(Td,s).

Fix an oracle O giving advice to all n-node labeled trees Td,r. Let q be the
maximum number of nodes informed by oracle O in any of these trees. Without
loss of generality we may assume that the number of bits given to any node is
not more than needed to code all n-node labeled trees Td,r. There are dα(r−1)

port labelings of Td,r, and for each such labeling there are n! ways to label nodes.
Hence the number of bits needed to code these trees is at most ⌈log(dα(r−1)n!)⌉.
Consider a 3-coloring algorithm for n-node labeled trees Td,r using oracle O and
running in time t. We define the following graph Gt,O(Td,r). Nodes of this graph
are couples of the form (N(v, t, Φ), f), where N(v, t, Φ) is the tree defined above
and f is a function from nodes of this tree into the set of binary strings of length
at most ⌈log(dα(r−1)n!)⌉. Intuitively, the value f(w) is the advice given to node
w of N(v, t, Φ) by the oracle, and the entire couple (N(v, t, Φ), f) represents the
total information acquired in time t by node v, including advice given to nodes
of N(v, t, Φ) by the oracle. Edges of the graph Gt,O(Td,r) are defined as follows.
There is an (undirected) edge between two nodes of Gt,O(Td,r) if these nodes are
of the form (N(v, t, Φ), f) and N(v′, t, Φ), f ′), for some labeling Φ, where v and
v′ are adjacent in Td,r and for all nodes w of N(v, t, Φ) and w′ of N(v′, t, Φ), the
values f(w) and f ′(w′) are advice strings given to nodes w and w′, respectively,
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by oracle O for the tree Td,r labeled by Φ. We will say that this edge of Gt,O(Td,r)
is induced by the bow-tie based on edge {v, v′} of the tree Td,r labeled by Φ.

The chromatic number χ(Gt,O(Td,r)) is a lower bound on the number of
colors with which the tree Td,r may be colored distributively in time t, using
oracle O. Similarly as in the case of the cycle, there may be “non-legitimate”
nodes in Gt,O(Td,r) but they are isolated and thus do not affect the chromatic
number.

In order to establish a lower bound on the chromatic number of Gt,O(Td,r),

it is sufficient to focus on the subgraph G̃t,O(Td,r) induced by the nodes

(N(v, t, Φ), f)

with f being a function giving the empty string to all nodes. By definition,
the graph G̃t,O(Td,r) is isomorphic to a subgraph of Gt(Td,r) and has the same

number of nodes as Gt(Td,r). Similarly as before we will identify G̃t,O(Td,r) with
this subgraph of Gt(Td,r).

Claim 2. Let ν(k) be the number of sets X of size k, such that the graph G(X)
is not a subgraph of G̃t,O(Td,r). Then

ν(k) ≤ 2 · q · n! · d4dt

n ·
(

n − β(t)
)

!
·
(

n − β(t)

k − β(t)

)

.

Due to lack of space, the proof of Claim 2 is omitted.
Suppose that ν(k) <

(

n
k

)

. Then there exists a set X of size k for which G(X)

is a subgraph of G̃t,O(Td,r). Since k = α(s) for s > 3t/2, it follows from [16] that
the chromatic number of the graph G(X) (and thus also of the graph Gt,O(Td,r))

is at least 1
2

√
d, which is larger than 3 for d ≥ 37. This contradicts the fact that

we consider a 3-coloring algorithm running in time t. Hence we may assume
ν(k) ≥

(

n
k

)

. From Claim 2, this implies

2 · q · n! · d4dt

n ·
(

n − β(t)
)

!
·
(

n − β(t)

k − β(t)

)

≥
(

n

k

)

and hence the number q of informed nodes satisfies

q ≥ n ·
(

k − β(t)
)

!

2 · d4dt · k!
≥ n

2 · d4dt · kβ(t)
.

Since k = α(⌊ 3
2 t + 1⌋) ≤ d

7

2
t and β(t) ≤ 3(d − 1)t, we have

q ≥ n

2 · d4dt · d 7

2
t·3(d−1)t

≥ n

dd2t
.

⊓⊔

Remark. By considering trees of a sufficiently large constant degree (instead of
just degree d ≥ 37) we can generalize the above result to the case of c-coloring,
for any constant c.
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Theorem 2 has several interesting consequences. The following corollary pro-
ves that lack of cycles does not help in coloring a network since transforming the
3-coloring problem in trees into a locally solvable problem essentially requires,
as for cycles, to give the solution to the nodes.

Corollary 4. Any distributed algorithm that produces a 3-coloring of all n-node

trees in constant time requires advice for Ω(n) nodes.

The next corollary proves that reaching the O(log∗ n) bound in unoriented
trees requires lot of advice. This should be contrasted with the fact that O(log∗ n)
is the complexity of 3-coloring of oriented trees, without advice.

Corollary 5. Any distributed algorithm that produces a 3-coloring of all n-node

unoriented trees in time O(log∗ n) requires advice for Ω(n/ log(k) n) nodes, for

any constant k.

4 Conclusion

We presented lower bounds on the amount of advice that has to be given to
nodes of cycles and of trees in order to produce distributively a fast 3-coloring
of these networks. Although our lower bounds are very close to the obvious
upper bound O(n), some interesting detailed questions concerning the trade-offs
between the size of advice and the time of coloring remain open, even for cycles
and trees. In particular, what is the minimum number of bits of advice to produce
a 3-coloring of every n-node cycle or tree in a given time t = o(log∗ n)? More
generally, what is the information sensitivity of coloring arbitrary graphs? For
arbitrary graphs, it is natural to consider the maximum degree ∆ as a parameter,
and seek distributed (∆+1)-coloring. It was proved in [15] that a (∆+1)-coloring
can be produced in time O∆ log ∆ + log∗ n). What is the minimum number of
bits of advice to produce a (∆ + 1)-coloring in time O(log∗ n)? And in constant
time? We conjecture that for the former task O(n) bits of advice are sufficient,
and for the latter Ω(n log ∆) bits of advice are needed.

References

1. N. Alon, L. Babai, and A. Itai. A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem. J. Algorithms 7(4): 567-583 (1986).

2. B. Awerbuch, A. Goldberg, M. Luby, and S. Plotkin. Network Decomposition and
Locality in Distributed Computation. In 30th Symp. on Foundations of Computer
Science(FOCS), pp. 364-369, 1989.

3. M. Bellare, O. Goldreich, and M. Sudan. Free Bits, PCPs, and Nonapproximability
– Towards Tight Results. SIAM Journal on Computing 27(3): 804-915 (1998).

4. R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg. Label-Guided Graph
Exploration by a Finite Automaton. In 32nd Int. Colloquium on Automata, Lan-
guages and Programming (ICALP), LNCS 3580, pp. 335-346, 2005.



12 P. Fraigniaud, C. Gavoille, D. Ilcinkas, and A. Pelc

5. R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg. Labeling Schemes for
Tree Representation. In 7th Int. Workshop on Distributed Computing (IWDC),
LNCS 3741, pp. 13-24, 2005.

6. R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades: micro
and macro techniques for designing parallel algorithms. In 18th ACM Symp. on
Theory of Computing (STOC), pp. 206-219, 1986.

7. U. Feige and J. Kilian. Zero Knowledge and the Chromatic Number. J. Comput.
Syst. Sci. 57(2):187-199 (1998).

8. F. Fich and E. Ruppert, Hundreds of impossibility results for distributed comput-
ing, Distributed Computing, 16: 121-163 (2003).

9. P. Fraigniaud, D. Ilcinkas, and A. Pelc. Oracle size: a new measure of difficulty for
communication tasks. In 25th ACM Symp. on Principles of Distributed Computing
(PODC), pp. 179-187, 2006.

10. A. Goldberg and S. Plotkin. Efficient parallel algorithms for (∆ + 1)-coloring and
maximal independent set problems. In 19th ACM Symp. on Theory of Computing
(STOC), pp. 315-324, 1987.

11. A. Goldberg, S. Plotkin and G. Shannon. Parallel symmetry-breaking in sparse
graphs. In 19th ACM Symp. on Theory of Computing (STOC), pp. 315-324, 1987.

12. R. Karp. Reducibility Among Combinatorial Problems. In Complexity of Com-
puter Computations, pp. 85-103. 1972.

13. K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer. Distributed coloring
in O(

√

log n) bit rounds. In 20th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

14. F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed Locally!
In 23th ACM Symp. on Principles of Distributed Computing, (PODC), pp. 300-
309, 2004.

15. F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring.
In 25th ACM Symp. on Principles of Distributed Computing (PODC), pp. 7-15,
2006.

16. N. Linial. Locality in distributed graph algorithms. SIAM J. on Computing 21(1):
193-201 (1992).

17. M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM J. Comput. 15(4): 1036-1053 (1986).

18. N. Lynch. A hundred impossibility proofs for distributed computing. In 8th ACM
Symp. on Principles of Distributed Computing (PODC), pp. 1-28, 1989.

19. T. Moscibroda and R. Wattenhofer. Coloring unstructured radio networks. In 17th
ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 39-48,
2005.

20. M. Naor and L. Stockmeyer. What can be computed locally? In 25th ACM
Symposium on Theory of Computing (STOC), pp. 184–193, 1993.

21. A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse networks.
Distributed Computing 14: 97-100 (2001).

22. A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and
network decomposition problems. In 24th ACM Symp. on Theory of Computing
(STOC), pp. 581-592, 1992.

23. A. Panconesi and A. Srinivasan. On the complexity of distributed network decom-
position. Journal of Algorithms 20(2): 356-374 (1996).

24. D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics, 2000.


