Algorithmica (1998) 21: 155-182

Algorithmica

© 1998 Springer-Verlag New York Inc.

Interval Routing Schemes
P. Fraigniaud and C. Gavoillé

Abstract. Interval routing was introduced to reduce the size of routing tables: a router finds the direction
where to forward a message by determining which interval contains the destination address of the message,
each interval being associated to one particular direction. This way of implementing a routing function is quite
attractive but very little is known about the topological properties that must satisfy a network to support an
interval routing function with particular constraints (shortest paths, limited number of intervals associated to
each direction, etc.). In this paper we investigate the study of the interval routing functions. In particular, we
characterize the set of networks which suppdiri@ar or alinear strictinterval routing function with only one
interval per direction. We also derive practical tools to measure the efficiency of an interval routing function
(number of intervals, length of the paths, etc.), and we describe large classes of networks whiclogtippeirt
(linear) interval routing functions. Finally, we derive the main properties satisfied by the popular networks
used to interconnect processors in a distributed memory parallel computer.

Key Words. Routing in distributed networks, Compact routing, Routing function, Interval.

1. Introduction. Given a network of processors (such as the one of a distributed mem-
ory parallel computer), the way of routing messages among the processors is character-
ized, on one hand, by the routingode(store-and-forward, circuit-switched, wormhole,
...)and, on the other hand, by the routifagpctionwhich determines the paths between

the sources and the destinations. This paper focuses on the second parameter.

The routing function is generally implemented locally on the routers. The route of
a message from its source to its destination is determined using a header attached to
the message, and which contains information that will allow the intermediate routers to
know where to forward the message. In this paper we are interested in routing functions
which use only the destination address of the message to find the route.

As soon as a router receives a message, it looks at the header to read the destination,
and then determines the output port which will be used to forward the message toward
its destination. There are mainly two ways of determining the output port from the
destination address:

1. Application of an algorithm.
2. Consultation of a routing table.

1 All the results presented in this paper are entirely based on [8]. The first author received the support of the
Centre de Recerca Mataitica, Institut d’Estudis Catalans, Bellaterra, Spain. Both authors are supported by
the research programs ANM and PRS of the CNRS.

21IP - CNRS, Ecole Normale Sugrieure de Lyon, 46 aé d'ltalie, 69364 Lyon Cedex 07, France.
{pfraign,gavoillée @ens-lyon.fr.

Received February 7, 1996; revised November 25, 1996. Communicated by F. T. Leighton.



156 P. Fraigniaud and C. Gavoille

The first case is generally used when the topology of the interconnection network
is fixed, and simple. For instance, it is easy to implement locallyXiferouting on a
mesh or on a torus, and tieecube routing on the hypercube: the output port is found by
comparing the current address of the router with the address of the destination.

However, if the structure of the interconnection network is fixed but complicated
(a pancake graph, an undirected de Bruijn graph, etc.), it could be difficult to derive
a “simple algorithmic way” to compute the paths locally (especially if one insists on
shortest paths). Bysimple algorithmwe mean an algorithm whose execution time and
space for implementing it on the router are both small. If the interconnection network
has no particular structure, it can even be impossible to derive any kind of algorithm.
A solution to these problems is obtained by the use of routing tables which are stored
locally on each router. The main requirement for these tables is to be as small as possible
(for instance, a size @ (n) for a network ofn processors is not realistic as soon as the
number of processors becomes large).

Compact routing has already been intensively studied (see, for instance, [2], [11], and
[12]). There exist many solutions to compress the size of the routing tables. The usual
approach consists in grouping the destination addresses which correspond to the same
output port, and encoding the group so that it will be is easy to check whether or not a
destination address belongs to a given group. A very popular solution of that kind is the
use of intervals [26]. Intervals are indeed very simple to code (it is sufficient to store the
bounds of each interval), and at most two comparisons are necessary to check whether a
destination address belongs to an interval. This kind of routing is used, for instance, on
the C104 routing chip [7], [21] ofl\mOS.

Interval routing is very attractive by its simplicity. Unfortunately, it is not always
simple to fix a global labeling of the nodes so that intervals can be easily set for each
output port of each router, especially if one insists on shortest paths or other particular
properties.

The notion of interval routing was introduced by Santoro and Khatib in [26]. They
have mainly shown that any directed acyclic graph can support an interval routing func-
tion with shortest paths, and with only one interval per output port. Moreover, if the
digraph is not acyclic, they have shown that there exists an interval routing function
such that the maximum length of the route between two vertices is at most twice the
diameter. Van Leeuwen and Tan [30] have studied the problem for undirected graphs.
They have shown that any graph supports an interval routing function with one interval
per output port. They have given simple examples of graphs (trees, complete graphs,
rings, meshes,. . ) which support an interval routing function with one interval per out-
put port and where all routes are shortest paths. They have also studied the number of
intervals per output port that requires a shortest path interval routing function on tori.
In [3] Bakker et al. introduced a particular class of interval routing functions, namely
linear interval routing schemes. They characterized trees which support such a routing
scheme with only one interval per output port, and where all the routes are shortest
paths. They listed simple examples of graphs which support a linear interval routing
function with shortest paths, and graphs which do not support such a scheme. They
showed that the hypercube and theimensional meshes support a linear interval rout-
ing function with shortest paths. Finally, Bakker et al. also studied linear interval routing
schemes, but with constraints on the neighbor-to-neighbor communication costs. This
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problem was introduced by Frederickson and Janardan in [10], in the field of interval
routing.

In this paper we investigate interval routing in depth. In particular, we focus on the
topological properties that a graph must satisfy in order to support an interval routing
function with some particular given properties. Note that this work has direct practical in-
terest for the construction of interconnection networks for distributed memory computers
based on C104 routing chips [7].

In Section 2 we define precisely what an interval routing function is. We focus on
some parameters which are directly related to this definition: the number of intervals per
output port, the kinds of intervals (linear or cyclic), and the way of checking whether the
current address is the destination (strict interval routing function).

In Section 3 we study the minimum number of intervals that must be associated to
each output port of a given network to support a (linear) interval routing function. It was
known that one interval per output port is enough for cyclic intervals [30], but very little
was known about linear intervals. We characterize the networks which support a linear
interval routing function with at most one interval per output port. We also characterize
the graphs which support a strict linear interval routing function with at most one interval
per output port.

In Section 4 we study the length of the routes generated by a (linear) interval routing
function. First we study the networks which support a (linear) interval routing function
generating shortest paths. Then we study the tradeoff between the maximum length of
the paths generated by a routing function and the number of intervals which are used per
output port.

Finally, in Section 5, we study properties that satisfy graphs which are interesting
either for the practical design of interconnection networks, or for some algorithmic points
of view: ring, mesh, hypercube, cube-connected-cycle, shuffle-exchan(gee [9] and
[20]).

2. Statement of the Problem. We are interested in parallel distributed memory multi-
computers composed of processing elements (PEs) connected to routers in a one-to-one
fashion. This last hypothesis is not restrictive since most of the results of this paper can
be generalized in the case where more than one PE can be connected to a same router, or
where no PE is connected to some routers. As usual, the network is modeled by a graph
G = (V, E) whose set of vertice¥ represents the routers, and whose set of edges
represents the communication links between the routers. We assume that the links are
bidirectional (that is, if a routex is able to send messages to one of its neighpattsen
y is also able to send messagesjpand, therefore, we deal with undirected graphs
(or symmetric digraphs) only. Of course, we are only interested in connected networks,
so all the statements of this paper assume that the graphs are connected (there is a path
between any couple of vertices). Also, we always consider finite graphs which are simple
(there is at most one edge between two vertices) and loopless. An edge of extremities
andy is therefore denoted b, y).

For any vertexx € V, we denote by oux) the set of edges of extremity, that is
out(x) = {(X, y) € E}. We get|out(x)| = degx), the degree ok. Each router, that is
each vertex of G, is connected to the memory of its associated PE by a communication
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link. We denote this link by meiix). We define a routing function as follows:

DerINITION 1 (Routing Function). Aouting function Ron a graphG = (V, E) is a
set of functions

R={Rs|Xx eV, RV — out(xX) UmemX)}

such that, for any couple of verticesy € V, there exists a sequence of vertices
X = Xo, ..., Xk = Y such that, for every € {0, ...,k — 1}, Ry (y) = (X, Xi+1), and
Ry(y) = mem(y).

This definition understands that we only consider routing functions which are con-
nected. Assume a routgrreceives a message whose destination addrgsdfiy = x,
then the message is sent to the local memory of the PE connectedaanentx). If
y # X, then the message is forwarded on the communication link gkpdetermined
by R« (y). We focus now on routing functions that are defined using intervals:

DErFINITION 2 (Interval). Aninterval of {1, ..., n} denoted by &, b], wherea,b ¢
{1, ..., n}, is the set of integerissatisfying

a<i<b if a<b (linearinterval),

a<i<sn or 1l<i=<hb if a>b (cyclicinterval).

If a = b we denote byd] the interval g, a]. We also denote bye] b] (resp. g, b[)
the interval g, b] — {a} (resp. g, b] — {b}). ¥ and [] both refer to the empty interval.
Informally, an interval routing function on a graph wfvertices is defined as follows.
First, label the vertices by integers from 1rtan a one-to-one manner. Then, for each
vertexx, associate intervals to each edge out(x). The number of intervals associated
toe € out(x) on xis denoted bk(x, €). A message located on) and of destinatiow, is
routed byy throughe € out(x) if and only if y belongs to one of the intervals associated
toeonx.

For instance, in Figure 1 we have indicated two interval routing functions for the
same graph. The labels of the vertices are different, so it is for the intervals. A message
sent byA to D will follow the path ABED using the interval routing function depicted
on the left-hand side of Figure 1, and the pAf using the function of the right-hand

1 [25 m 2 5 13 [4,5]2

O O
4 [ 41 3 4 123 45 3

Fig. 1. Two interval routing functions for the same network.
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side of Figure 1. These two interval routing functions are very different. The function

on the left has many drawbacks: nonshortest paths, two intervals on the same edge for

the vertexD, cyclic intervals on vertice€ andE, the edgg A, D) is never used from

A, andE contains its own label in the interval associated g D). The function on

the right offers many good properties: shortest paths, one nonempty interval per edge on

each vertex, linear intervals only, and no interval contains the label of the local vertex.
More formally, we define an interval routing function as follows:

DerINITION 3 (Interval Routing Function). LeB = (V, E) be a graph of vertices.
An interval routing functioron G is a routing functiorR = {R; | x € V} on G defined

by

1. aone-to-one functiod: V — {1, ..., n} which labels the vertices @,

2. asetofinterval§ = {I},, ..., 1K%®|x € V, e € out(x), k(x, & > 1} such that

the setslye = UK 1 o X € V, € € out(x), satisfy

e union property(Uecouty Ix.e) U{LX)} = {1,...,n},
o disjunction propertyve, € € out(x),e# € = IyeNlxe =0,

and satisfying

Ru(y) = {men(x) if y=x,
X e € out(x) suchthat L(y) € Iy otherwise.

An interval routing function is denoted by a couplg, 7) which satisfies the condi-
tions of Definition 3. For practical reasons, it might be interesting to restrict the definition,
and to allow the use of linear intervals only (see [3]). This notion is particularly useful
to derive results on networks built by a cartesian product (as hypercubes and torus).

DEFINITION 4 (Linear Interval Routing Function). W#nearinterval routing function is
an interval routing functiolR = (£, Z) whereZ contains linear intervals only.

In Figure 1 the function on the right-hand side is linear and the function on the
left-hand side is not linear.

Again, for practical reasons related to the design of the router, it is important to
distinguish the case where intervals contain the local address from the case where they
do not. Indeed, if an interval contains the local address, then a preprocessing must be
implemented to check whether the destination address is the current address before using
the intervals. On the contrary, if we know that no interval contains the local address, then
we can associate an interval to the memory link, and there is no distinction between this
link and the other. Moreover, as we will see later, and as is the case for linear intervals,
this notion is particularly interesting for the construction of interval routing functions on
networks obtained by a cartesian product.

DEFINITION 5 (Strict Interval Routing Function). An interval routing functidd =
(L, T)isstrictif Vx € V, Ve € out(x), L(X) ¢ Ixe.

In Figure 1 the function on the right-hand side is strict, but the one on the left-hand
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side is not strict (see vertekx). Strict interval routing functions have been considered
in [10] by Frederickson and Janardan, whereas Bakker et al., in [3], considered nonstrict
linear interval routing functions.

3. Compact Interval Routing Scheme. Definition 3 is general in the sense that every
routing function on a grap® can be expressed by an interval routing function. Indeed,
for any routing functiorR on G, choose any vertex-labelingy Then, for every vertex,
associate the set of intervalge = [X1] U [X2] U - - - U [Xk(x.¢)] t0 €ach edge € out(x),
where{xq, Xo, . .., Xkx,¢} IS the list of labels of destinations whose messagesiise
leavex applyingR. However, such a use of interval routing is close to the use of routing
tables. Since interval routing has been introduced to reduce the memory space used on
the routers, we are interested in limiting the number of intervals per edge on each vertex.
Idealy, one would like to have at most one interval per edge on each vertex yielding a
memory space of siz8(d logn) bits per router of degre@. More formally, we define
compactnesas follows:

DEFINITION 6 (Compactness). LeR = (£,Z) be an interval routing function on a
graphG. Thecompactnessf R is defined by max.y MaXxecourx) K(X, €).

In other words, the compactnesskfs the maximum taken over all the verticesf
the maximum taken over all the edgesf extremityx of the number of intervals neces-
sary to list the destinations for whigwill be used fromx. Note that one might object
that maxev D _e.ouix) K(X, €) Would be a more appropriated parameter for measuring
the size of the local tables. However, it is much more tricky to deal with this parameter,
and the reader will be convinced soon that compactness, as described in Definition 6,
allows us to derive strong results with many practical applications.

NOTATIONS. For any integek > 1, we denote bk-IRS the class of graphs supporting
an interval routing function of compactness at masbimilarly we denote bk-LIRS

the class of graphs supporting a linear interval routing function of compactness & most
Also k-(L)IRS strict denotes the class of graphs which support a strict (linear) interval
routing function of compactness at maést

3.1. A Previous Result First, very good news due to van Leeuwen and Tan [30]:
THEOREM1 [30]. All graphs belong td-IRS strict.
We briefly recall their proof.

PROOF Letr be any vertex oV (G), and consider a spanning tréeof G rooted at .
We definel by a depth-first labeling from the rootwith £(r) = 1, and performing by
increasing order. For any verteoof T, letl, = max£(y) over all the verticey which
belong to the subtree df of root x.

We assign the empty intervélto both extremities of all the edges &f which do
not belong toT . For each edge = (X, y), wherey is a child ofx in T (if it exists), we
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assign the interval{(y), ly] to e on x. For each edge = (x, y) of T wherey is the
father ofx (if it exists), we assign the intervdk] L(x)[ to ein x.
Clearly, such an interval routing function is strict. O

Note that any path constructed by the routing function defined as in the proof of
Theorem 1 is embedded in a tree. Hence, the length of this path is necessary less than
twice the depth of the tree. However, it might be too far to be a shortest path between
the source and the destination. This strongly moderates the good news!

We now characterize the graphs that belong to 1-LIRS. First, we give the following:

COROLLARY 1. All graphs belong t@-LIRS strict.

PROOF  Every (strict) interval routing function of compactnédssn a graphG can be
transformed in a (strict) linear interval routing function @nof compactness at most

k + 1 by splitting each cyclic interval into two linear intervals. Therefore, for every
integerk > 1, k-IRS C (k+1)-LIRS, andk-IRS strictC (k+1)-LIRS strict. O

3.2. Characterization ofl-LIRS Clearly, there exist graphs which do not belong to
1-LIRS. For instance, consider the graph of Figure 2 (that we term the Y-graph), and
assume that there exists a linear interval routing fundRamith compactness 1 on this
graph. Then there exists a branch such that neither the vertiexhe middle of the
branch, nor the vertey at the extremity of the same branch is labeled 1 or 7. Weecall
the edge betweex and the centez. Necessarily, the corresponding intervak must
contain 1 and 7, thuls e« = [1, 7], andy is not reachable from: a contradiction. Below,
we characterize the graphs that belong to 1-LIRS.

Recall that an edgeof a graphG = (V, E) isabridge ifand only iz’ = (V, E—{e})
is a disconnected graph.

DerFINITION 7. A lithium-graphis a graph with three bridges that connect a same con-
nected component (thkerne) with three other distinct connected components (the
electron$ of at least two vertices.

y
‘ \
z Kerne —=
Electrons
Y-graph lithium-graph weak lithium-graph

Fig. 2. The Y-graph, a lithium-graph, and a weak lithium-graph.
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Figure 2 shows the general form of a lithium-graph. The Y-graph is a typical example
of a lithium-graph, the smallest one actually. We can get the following lemma easily by
the same arguments which show that the Y-graghLIRS:

LEMMA 1. If G is alithium-graphthen G¢ 1-LIRS.
In fact, we get:
THEOREM2. G € 1-LIRS < G is not a lithium-graph

We have to show that any graph which is not a lithium-graph belongs to 1-LIRS. To
do that, we need some preliminary results. In the following, we assumétihais at
least three vertices, since otherw{Se= 1-LIRS strict, andG is not a lithium-graph.

LEMMA 2. Every2-edge-connected graph & (V, E) belongs td-LIRS strict. More-
over for any two vertices x and y of @here exists a linear strict interval routing function
R = (£, Z) of compactness satisfying

() Lx) =1,
(i) Yze V,L(2) < L(y),Y(z,u) € E: L(y) € l2.zuw = VI € lz ),
(ii) letz be the vertexsuchthétz) = |V|,3(z, u) € E, L(u) < L(y),and b, zu) = 9.

PrROOF We proceed iteratively: at each step we consider a subgtaph (Vy, En)

of G containingx andy, and a linear strict interval routing function dth satisfying
properties (i)—(iii). We successively update this construction, keeping the good properties
and adding one or more verticestiountil [V | = |V|. We detail below the initialization

of our construction, and then the way to update our construction.

Initialization. If x # vy, then, from Menger’s theorem, €} and P, be two edge-
disjoint paths fromx to y. It is actually possible to find such paths@such that if they
have a certain number of common verticgs. . ., u,_; distinct fromx andy, then these
vertices are encountered in the same order going kaony on Py, and onP». Thus, let
Ug =X, U =Y, and, fori € {0,...,r — 1}, letC; be the cycle composed of the pa@h
from u; to u; 1, and the pathP, from u; 1 to u;.

If x =y, then letCy be a cycle ofG (of at least three vertices) going throughSet
Up=X=Y =Uj.

LetH = (Vy, En) be the subgraph d& obtained by union of thé;’s. We label the
vertices ofH as follows (see Figure 3(a)—(c)): sétx) = 1, and label clockwise the
vertices ofCy in increasing order. If there is more than one cycle, then start érgrand
label clockwise the vertices 6% in increasing order. Repeat this operation considering
successively the cycl€s, i = 2, ...,r — 1, until all the vertices of thé;’s are labeled.

Now, we set the intervals as follows (see Figure 3(d)). hgtbe the number of
vertices ofH. Let n; be the number of vertices of the cyalg fori € {0,...,r —1}.
Consider any cycl€;, fori € {0,...,r — 1}. Let z be any vertex of;. Let et (resp.
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18 12,16
[2,16] wLlE@l L@ ]L(Z),lG][ ] u, [12.16] [1,13] y
ot + y=u,
Ue=x [ € z % o (1 [1516]
9

(d)

Fig. 3. Construction of the proof of Lemma 2.

e~) be the clockwise (resp. counterclockwise) edge ofpuwinC;. We set

Lo = {]ﬁ(z), Nyl if Z#Uy1 Or Ui1=Y,
=€ 1), onj —i] if z=u1 and u#Y,

and

| L L@ if  z+#u,
S I if z=u.

That this labeling and the setting of these intervals yield a strict linear interval routing
function onH can be easily checked. Concerning the three properties, (i) is satisfied
(L(x) = 1). Now, if L(z2) < L(y), thenL(y) can belong tol e+ only. If 1, =
1£(2), ny], then (i) is satisfied; il e+ =1L(2), Z}:o nj —i], thenL(y) cannot belong
to |,e+. Thus (i) is satisfied. Finally, by definition, #is the vertex labeledy, |, =
Ny, Z,:é Ny —r + 1] =]ny, ny] = ¥, and thus (iii) is also satisfied.

Updating LetH be a subgraph d& with ny < |V| vertices, and containing vertices
x andy. Let R = (£,Z) be a linear strict interval routing function dd satisfying
conditions (i)—(iii). There exists a path = (vg, vy, . .., Uk, Vk+1), K > 1,in G such that
vo € Vy, vkye1 € Vu, andv; ¢ Vy, for everyi € {1,...,k}. ConsiderH’ = H U P,
and assumé& (vg) < L(vks1). Consider the following labeling’ of the vertices oH’:
forv € Vy, if L(v) < L(vg), thenL'(v) = L(v), otherwisel' (v) = L(v) + k. For
iefl,...,k}, L(vi) = L(v) +1i.

We update the intervals df as follows: letv € Vy, and lete € Ey be an edge
incident tov. Assumel, = [a, b], we set

[a, b] it b< L(v),
le=1[ab+K] if a<L(v)<h,
[a+k b+k if L) <a.
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Now we have to fix the intervals on the pa@hLete be the edge o of extremityvg, we
setl; o = [£'(v1), £'(vk)]- Let e be the edge oP of extremitywvy1, we setl Lfm‘e = 0.
Lete= (vi,vi41),i €{1,...,k},wesetl . =[L'(vit1),ny +K]. Lete = (vi_1, vi),
ie{l, ...,k},we seﬂ;i,e =1, L' (vi_1)]. Itiseasytocheckthd® = (L', Z")isalinear
strict interval routing function ofd’. Properties (i) and (iii) are of course still satisfied.
Assumev € Vy, e € Ey, andl, o = [a,b]. If L'(y) € |, thenb > L(vo) because
otherwiseL’(y) would be strictly less thafi(vo), thusL’(y) = L(y) andb = |V | which
is impossible itb < L(vg). There are two cases: eithéty) < L(vg), or L(Yy) > L(vg).
In both cases, iL'(y) € I, ., thenL(y) € |, e andb = ny, thatisny +k € I .. Itis
also easy to check that property (ii) also holds for the interval® ofihus R’ satisfies
property (ii) onH’.

Let H = H’, and repeat this process untj = |V/|. O

LEMMA 3. Let G € 1-LIRS strict. Let H be the graph obtained from G by adding a
set of independent vertices S of G such,tfatall x € S, x is connected to only one
vertex of G Then He 1-LIRS.

PrROOF LetR = (£, 7) be a strict linear interval routing function @ For any vertex
X in G, we denote by(x) the number of vertices 0% which are connected t® in
H = (V/,E), V' = V US Then we define the labeling’ of the vertices ofH as
follows. For anyx € V, £'(X) = L(X) + Zye\,|£(y)<£(x) v(y). If X is connected t@
vertices ofSin H, namelys,, ..., s, thenl'(s) = £'(x) +i foralli € {1,..., p}.
An interval [£(u), L(v)] € T is transformed in an intervalf (u), £'(v) + v(v)] € Z'.
Finally, we set new intervals ift": 1y x5y = [£(S)] andlg . = [1, [V']]. O

Now, we can state our proof:

PROOF OFTHEOREM2. LetG = (V, E) be a graph which is not a lithium-graph. We
say that an edge d& is astrongbridge if it is a bridge (that is, a cut-edge) that splits
G into two connected components, each of at least two vertices. We deco@pbge
deletion of all the strong bridges &f, in the maximum number of connected components
Go, ..., Gk, wherek > 0 is the total number of strong bridges Gf Note that some
components may contain only one vertex.

Since G is not a lithium-graph, each compone@t is connected to at most two
other components. Therefore, we can assume@hat a “path” of G;'s of the form
Gp—Gy— - — Gk Letx; € V(Gj) andy;_1 € V(Gj_1) be the vertices such that
the strong bridges are the eddgs 1, %), i € {1, ..., k}. We also definey = yp and
Yk = Xk-

For everyi € {0, ..., Kk}, let G| be the graph obtained fro®; by removing all the
vertices of degree 1 i, and letG’ = U:(:o G{. From Lemma 2, eacly{ € 1-LIRS
strict and, more precisely, a strict linear interval routing functi®n= (£;, Z;) on G;
can be found such that

() Lix) =1,
(i) Yze V(G)), Li(2) < Li(¥1),Y(z,u) € E(G)): Li(i) € lzzuw € i = |V(G))]
€ lzu,
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(iii) let z be the vertex such thal; (z) = [V(G))], 3(z, u) € E(G]), Li(u) < Li(Vh),
andlzy(zqu) = @ € I| .

From the routing function& = (£;, Z;) on theG{’s,i € {1, ..., k}, a strict linear
interval routing functionR = (£,Z) on G’ can be defined as follows. Letbe any
vertex of G’, and leti be such thar is a vertex ofG;. We setL(z) by a simple shift
of £Li(2): L(2 = Li(2) + Z};é |V(ij)|. The intervals ofz; are shifted similarly by
addingz};é |V(G;)| to both extremities excepted in the following cases: if one of the
two extremities is 1, this extremity is unchanged; if one of the two extremitji®q(is)|,
we set this extremity toV (G’)|. We also replace the empty intervals,, ., defined by
property (iii) by I, zw =1£(2), [V(G)]]. Finally, we setly .y, = [1, £(x)[ and
ly 2oy =1 Z};é |V(G]f)|, [V (G)]], for everyi € {1,...,k}.

With these labeling and intervals, property (i) ensures that the route from a vertex in
G to a vertex ofGJf, j <, goes througlx;, leavesG; by the strong bridgéxi, yi_1),
then goes ta; _1, leavess; _, by the strong bridgéx;_1, yi_»), etc. Property (ii) ensures
that the route from a vertexin G{, with £(2) < L(yi), to a vertex ofG;, j > i, goes
throughy; and leavess; by the strong bridgéy:, xi+1). Property (iii) ensures that the
route from a vertex in Gj, with £(z) > L(y;), to a vertex ofG]f, j > i, goes through
the vertex of the highest label @], then reaches a vertex & with a label smaller
thany;, then goes througi and leavess] by the strong bridgéy;, xi 1), then goes to
Yi+1 and leavess; ; by the strong bridgey; ;1. Xi12), etc. We geG’ € 1-LIRS strict.

We conclude the proof by adding the vertices of degree 1 and applying Lemima 3.

The characterization of Theorem 2 gives an easy way to determine whether a graph
supports a linear interval routing function of compactness 1. From a time complexity
point of view, checking whether a graph is a lithium-graph is polynomial. Moreover, the
reader can check that Theorem 2 givesexm?) algorithm to derive an interval routing
function (£, Z) on a graph which belongs to 1-LIRS. Therefore, it is quite easy to know
if a graph belongs to 1-LIRS or not. For instance:

COROLLARY 2. Every interval graph belongs tb-LIRS.

Recall that an interval graph [15] is a graph in which each vertex is an interi&l of
and where edges are pairs of intervals which intersect.

PROOF LetaY-graph be a particular case of lithium-graphs for which there exist three
bridges which connect a same connected component (the kernel) with three distinct
connected components (the electronsgxdctlytwo vertices. Note that the vertices of

the kernel which connect each electron with the kernel can be distinct or not. It is easy to
check that anyr-graph is not an interval graph (see [15] and [16]). Any lithium-graph
has aY-graph as an induced subgraph, and any induced subgraph of an interval graph is
an interval graph. Therefore a lithium-graph is not an interval graph, that is equivalent
to saying that any interval graph belongs to 1-LIRS (from Theorem 2). O

Note that the cycle af verticesC,,, forn > 4, is not an interval graph [16]. However,
C, € 1-LIRS by a trivial application of Theorem 2. Therefore, the class 1-LIRS is not
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reduced to interval graphs. In fact, this class contains most of the usual networks consid-
ered for interconnecting PEs of a distributed memory computer. Therefore, the result of
Theorem 2 is quite good news: it means that the use of cyclic intervals is not necessary
to build an interval routing function on usual networks.

Now we characterize the graphs which belong to 1-LIRS strict.

3.3. Characterization ofl-LIRS Strict

DEFINITION 8. A weak lithium-graphis a graph with a least three bridges which con-
nect the same connected component (the kernel) with three other distinct connected
components (the electrons).

Any lithium-graph is a weak lithium-graph. A lithium-graph is indeed a weak lithium-
graph where each of the electrons has at least two vertices (see Figure 2).

THEOREM3. G € 1-LIRS strict & G is not a weak lithium-graph

PROOF (=) AssumeG € 1-LIRS strict, and suppose th@tis a weak lithium-graph.
Consider the vertices of the electrons which connect the electrons to the kernel. Neces-
sarily, one of these vertices is not labeled 1 ngwheren is the number of vertices of

G). We call this vertex, and lete be the bridge betweenand the kernel. The interval

I e is equal to [1n] otherwise the routing function would be not connected. However,
since 1< L(x) < n, we get thatly  containsC(x), a contradiction.

(<) If G is not a weak lithium-graph, then it is not a lithium-graph and we can
decomposés as in the proof of Theorem 2 to obtain a “pat®y — G; — - -+ — G,
where theG;’s are connected by strong bridges. Sitigés not a weak lithium-graph,
we get de@x) # 1 for every vertexx of G;, i € {1, ...,k — 1}. Now, there is at most
one vertex of degree 1 By andGy if k > 1, and there are at most two such vertices if
k = 0. This means that we can decomp@sia a “path”{x} - Gy — G —-- - — G, — {y}
wherex (resp.y) is the vertex of degree 1 &g (resp.Gy) if it exists, andG (resp.
G}) is obtained fromGy (resp.Gy) by removingx (resp.y). We can apply the same

construction as in the proof of Theorem 2 on the “pgtkf'— Gy — G1 —- - - — G, — {y}.
Since each component has edge-connectivity 2, the constructed routing function uses
only strict linear intervals (from Lemma 2). O

Theorem 3 has a direct simple consequence on the cartesian product. Recall that the
cartesian product of a grapgh by a graphH is the graph denoted b$ x H, whose
vertices are elements of the cartesian prodt@s) x V(H), and whose edges are the
pairs{(x, y), (X', y)} such that eithe¢x, X') € E(G) or (y, Y') € E(H).

COROLLARY 3. Let G and H be two graphs of at least two verticken Gx H € 1-
LIRS strict.

Theorem 8 later takes advantage of Theorem 3 in a more significant way.
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3.4. Interval Routing With Extended LabelsThe memory space complexity of a router

of degreed implementing an interval routing function of compactn&sis bounded

by O(kdlogn) bits. One can argue that classes of graphs supporting interval routing
functions with certain properties like compactness, strictness, shortest paths, etc., might
be limited by the space labeling of the vertices. We define an interval routing function
with extended labelen ann-vertex graph as an interval routing function whose labels
are taken inf1, ..., n%}, for some constant > 1. Standard interval routing schemes
correspond te = 1. Clearly, any router implementing an interval routing function with
extended labels still has a memory spacedgkdlogn) bits because all the integers

can be stored in at mo#tlog2 n} = O(logn) bits. Hence, it is natural to ask whether

a larger labeling space allows us to increase the power of the standard interval routing
scheme in term of routing ability. We answer this question negatively by the following
theorem:

THEOREM4. Let G be a graph of order,rand let m be an integer such thatmn. Let
R = (£, 7) be an interval routing function on G with labels taken{ly ..., m}. There
exists an interval routing function’®n G such that

o the set of routing paths induced by iRthe same as the one induced by R

e the compactness of & at most the compactness of R

o the linear and strictness properties of the intervals of R are preserved for the intervals
of R.

ProOOF We defineR' = (£,7) onG = (V, E) as follows: for every € V, £'(x) is
the rank of£(x) in the ordered sef(V) of all the labels of vertices o¥. For every
interval | = [a, b] of Z, we construct an interval of 7’ as follows. First, we defina’
andb’ (if they exist) as the boundaries of the largest interaally] such thatf’, b'] C I,
and |/, b'] c £(V). For everyi € L£(V), let £7(i) denote the unique vertexsuch
that£(x) =i, and lety (i) = £/(£L71(i)). We set

| ] if @’ andb’ do not exist,
“\[v@), yb)] otherwise.

By constructiony) is a strict increasing function on the g&iV). Thus for every interval

[, Bl C LV), ¥ (o, BD) = {¥ (D) |i € [o, B} = [Y (), ¥(B)]. For everyx € V,

LX) el & LX) e [a,b] & ¢ (LX) e y(a,b]) & L'(X) e [y@), ¥ b)) =

I’. Therefore, for everx, y € V, Ry(y) = R (y) (we get of course&t = y < L/(x) =

L/(y)), that is, the set of induced routing paths is the same for both routing functions
R andR'. Since, for everx € V, L(X) € | & L'(x) € |, the union and disjunction
properties are clearly satisfied, as the linearity and the strictness of each interval. Finally,
I” is composed of at most one interval (that can be removdd & ¢). Thus the
compactness dR’ is not greater than that d?. O

3.5. Summary Figure 4 summarizes the results we obtained in this section. In the
following section we study the length of the paths induced by an interval routing function.
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1-LIRS strict 1-LIRS 1-IRS strict = all graphs

—

0 D Y)Y

lithiums

interval graphs

Fig. 4. Classes 1-IRS strict, 1-LIRS and 1-LIRS strict.

4. Efficiency of an Interval Routing Scheme. We have characterized graphs that
support a (linear) interval routing function of compactness 1. Both constructions of
Theorems 1 and 2 do not necessarily produce shortest paths between the sources and
the destinations. In this section we study the tradeoff between the compactness of the
routing and the length of the induced paths.

4.1. Optimal Interval Routing Schemes

DEFINITION 9 (Optimality). LetR be a routing function on a grapB. R is optimal
if and only if the route built byR between any pair source—destination is of minimum
length.

NOTATION. For every integek > 1, we denote bk-IRS* the class of graphs which
support an optimal interval routing function of compactness at rkoSimilarly we
denote byk-LIRS* the class of graphs which support an optimal linear interval routing
function of compactness at mdst

DerINITION 10 (Compactness of a Graph). Té@mpactnessf a graphG is the min-
imum taken over all the optimal interval routing functioR®on G of the compactness
of R. Similarly, thelinear-compactnessf G is the minimum taken over all the optimal
linear interval routing function® on G of the compactness d}.

In other words, the (linear-)compactness of a grapsithe smallestintegérsuch that
G € k-(L)IRS*. The compactness @ is an important parameter, since it measures the
efficiency in term of memory complexity, of interval representations of optimal routing
functions onG.

Frederickson and Janardan have showed in [10] that outer-planar graphs, that is, a
subclass of planar graphs including trees, belong to I-KSct. In the following we
present two large classes of graphs of compactness 1.
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Xmin

Xmin Xmax

Fig. 5. Setting the intervals of a routing function on an interval graph.

4.1.1. Families of Graphs Belonging tb(L)IRS
THEOREMS. Every unit interval graph belongs tbLIRS* strict.

A unit interval graph [16] is an interval graph in which all the intervals representing
the vertices have the same length.

PROOF Let G be any unit interval graph of order > 1. Each vertexx of G is
represented by a unit intervdk C R. For any vertexx let «(x) and 8(x) be such
that Jy = [ (X), B(X)]. We construct an optimal strict linear interval routing function
R = (L, ) as follows.

We label the vertices from left to right based on the ranks o&itxg. Letx be any ver-
tex of G, then letmin (resp Xmax) be the vertex satisfying(Xmin) = MiNy..x 3,130 ¢ (Y)
(resp.at(Xmax) = MaXyzx, 3,320 (Y))-

Assume firstthatmin # Xmax ThenletKmin = [1, L(Xmin)] andKmax = [£(Xmax), N].
Moreover, for any neighboy of x distinct fromXmin andXmax, setKy = [L(y)]. Then
setly o xmm = Kminy Ix, 06 xmm0 = Kmax @ndly xyy = Ky (see Figure 5). We get that, for
anyy (if it exists), Kmin N Ky = KmaxN Ky = Kmin N Kmax = @. That is, the disjunction
property is satisfied. MoreoveK min U Knax U (Uy Ky) = [1,n]. That is, the union
property is also satisfied. Finally the interv#gin, Kmax, andKy do not containZ(x).

If Xmin = Xmax then eitherf(x) = 1 or £L(X) = n. In the former case (resp. latter
case), the interval of the unique edge of extremitg |1, n] (resp. [1 n[).

Now, we prove the propertf: for everyk, the routing function defined above builds
a shortest path between any two vertices at distance atknBgtis true. AssuméPy is
true for allk’ € {1, ...,k — 1}, and letx andy be two vertices at distanée> 1. Since
all the intervals are of the same lengthfifx) < L£(y), thenxnax iS on a shortest path
betweerx andy, andy € Kpyayx otherwiseL(x) > L(y), andXmin is on a shortest path
betweenx andy, andy € Kpin. ThusP is true sincePy_; is true. O

Note thatC, € 1-LIRS" strict butC,4 is not a unit interval graph. Similarly, the
complete bipartite grapK; 3 € 1-LIRS* but is not a unit interval graph. Note also that
there are interval graphs which do not belong to 1-L1RS, for instance, the graph on
Figure 6(a). Indeed, assume it belongs to 1-L1RSen letx andy be two vertices, both
different from 1 and 71 (x ; must contain 1 and 7, thug .,y = [1, 7], and the route
from x to y is not a shortest path: a contradiction. Of course, it is easy to generalize the
class of graphs on which such an argument can be applied. However, at the present time,
no characterization of 1-LIRSand 1-IRS is known.
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@

Fig. 6. (a) An interval graph which does not belong to 1-LIR8&nd (b) a circular-arc graph which does not
belong to 1-IRS.

Recently, Narayanan and Shende have shown [22] that all interval graphs belong to
1-IRS" strict. We give below another class of graphs belonging to I-Kict.

The reader can easily check thag ¢ 1-LIRS* (this result is proved in [3] and is
proved again later in this paper for aBy, n > 5). On the other hand, one can also check
thatC, € 1-IRS" for everyn. This is a consequence of a more general result. Recall
thatG is a circular-arc graph if there exists a cir€lesuch that each vertexof G can
be represented by an azgof C, and two vertices andy of G are adjacent if and only
if cx Ncy # @. A unit circular-arc graph [16] is a circular-arc graph such that all arcs
representing the vertices have the same length.

THEOREMG6. Every unit circular-arc graph belongs tbIRS" strict.

PrROOF Let G be a unit circular-arc graph. & is a unit interval graph, the@ < 1-
LIRS* strict from Theorem 5. Assun® is not a unit interval graph. Consider a circular
representation ofs on the trigonometric circle. Once this representation is fixed, we
can set an anglé € [0, 2r[ as a measure of the length of the arcs representing the
vertices. Each vertex can also be represented by an argles [0, 2 [ (for instance,
the angle between the horizontal axis and the line joining the center of the circle to the
middle of the arc representing, and two verticex andy are adjacent if and only if
(6x — 6y) mod 27 is eitherin [Q 0] N[0, 7] orin [27 — 6, 2] N [x, 27].

We label each vertex by its rank in the set of all the angléd, | y € V(G)}.

We set the intervals as follows. L&te V(G), and letz be the vertex at distance
the eccentricity ofx (that is, the maximum distance betweerand any other vertex
of G) counterclockwise which maximizes the angle- 6. Then letx~ (resp.x™) be
the neighbor ofx maximizing 6y, — 6, (resp.fx — 6y) among the neighborg of x.
SinceG is not an interval graphs™ # xT. We setly x.x+) = 1£(2), LX), Ix.xx-) =
[L£(x7), L(2)], and, for every neighboy of x distinct fromx™ andx~, setly .y, =
[L(y)]- The union and the disjunction properties are clearly satisfied arpdoes not
belong toly ¢, Ve € out(x).

As in the proof of Theorem 5, that the paths built by the routing function are shortest
paths can be verified by induction on the length of the paths. O

Note thatK; 3 € 1-IRS" strict butKy 3 is not a unit circular-arc graph. Note also
that there are graphs in 1-IRStrict which are not circular-arc graphs: for instance, the
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Y-graph. Moreover, there are circular-arc graphs which do not belong to “1-RfB
instance, consider the graph of Figure 6(b). Assume it belongs to 1,-HR8 consider
the intervall (5 g). This interval must contaii(g) and£(d), but neitherZ (b) nor L( f).
Similarly, I¢ g must containC(g) andL( f), but neitherC(b) nor £(d). Finally, l¢ e g
must containl(g) and £(b), but neither£(d) nor £(f). All these conditions cannot
hold simultaneously.

4.1.2. Tools to Recognize Optimal Routing Schemekhe two following results are
useful for knowing whether a graph belongsktgL)IRS* for a fixedk. We recall the
definition of a subgraph of shortest paths:

DEFINITION 11 (Subgraphs of Shortest Paths). A grdphis a subgraph of shortest
pathsof a graphG if and only if G’ is a partial subgraph @&, and all the shortest paths
of G between any pair of vertices & are contained iit5'.

THEOREM7. Foreveryinteger k> 1,and for every class of graplisequal to KLIRS*
strict, k-LIRS*, k-IRS" strict, or k-IRS*,

Ge§G = VG’ subgraph of shortest paths of G’ € G.

Theorem 7 says that the compactness of a graph is always at least the compactness of
any of its subgraphs of shortest paths. Note that sibiécea subgraph of shortest paths
of itself, the converse property of Theorem 7 is of course satisfied.

PROOF Let G’ be a subgraph of shortest paths@fe G. Let m = |V (G)| and

n = |V(G')|. Let R be an optimal interval routing function d@. We show thatG’
supports an optimal interval routing functidd which makesG’ € G. Since all the
shortest paths between any pair of verticesGofare wholly contained irfG’, R is an
optimal interval routing orG’ with extended labels taken {d, ..., m}, m > n. From
Theorem 4, there exists an interval routing functi®on G’ which has the same induced
routing paths, the same compactness, and the same linear and strictness proferties as
ThereforeG’ belongs to the same class@s O

Theorem 7 is used to prove the next theorem that states results concerning cartesian
products. Such structures are particularly interesting for the design of networks of pro-
cessors (mesh, torus, hypercube,). In Section 5 we will see many applications of
Theorem 7.

THEOREMS8. For every integer k> 1,

(i) G € k-LIRS*strict and H € k-LIRS*strict = Gx H € k-LIRS* strict;
(i) G € k-LIRS* and H € k-LIRS*strict = GxH € k-LIRS*;
(i) G € k-LIRS*strict and H € k-IRS*strict = Gx H € k-IRS"strict;
(iv) G € k-LIRS* and H € k-IRS'strict = GxH € k-IRS";

(V) G ¢ k-LIRS* = GxH ¢ k-LIRS* for any graph H
(vi) G ¢ k-IRS* = GxH ¢ k-IRS" for any graph H
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Note that we were not able to derive similar conservative properties for the product
of two graphs belonging tk-IRS*, or for the product of two graphs belongingkoR S*
strict. The linear property, and the strictness of the intervals are two relevant character-
istics for cartesian products. To apply Theorem 8, one of the two graphs must support a
strict interval routing function, and the other graph must support a linear interval routing
function.

PrROOF The two last results (v) and (vi) are direct consequences of Theorem 7 since
the graphG x H containsG as a subgraph of shortest paths.

Letng = |V(G)| andny = |[V(H)]|.

To prove (i), letRs = (L, Zg) andRy = (Ly, Zw) be the interval routing functions
defined on the grapls andH, respectively, that mak&dandH € k-LIRS* strict. Let f
be the one-to-one functioft. [1, ng] x[1, n4] — [1, ng-ny] defined byf (a, b) = a+
(b—1)ng. We define the labeling of the vertices 06xH by L(z) = f (Lc(X), L1 (Y)),
for every vertexz = (X, y) of Gx H. Letz = (x, y) andZ = (X/, y) be two adjacent
vertices ofG x H, and lete = (z, 7). We set:

Iz,e =

[f(av ‘CH (y))s f (bs L"H (y))] If y = y/ Where IX,(X,X/) = [a’ b] € IG
[f(,0), f(ng, d)] if x=x" where lyyy) =[cd]ely

Clearly, if [a,b] N [a,b] = @, then [f(a, Lu(y)), fb, Lu(y)] N [T @, Lu(y)),

f, Lu(y)] = @. Similarly, if [c,d] N [c,d] = @, then [f(1,¢), f(ng,d)] N

[f@, ), f(ng,d)] = @. SinceH € k-LIRS* strict, Ly(y) ¢ [c,d], and thus
[f@, Luy)), b, Luy)IN[f(Q, ), f(ng, d)] = @. Therefore, the disjunction prop-
erty is satisfied. Itis trivial to check that the union property is also satisfied. The routing
functionR = (£, 7) built onG x H as above routes messages as follows. The path from
a vertex(x, y) to a vertex(x’, y’) goes first inside th&th copy of H toward the vertex

(X, Y). Then it goes inside thgth copy of G toward(x’, y’). These two parts of the route
use shortest paths, theref@ex H € k-LIRS*. SinceLg(X) ¢ [a, b], GxH € k-LIRS*
strict.

If Lg is not strict, we only geG x H € k-LIRS*, and property (ii) holds. 1y
contains a cyclic intervald, d], then the interval f (1, ¢), f (ng, d)] is also cyclic and
GxH e k-IRS*, thatis property (iv) holds. Finally, ¢ is strict, we geG x H € k-IRS*
strict, and property (iii) holds. O

Points (i) and (ii) of the previous theorem have been proved independently by Kranakis
etal.in[19].

Theorems 7 and 8 are basic tools for computing the compactness of graphs. A third
tool is described in Section 5. The last result of this section concerns the class of graphs
which possess an optimal interval routing function. It shows that, up to a small increase
of the compactness, an optimal strict interval routing function can always be designed.

ProPOSITION1. Vk > 1,

(i) G €k-LIRS* = G € (k+1)-LIRS"strict;
(i) G € k-IRS* = G € (k+1)-IRS"strict.
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PROOFE LetG be a graph which supports an optimal nonstrict interval routing function
R = (£, 7). Then, for any vertex, there exists at most one edge& out(x) such that

an intervall, ¢ contains the labef(x). We transform the routing functioR in a strict
interval routing functionR’ = (£, Z’) in splitting all intervalsly . = [a, b] containing

the label of their local vertex into two intervals &, £(x)[ and ]£(x), b]. The routes
built by RandR’ are the same. O

4.2. Fast and Compact Interval Routing SchemeBrom a practical point of view, the
designer of a routing system must balance the hardware constraints with the efficiency of
the communications. Very fast communications may be required even up to a deficiency
in hardware constraints (mainly increasing the surface of the routers), or this surface
may be required to be as small as possible even up to degradation of the efficiency of
communication.

4.2.1. Minimum Time for a Fixed Compactness

DEeFINITION 12 (Time). LetR be a routing function on a grapb.

e Thetimeof Ris the maximum length of the paths built [R/between any couple of
vertices.

e Thek-(linear)-time of a graphG is the minimum taken over all the (linear) interval
routing functionsk on G of compactness at mokt of thetimeof R.

The following result is a direct consequence of the proof of Theorem 1. It shows that
interval routing schemes are relatively efficient. Indeed, although graphs are not always
optimal as far as interval routing is concerned, it is possible to derive interval routing
functions which build paths of small maximum length in any graph.

COROLLARY 4. For every graph G of radius,ithe 1-time of G is at mosgr.

PrOOF In the proof of Theorem 1, construct the spanning ffeas a shortest paths
spanning tree of root any vertex of eccentrigity O

This result is particularly interesting for a graph whose diametar &s2for instance,
the graphs of Figure 6. Note however that, in the routing scheme of Corollary 4, many
messages go through a single vertex (the root of the tree). Therefore, many contentions
might occur. This moderates the practical use of Corollary 4. Nevertheless, this upper
bound is the best that we can hope for in term of radius because, forretbeye exists
a graph of radius and 1-time 2. For example, a path ofr 2+ 1 vertices. Corollary 4
implies that the 1-time of a graph of diameteris at most D. However, we do not
know if this upper bound is tight. F& = 1 andk = 2, we summarize below the most
recent results abolittime as a function of the diameter.

THEOREM9. For every integer D

o there exists a graph of diameter D &ftime at least7D/4 — 1 [29];
o there exists a graph of diameter D @ftime at least5D /4 — 1 [28].
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Fig. 7. A graph for which the constructive proof of Theorem 2 gives rise to a very inefficient routing function.

Many experimental results can be found in [17] where the author studies the 1-time
of some graphs of compactness at least 2, like the torus. Still in [17], general results on
the 3-time of arbitrary graphs are also presented.

Concerning linear interval routing schemes, the proof of Theorem 2 does not allow
us to derive a tight upper bound on the 1-linear-time of a graph. Furthermore, Figure 7
shows a graph of orderfor which the constructive proof of Theorem 2 gives rise to a
very inefficient routing function: its time is — 4 (the route fronez to y does not pass
throughx), whereas its diameter is only 5. Clearly, it would have been possible to design
a much more efficient linear interval routing function for this graph (for example, using
a shortest paths spanning tree rooteg)in

We give below a lower bound on the maximum 1-linear-time of a graph which is not
a lithium-graph.

PROPOSITION2. For every integer Dthere exists a nonlithium-graph of diameter D
and ofl-linear-timeat least2D — 1.

The proof of this proposition is a direct consequence of the following lemma.

LEMMA 4. Vn > 3,thel-linear-timeof C, is n — 2.

PrOOF If n = 3 (resp. 4), then there exists an interval routing function which has a
time of 1 (resp. 2), and is the best that can be done (1 and 2 are the diamé&ignof
C4, respectively).

We show that, for eveny > 5, the 1-linear-time of C,is> n—2. Assume < n—2,
and letR = (£, Z) be a linear interval routing function of time Let P be the path
y'-X'-t-x-y in C,, whereL(t) = 1. Letz be the vertex oP which has the greatest label
among all the vertices d?.

If z = x, then the intervaly v +, must containC(t) and£(z) because, otherwise, the
time to reacht or z from x’ would be> n — 2 via the edgéx’, y’). For the same reason
I, x,ty cannot contait (y'). However,L(y') € [L(t), L(2)] C Iy, .1y @ contradiction.

If z =y, then the intervall; « xy, must containC(x) and £(z), but not £(x). If
LX) > L(X), thenL(X") € [L(X), L(2)]: a contradiction. IfL(X) < L(X) < L(Y),
then we get another contradiction with the fact thag ,, must containl(x") and
L(Y), but notL£(x). Finally, if L(X') < L(x), andL(Y) < L(X), then again we get a
contradiction becausk: (x.ty must containC(t) and£(x), but notL(y’).
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If z= X/, orz = y’, we obtain similar contradictions by reversing the roles of vertices
X, andy on one hand, ang’ andy’ on the other hand. Thus> n — 2. Actually there
exists a strict linear interval routing function @ of 1-linear-timen — 2: label the
vertices clockwise from 1 to, setl; i+ =[i +1,n]for1 <i < n,andl, n 1 = [1],
setlj gi—1 =[1,i —1]for1l <i <n, and selly 1n = [N]. O

Lemma 4 combined with Theorem 7 yields another proof of a result in [3]:
COROLLARY 5. C, € 1I-LIRS* & n <5 & C, € 1-LIRS*strict.

Recent works in [4] have showed that the 1-linear-time of some graphs of dianeter
can be as bad &(D?). However, finding tight bounds on the worst-case 1-linear-time of
a graph remains open. The following result allows, under some conditions, the derivation
of the time of a cartesian product of graphs.

THEOREM10. Letk be any integelet G be a graph of Kinear-timetg, and let H be
a graph which supports an interval routing function R of compactness Kiarecty,.
Then

e if R is a strict interval routing functiojthen Gx H has a ktimeat most ¢ + ty;
o if Ris a strict linear interval routing functiorthen Gx H has a klinear-timeat most
g +1ty.

ProOOF Consider the routing function constructed in the proof of Theorem 8. The two
conditions for the construction are satisfi€l:c k-LIRS*, and the routing functiofr
is strict. Clearly the time of this routing function is at mast+ ty. O

4.2.2. Minimum Compactness for an Optimal Time~or any graplG, let IRSG) de-
note the compactness@f and let LIR§G) denote its linear-compactness. The following
theorem improves a result stated in [30]:

THEOREM11. For every graph G of order r= 2, LIRS(G) < n/2, andIRS(G) <
(n—1)/2.

PrROOFE It is always possible to design a routing table which correspond to a shortest
paths routing function. For any vertgxthere are at most— 1 destinations associated to

an edge of ouk). These destinations can be encoded by at o4& linear intervals,

and by at most (n — 1)/2] cyclic intervals (recall that intervals are not necessarily
strict). O

As for the time, it is possible to derive the value of the compactness of a cartesian
product of graphs.
THEOREM12. Forany graphs G and H

e MaxLIRS(G), LIRS(H)} < LIRS(G x H) < maxLIRS(G), LIRS(H) + 1};
e MaxIRS(G), IRS(H)} < IRS(G x H) < maxLIRS(G), IRS(H) + 1}.
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PrROOF SinceG andH are both subgraphs of shortest pathszof H, it is a direct
consequence of Theorem 7 that LIRBx H) > max{LIRS(G), LIRS(H)}, and that
IRS(G x H) > maXIRS(G), IRS(H)}. Let k., = LIRS(H), and letk, = IRS(H).
From Proposition 1H € (k. +1)-LIRS* strict, andH € (k; +1)-IRS* strict. Let
k = max{LIRS(G), k. + 1}, and letk’ = maX{LIRS(G), k; + 1}. We have, on the one
hand,G € k-LIRS* andH e k-LIRS* strict, and, on the other han@, € k’-LIRS* and
H e k'-IRS" strict. By application of Theorem 8, we get tHatx H € k-LIRS* and
GxH e k-IRS". O

The following result show that, unfortunately, there does not exist any constant upper
bound of the value of the compactness of a graph.

THEOREM13. Vk > 1,3G such that G¢ k-LIRS*.

PrOOF The graph drawn in Figure 6(a) provides an exampléfor1.

Let k > 2, and consider the grapB composed of three isomorphic components
G1, Gy, andGg, all connected to a single vertex(see Figure 8). Eacts; has three
“levels.” The first level is composed ok2- 1 independent vertices, ..., Xx_1, €ach
X; being connected ta. The second level is composed @‘_‘11) independent vertices
denoted(iq, ...,ik-1),forl <i; < --- < i1 < 2k —1. The vertexXiy, ..., ik_1) IS
connected to thi — 1 verticesx;,, ..., X_,. The third level is a complete graph of the
same number of vertices as in the second level. There is a one-to-one connection between
the second and the third level. We denotenbihe order ofG. AssumeG € k-LIRS*,
and letR = (£, Z) be the corresponding routing function. Consider the subg@@ph
such that none of its vertices is labeled Inqisay the grapl; in Figure 8). Since the
X's play the same role, assume thfai;) < --- < L(Xx_1). Then consider the edge
connecting the vertex= (2, 4, 6, ... ., 2k—2) of the second level with its corresponding
vertex of the third level, denoted by From the structure o, we get that 1n, and
L(x5) belong toly e, for everyi € {1,...,k —1}. Similarly, L(Xzi_1) ¢ ly.e, for every

complete graph ~

Fig. 8. A graph which does not belong to 3-LIRS
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i €{1,...,Kk}. Thusly e is composed of at leakt+ 1 linear intervals: a contradiction.
ThusG ¢ k-LIRS*. O

COROLLARY 6. Vk > 1,3G such that G¢ k-IRS".

PrOOF VK > 2, (k—1)-IRS C k-LIRS. We complete the proof by applying Theo-
rem 13. O

REMARK. The graph used in the proof of Theorem 13 has 3(2k — 1+2(3 1)) + 1
vertices, that i$9 (4¥/v/K). Its compactness is thus at le&stlogn). Its diameter is 6,
and its maximum degreékkjll) — 1 = ®(n). Many works deal with the asymptotic
behavior of the maximum compactness of a graph of ondét, [13], [14], [18], [19].
To our knowledge, the best results are a tight boune @f) for cubic graphs, and a

lower bound of2 (,/n) for cubic planar graphs [14].

We are now ready to study the properties satisfied by the usual graphs considered as
candidates for interconnecting processors of parallel distributed memory computers.

5. Usual Networks. In this section we describe constructions of (linear) interval rout-
ing functions designed for many usual network as meshes, hypercubes, and shuffle-
exchange.

5.1. Paths Cycles and Complete Graphs All these networks have already been con-
sidered in this paper. We refer to Lemma 4 and CorollaGy5s a unit circular-arc graph.
The path withn verticesP, and the complete grapk,, are both unit interval graphs.
According to Theorems 6 and &,, € 1-IRS" strict, whereas, andK,, € 1-LIRS*
strict.

5.2. Meshes In[3]itis proved that thea-dimensional mesh belongs to 1-LIRS he
following proposition simplifies their proof:

ProPOSITION3.  The n-dimensional meshy,Bx Py, x - - - x Py, € 1-LIRS" strict.

PROOF For everym, P, belongs to 1-LIRS strict. Thus, we can apply — 1 times
Theorem 8. O

5.3. Generalized Hypercubes In [3] it is proved that thea-dimensional binary hyper-
cube belongs to 1-LIRS The following proposition generalizes this result:

PROPOSITION4. The generalized hypercubeHwith n dimensions on an alphabet of
d > 2 letters belongs tal-LIRS* strict.
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PROOF The generalized hypercube is recursively defined—l@: Kg andHS =
HY , x Kg. Thatis,HY = K¢ x - - - x Kg, n times. Now,K4 € 1-LIRS" strict, thus we
can apply Theorem 8 — 1 times. O

5.4. Torus In[3]itis shownthatth&-dimensionaltoru$, = Cy4,xCq, x- - -xCyq, € 1-
LIRS* ifand only ifd; < 5 for everyi € {1, ..., n}. The next theorem generalizes this
result.

THEOREM14. Let T, = Cy, xCq, x - - - x Cq, be an n-dimensional torus such that
d; <--- <dy. We have

(i) T, € 2-LIRS" strict;
(i) T, €1-LIRS* & dy <5 & T, € 1-LIRS*strict;
(i) T, € 1-IRS* & dy_1 <5 & T, € 1-IRS"strict.

ProOOF For anyn, C, € 1-IRS" strict. ThereforeC,, € 2-LIRS* strict, and thus, from
Theorem 8, we obtain (i). Result (ii) is obtained by application of Corollary 5 and
Theorem 8. Ifd,—1 < 5, thenT,_; = Cg, xCqg, x---xCq _1 € 1-LIRS" strict (from

(ii)). SinceCy, € 1-IRS" strict, we can apply Theorem 8. The reciprocal of (iii) is stated
in[24], i.e.,Cq, xCyq, ¢ 1-IRS" for d; > 5. O

5.5. A List of Usual Networks Which Do Not Belonglt® IRS".  In [30] van Leeuwen

and Tan asked the question whether there is an optimal interval routing function for
any arbitrary graph. RaiCka already answered this question in a negative way in [25]
by showing a graph of 1-time at least three-half its diameter. In this section we present
a list of graphs which are not in 1-LIRSIn Section 5.5.1 we use Theorem 7, and in
Section 5.5.2 we present a new tool for checking the optimality of an interval routing
function.

5.5.1. Using a Subgraph of Shortest Paths

ProOPOSITIONS.  The following graphs do not belong 16LIRS*:

o theShuffle-Exchange [20], [27BE,, Vn > 3;
e theCube-Connected-Cycle [23[,CC,, Vn > 2;
e theStar-Graph [1]5,, Vn > 1.

PrOOF Allthese graphs contain a cycle of at least five vertices as a subgraph of shortest
paths. More precisely:

e Forevenn > 5, SE, containCs as a subgraph of shortest paths. Indeed, with the stan-
dard binary representation of the vertid8s = {01x10, 01x11, 1x110, x1101, x110G
wherex = 1", Itis easy to check that it is a subgraph of shortest p&Escontains
C; as asubgraph of shortest paths, &kgl ¢ 1-LIRS* as we see later in Proposition 6.

e Foreveryn > 2, CCC, containsCg as a subgraph of shortest paths.

e Foreveryn > 1, S, containsCg as a subgraph of shortest paths.

Hence we get the result by applying Theorem 7 together with Lemma 4. O
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5.5.2. A New Tool for Checking the Optimality of an Interval Routing Functiobet
R = (£, Z) be an interval routing function on a gragh We denote byl . the set of
labelsL£(y) such that all the shortest paths between verticaady traverse the edge
e € out(x). For any subsef of {1, .. ., n}, we denote byf\] the smallest linear interval
which contains all the elements & i.e., [A] = [Minyca(X), Maxa(X)]. Of course,
if G € 1-LIRS', thenvVx € V(G), Ve # € € out(x), Tye N Txe = @ for any routing
function which make$ in 1-LIRS". In fact we can get a stronger result:

LEMMA 5. G € 1-LIRS"* = Vx € V(G), Ve # € € out(x), [Txe] N [Txe] = @ for
any routing function which makes G 1ALIRS*.

ProOOE Let R = (£,Z) be a linear interval routing function o@ such thatG e 1-
LIRS*. Clearly, for any intervaly e € Z, [Txe] C Ixe. We conclude by applying the
disjoint property. O

For any two subsetd andB of {1, ..., n}, we say thatA andB areseparableaf and
only if[A] N[B] = ¢ (that s, eithei(a, b) € AxB,a < b,orv(a,b) € AxB,a > h).
We denote byA | B the property ‘A andB are separable.” We get a method to prove that
a given grapl does not belong to 1-LIRSIt is sufficient to find a subsét’ of vertices
of V(G) such that the system of equatioRg, | Tx.¢, YX € V' andVve # g € out(x),
leads to a contradiction whatever the labeling. Such a system of equations is said to be
inducedby V'. It can be expressed independently of the labeling. The goal is to show
that there is no labeling compatible with the system. For instance:

PropPosITIONG. The following graphs do not belong 16LIRS*:

the Shuffle-Exchang&E;;

the 6-directionalMesh cee Figured(b));

the 8-directionalMesh &ee Figured(c));
theButterfly [20], BF,, Vn > 2 (see Figure9(d));
all the other graphs drawn in Figure.

€Y (b) (c) (d)

b c
| | % %
d e
()
u
177
a b

Fig. 9. Some graphs which do not belong to 1-LIRS
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PrROOF  For the grapl8E;, it is sufficient to prove that the graghdrawn in Figure 9(a)

is notin 1-LIRS. Indeed, this graph is a subgraph of the shortest patB&pfAssume

that the vertices o have been arbitrary labeledb, . . ., f by an optimal linear interval
routing function of compactness 1. We then consider the system induced by the vertices
in gray in Figure 9(a):

ina: bcide
inb: alcf,
inc. elab,
ind: alef,
ine: clad.

Assumeb <e:b<e-2c<d2c<a2 f<aBe<ae<hb:
contradiction (the assumptidn> e would also lead to a contradiction by symmetry).
Thus, from Theorem 7SE ¢ 1-LIRS.

For everyn > 3, BF, containsBF; as a subgraph of shortest paths. SiBée ¢ 1-
LIRS*, by looking at the system induced by the three vertices in gray in Figure 9(d), we
getBF, ¢ 1-LIRS". For all the other graphs, the reader can check that the result holds
by looking at the system induced by the vertices in gray in Figure 9. O

REMARK. An easy way to find a solution of a systd#; | B;); } obtained from graph
G is to consider a digrapRg associated to the system such that

V(Re) = J(AUB) and E(Re)=|J{(@.b)c AixBila<b)

We consider the transitive closuRg of Rg. If Rg possesses a cycle, théng 1-LIRS .
If R is acyclic, then it does not prove th@te 1-LIRS*. However, sorting the vertices
of Rg by outer degree can give indications about a possible labeling: label the vertex of
the smallest outer degree with 1, the vertex with the second smallest outer degree with 2,
and so on. With this method we found several labelings for the graphs in 1:ldiR®&n
in Figure 10 (once the labeling is given, the interval setting is easy by using a greedy
algorithm). Using this approach, we found some counterexamples to the affirmation
stated in [3] that any combination of more than one square with one triangle sharing a
common face cannot be in 1-LIRS

Even if Lemma 5 seems useful in general to determine whether a graph is in I-LIRS
or not, one cannot hope to characterize the class 1-LteBipletely with this method.
For instance, one cannot prove with this method whether the graph draw on Figure 9(e)

3 3 4
2 4 7 2 4
2 5 Igi
1 5 6 1 6 1 >

Fig. 10.Some graphs which belong to 1-LIRS
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does or does not belong to 1-LIRSndeed, the reader can check that any equation
system has a solution even if this graph does not belong to 14.IR8eed, fromx,
there are two possible equatioreh|uy or ab| vy, depending on the choice of the
shortest path of the routing function froxto y. Assume the shortest path fratto y
is fixed, and consider the equation system induced by the black vertices of the graph of
Figure 9(e) for both choices of the shortest path froto y. Whatever this choice is,
the corresponding system will be the same as the system induced be the gray vertices of
Cs (drawn in Figure 9(f)), which has no solution. Although Flammini recently proved
in [5] that answering whether a grafh does or does not belong to 2-LIRStrict is
NP-complete, the full characterization of the class 1-LiRSnains an open problem.

Note that the graph in Figure 9(b) contains the graph of Figure 6(b) as subgraph of
shortest paths. The graph of Figure 6(b) does not belong to 1-tRSefore 6-directional
meshes do not belong to 1-LIRS&either to 1-IRS.

Acknowledgments. The authors are grateful to Eric Fleury, Jean-Claudeily,"and
Claudine Peyrat for many helpful remarks.
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