
A Characterization of Networks Supporting Linear Interval Routing

Pierre Fraigniau& and Cyril Gavoille+

LIP - CNRS

Ecole Normale Sup&-ieure de Lyon

69364 Lyon Cedex 07, France

{pf raign ,gavoille}@lip. ens-lyon .f r

Abstract

Compact routing tables are useful to implement rout-

ing algorithms on a distributed memory parallel com-

puter. Interval routing is a popular way of building

such compact tables. It was already known that any

network can support an interval routing function with

only one interval per output port as soon as one allows

intervals to be “cyclic” [13]. However, it might be in-

teresting for practical reasons to allow only the use of

“linear” intervals (see [2]). This notion is particularly

useful to derive results on networks built by cartesian

products (as hypercubes and torus) [4]. In this paper,

we characterize the networks that admit a linear in-

terval routing function with at most one interval per

output port. We also characterize the networks that

admit a strict linear interval routing function with at

most one interval per output port. -

1 Introduction

If the structure of the interconnection network of a dis-

tributed memory parallel computer is fixed but com-

plicated (a pancake graph, an undirected de Bruijn

graph, etc) or if the interconnection network has no

* The first author received the support of the Centre de Recerca

Matemcitsca, Institut d’Estudis Catalans, Bellaterra, Spazn.

+ Both authors are supported by the research programs .4NM and

C3.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
PODC 94-8194 Los Angeles CA USA
@ 1994 ACM 0-89791 -654-9/94/0008.$3.50

particular structure, it could be difficult to derive a

“simple algorithmic” way to find locally the path be-

tween two nodes.

By a simple algorithm, we mean an algorithm whose

both execution time and space for implementing it on

the router are small. A solution to that problem is

obtained by the use of routing tables that are stored

locally on each router. Of course, the main require-

ment for these tables is to be as small as possible (for

instance a size of ~(n) for a network of n processors

is not realistic as soon as the number of processors is

larger that some tens).

Compact routing has already been intensively stud-

ied (see for instance [1, 7, 8]). In particular, there exist

many solutions to compress the size of the routing ta-

bles. The general idea is to group in some manner the

destination addresses that correspond to the same out-

put port, and to encode the group so that it is easy

to check if a destination address belongs to a given

group. A very popular solution of that kind is the use

of intervals [12]. They are indeed very simple to code

(only store the bounds of each interval) and at most

two comparisons are enough to check if a destination

address belongs to an interval. This kind of routing is

used for instance on the C104 routing chip [11, 3] of

Inmos.

The notion of interval routing has been introduced

by Santoro and Khatib in [12]. They mainly show

that any directed acyclic network can support an in-

terval routing function with shortest paths and only

one interval per output port. Moreover, if the digraph

is not acyclic, they show that there exists an interval

routing function such that the maximum length of the

route between two vertices is at most two times the

diameter. Then van Leeuwen and Tan [13] studied

the problem for undirected networks. They showed

that any network supports an interval routing func-

216

tion with one interval per output port. They gave

simple examples of networks (trees, complete graphs,

rings, meshes,. ..) that support such an interval rout-

ing function and where all the routes are shortest

paths. They also studied the number of intervals per

output port that needs an interval routing function to

build routes that are shortest paths on a torus. In [2],

Bakker, van Leeuwen and Tan introduced a particular

class of interval routing functions, namely the linear

interval routing schemes. They characterized the trees

that support such a routing scheme with only one in-

terval per output port, and where all the routes are

shortest paths. They listed simple examples of net-

works that can support or not a linear interval rout-

ing function with shortest paths. They showed that

the hypercube and the d-dimensional meshes support

a linear interval routing function with shortest paths.

Bakker, van Leeuwen and Tan also studied the linear

interval routing schemes with constraints on the com-

munication costs between neighbors. This problem

had been introduced by Fredrickson and Janardan

in [6].

In this paper, we investigate the study of linear in-

terval routing functions. In particular, we focus on the

topological properties that a network must satisfy in

order to support a linear interval routing function with

only one interval per output port. In Section 2, we re-

call what is an interval routing function. We overlight

the two kinds of intervals (linear or cyclic), and the

way of checking if the current address is the destina-

tion (strict interval routing function). In Section 3, we

characterize the networks that admit a linear interval

routing function with at most one interval per output

port. Indeed, it was already known that one inter-

val per output port is enough for cyclic intervals [13],

but very few was known about linear intervals. We

also characterize in Section 4 the networks that admit

a strict linear interval routing function with at most

one interval per output port. Finally Section 5 sum-

marizes our results.

We refer to [4] for results concerning the length of

the routes built by an interval routing function and re-

sults on topologies usually chosen for interconnecting

the processors of a distributed memory multicomputer

(see [5]).

2 Definitions

We are interested in parallel distributed memory mul-

ticomputers that are composed of processing elements

(PE’s), each connected to a router. As usual, the net-

work composed by the routers is modeled by a graph

G = (V, E) whose set of vertices V represents the

routers, and whose set of edges E represents the com-

munication links between the routers. We assume that

the links are bidirectional, that is if a router z is able

to send messages to one of its neighbors y, then y is

also able to send messages to z. Therefore, we deal

with undirected graphs (or symmetric digraphs). Of

course, we are only interested in connected networks,

so all the statements of this paper assume that the

graphs are connected (there is a path between any cou-

ple of vertices). Also, we always consider finite graphs

that are simple (there is at most one edge between two

neighbors) and loopless. An edge of extremities x and

y is therefore denoted (z, y). The degree of any ver-

tex x is denoted 6(x). The dist ante between any two

vertices x and y is denoted d(z, y).

For any vertex x E V, we denote out(x) the set

of edges of extremity x, that is out(z) = {(z, y) E

E, y E V} (we get 6(z) = [out(x) l). Each router, that

is each vertex of G, is connected to the memory of its

associated PE (if exists) by a communication link. We

denote mem(z) this link. We define a routing function

as follows:

Definition 1 (Routing function)

A routing function R of a graph G = (V, E) is a set

of functions

R={ Rz, xEV, Rz : V 4 out(x) U rnern(x)}

satisfying that for any couple of vertices x, y c V,

there exists a sequence of vertices x = Zo, xl,

xk = y such that Vi)(l < i < k, Rz, (y) = (Z~,Z~+l) (we

consider only routing function is that are connected),

and ~(y) = rnern(y).

Assume a router x receives a message whose des-

tination address is y. If y = x, then the message is

sent to the local memory of the PE connected to z

via mem(x). If y # z, then the message is forwarded

by the communication link of out(x) determined by

Rc(y). We will focus now on routing functions that

are defined using intervals:

Definition 2 (Interval)

An interval of {1, 2,. ... n} denoted [a, b], where a, b E

{1, 2,..., n}, is a set of integers i satisfying:

{

a~i<b if a < b (linear interval)

a<i<norl<i<b if a > b (cyclic interval)

217

w5
[2]

[3,1]E

[1] D [2][5] c [2]

4 [3] [4,1] 3

w1
[2,3]

[4,51E

‘5] D [1] c [1,2]

4
[2,3] [4,5] 3

Figure 1: Two interval routing functions for the same

network.

If a = b we note the interval [a] instead of [a, a], we

also note]a, b] the interval [a, b] — {a}, and we note @

or o the empty interval.

Informally, an interval routing function on a graph

of n vertices is defined as follows. First, label the

vertices from 1 to n. Then, for each vertex z, associate

one or many intervals to each edge e E out(z). A

message of destination y is routed through e E out(z)

by z if and only if y belongs to one of the intervals

associated to e on x. For instance, in Figure 1, we have

indicated two interval routing functions for the same

graph. They are very different: the top one has all the

drawbacks (non shortest paths, two intervals on the

same edge for the vertex D, cyclic intervals on vertices

C and E, the edge (A,D) is never used from A, and

E contains its label in the interval on (E, D)) and the

bottom one has good properties (shortest paths, one

non empty interval per edge on each vertex, and only

linear intervals without label of the local vertex in its

intervals).

Since the interval routing mode hss been introduced

to reduce the space used on the router, we are inter-

ested in limiting the number of intervals per edge on

each vertex. Idealy, one would like to have at most

one interval per edge on each vertex to obtain a space

of size 0(6(x)) on each router x. The compactness of a

routing function is the maximum over all the vertices

z of the maximum over all the edges of extremity z of

the number of intervals that list destinations for which

this edge will be used from x.

More formally, we define an interval routing func-

tion as follows:

Definition 3 (Interval routing function)

Let G = (V, E) be a graph of n vertices. An inter-

val routing function (of compactness 1) 2s a routing

junction R = {R,, x E V} that is defined by

1. a one-to-one function X : V + {1, n} that

labels the vertices of G

2. a set of intervals Z = {Iz,e, x E V, e E out(x)}

that satisfy

1) U {L(z)} = {1,..., n}
● (Ue~OUt(z) ~,e

(Union property)

–0● Vel, e2 E out(x), el # e2 = ~z,e~ n~r,ez —

(Disjunction property)

and satisfies

R.(y) = e @ C(y) ~ Iz,e

An interval routing function can be denoted by a

couple (L, Z) that satisfies the condition of Defini-

tion 3. It might be interesting for practical reasons

to restrict the definition in allowing only the use of

linear intervals (see [2]). This notion is particularly

useful to derive results on networks built by cartesian

products as hypercubes and torus (see [4]).

Definition 4 (Linear interval routing function)

A linear interval routing function as an interval rout-

ing function R = (L, Z) where Z contains only linear

intervals.

In Figure 1, the function on the bottom is linear and

the one on the top is not (see vertices C and E).

Notation. We denote l-IRS the class of graphs of

compactness 1. Similarly we denote 1-LIRS the class

of graphs of compactness 1 where the compactness is

computed by only considering iinear interval routing

functions. We refer to [4] for descriptions of the classes

k-(L)IRS.

Again, for practical reasons related to the concep-

tion of the router, we will deal with intervals that con-

tain the local address or not. Indeed, if some intervals

218

contain the local address then a preprocessing must

be implemented to check if the destination address

is the current address before using the intervals. On

the contrary, if we know that no interval contains the

local address, then we can open a new entry in the

table associated to the memory link. Moreover, this

notion is particularly interesting for the construction

of interval routing functions on networks obtained by

cartesian product (see [4]).

Definition 5 (Strict interval routing function)

A (linear) interval routing function R = (Z, 1) is

strict ifb’z E V, Ve E out(z), Z(z) @ IZ,e.

If, for any positive integer k, we denote k-(L) IRS

the class of graphs of supporting a (linear) interval

routing function with less that k intervals per output

port (that is of compactness < k), then we get:

Lemma 1 vk >1, k-IRS C (k+ 1)-LIRS

Proof. Any interval routing function R of compact-

ness k on a graph G can be transformed in a linear

interval routing function of compactness k + 1 by split-

ting each cyclic interval in two linear intervals (there

is at most one cyclic interval per edge on any vertex).

•1

In Figure 1, the function on the bottom is strict and Note that the paths constructed by these two rout-

the one on the top is not (see vertex E). ing functions (the one that insures that G c k-IRS and

the one constructed by splitting the cyclic intervals)

are the same.

3 Characterization of classes 1-

IRS and 1-LIRS

First, a very good news due to van Leeuwen and

Tan [13] (see also [12]):

Theorem 1 All graphs belong to 1-IRS strict.

Let us give a short proof of their result.

Proof. Let r be any vertex of V(G) and consider a

spanning tree T rooted at r. We define L by a depth

first labeling from the root r with ,C(r) = 1 and per-

forming by increasing order. For any vertex x of T,

let 1= = max ,C(y) over all the vertices y that belong

to the subtree of T of root x.

We assign the empty interval 0 to both extremities

of all the edges of G that does not belong to T. To

each edge e = (x, y), where y is a child of z in T (if

exists), we assign to e on z the interval [L(y), lY]. TO

each edge e = (z, y) of T where y is father of x (if

exists), we assign to e in s the interval]/Z, L(z)[.

Clearly, such an interval routing function is strict.

•1

Note that any path constructed by the routing func-

tion defined as in the proof of Theorem 1 is embedded

in a tree. Hence, on one hand the length of this path is

necessary less than 2 times the depth of the tree, but

on the other hand, it will certainly not be a shortest

path between the source and the destination.

Corollary 1 All graphs belong to 2-LIRS strict.

Now, there exists graphs that do not belong to 1-

LIRS. For instance, consider the graph of Figure 2

that we call the Y-graph, and assume there exists a

linear interval routing function Ron the Y-graph with

compactness 1. Then there exists a branch such that

neither the vertex z staying in the middle of the branch

or the vertex y at the extremity of the same branch is

labeled 1 or 7. Let us call e the edge between z and

the center z. Necessarily, the corresponding interval

Iz,. must contain 1 and 7, thus lZ,. = [1,7] and y

is not reachable from z: a contradiction. Below, we

characterize the graphs that belong to 1-LIRS.

Let us now characterize the graphs that belong to

1-LIRS. Recall that an edge e is a bridge if and only

if G’ = (V, E – {e}) is a disconnected graph.

Definition 6 A lithium-graph is a connected graph

with four connected component El, E2, E3 and K such

that

(i) each component Ei, i = 1,2,3 has at least 2 ver-

tices;

(ii) there is no edge connecting Ei wtth Ej for i, j =

1;2,3 and i# j;

(iii) each component Ei, i = 1,2,3 is connected with

K by one and only one bridge.

In other words, a lithium-graph is a graph with

at least three bridges that connect a same connected

component (the kernel) with three other distinct con-

nected components (the electrons) that possess at

219

?

I

Kernel ~

Electrons

W.ak 1 ithivm-gr.ph

Figure 2: The Y-graph, a lithium-graph and a weak

lithium-graph.

least two vertices. Figure2 presents the general form

of a lithium-graph (the Y-graph is also a lithium-

graph). We get easily the following lemma by the same

arguments that show that the Y-graph @ 1- LIRS:

Lemma 2 If G M a lithzurn-graph then G @ 1-LIRS.

In fact, we get:

Theorem 2 G E 1-LIRS ~ G is not a lithium-graph.

We have to show that any graph which is not a

lithium-graph belongs to 1-LIRS. To do that, we need

some preliminary results.

Lemma 3 Any 2-edge-connected graph G belongs to

I-LIRS strzct. Moreover, for any two vertices x and y

of G, there exists a linear strict interval routing func-

tion R = (t, Z) satisfying:

i.

ii.

. . .
111.

c(x) = 1

VZ E V(G), Z(z) < I(Y), ‘de G out(z): t(y) E

17,, > IV(G)! E Iz,.

,. /..
out(z), e = (z, u), LIU) < L(Y) and ~z,e = 0

Proof. We will proceed iteratively: at each step,

we consider a subgraph H of G containing z and

y and a linear strict interval routing function on H

satisfying the properties (i), (ii) and (iii). We suc-

cessively update this construction, keeping the good

properties and adding one or more vertices to H until

IV(H)[= IV(G)!. We precise below the initialization

of H and the routing function, and then a way to up-

date the construction.

hitializat ion. Assume G has at least three vertices.

If z # y, the? from Menger’s theorem, let PI and P2

be two edge-dqoint paths from x to y. Moreover, it is

possible to find such paths in G such that if they have

a certain number of common vertices U1 ~u2, . . ., ur– 1

distinct from z and y, then these vertices are encoun-

tered in the same order going from z to y on P1 or on

P2. Thuslet uo=x, u,=y and fori=Otor–1,

let Ci be the cycle composed of the path PI from ui to

U;+l, and the path P2 from ui+l to ui.

If z = y, then let CO be the subgraph of G that is a

cycle of at least 3 vertices and going through z. Set

Uo=z=y=ul.

Let H be the subgraph of G composed of the C, ‘s.

We label the vertices of H as follows (see Figure 3(a)-

(c)): set L(z) = 1 and label clockwise the vertices of Co

in an increasing order. If there is more than one cycle,

then start from U1 and label clockwise the vertices

of Cl in an increasing order. Repeat this operation

considering successively the cycles Ci, i = 2, r — 1

until all the vertices are labeled.

Now, we set the intervals as follows (see Fig-

ure 3(d)). Let nH be the number of vertices of H. Let

n; be the number of vertices of the cycle Ci, O ~ i < r.

Consider any cycle Ci, O 5 ~ < r- Let z be w ver-

tex of Ci. Let e+ (resp. e–) be the clockwise (resp.

counter clockwise) edge of out(z) on Ci. We seti.

{

],C(z), n~,l if Z # Ui+l or Ui+l = y

‘Z,’+ =]~(z),~j=onj – i] if z = Ui+l and Ui+l # Y

220

“’”=”’- ‘“””a’”’
(a) {b)

y=u3

(c)

<

[2.171

x?

U2
[l, i-11~ [1+1,171 [1.101 [13,17] [1.141

x [1
=,Z *, [121 [1 [16,171 y

label s labels

.
(d)

Figure 3: Labeling and intervals for the proof of

Lemma 3

and

Iz,e- =
{

[l, Z(Z)[if z # u~

0 ifz=u~

One can easily check that this labeling and the set-

ting of these intervals build a linear strict interval rout-

ing function on H. Concerning the three properties,

(i) is satisfies (Z(z) = 1). Now, if L(z) < L(y) then

L(y) may belong only to 1.,.+. If lZ,R+ =] Z(z), n~]

then (ii) is satisfied; if 1.,.+ =] L(z), ~~=0 nj – i] then

L(y) cannot belong to 1,,,+. Thus (ii) is satisfied. Fi-

nally, from the definition, if z is the vertex labeled nH,

1,,,+ =]nH,~~~~ nj – r-t 1] =]nH, nH] = 0, and thus

(iii) is satisfied.

Updating. Let H be a subgraph of G of nH < n

vertices and containing vertices z and y. Let R =

(.C, Z) be a linear strict interval routing function on H

satisfying conditions (i), (ii) and (iii). There exists a

path P = (vo, vi,. ... vk, v~+l), k z 1 in G such that

V. c V(H), Vk+l E V(H) and vi @ V(H), 1 < i < k.

Consider H’ = H UP, and assume ,C(VO) < L(Vk+I).

Consider the following labeling ,C’ of the vertices of

Ht: for v c V(H), if L(v) ~ L(vo) then Z’(v) = Z(V),

otherwise Z’(v) = Z(r) + k. For i = 1, k, Z’(vi) =

Z(vl)) + i.

We update the intervals aa follows: let w E V(H),

and e 6 E(H) an edge incident to v. Assume 1“ ,e =

[a, b], we set

{

[a,b] if b < ,C(VO)

I:,e = [a, b+k] ifa < C(vo) s b

[a+k, b+k] if~(vo)<a

We now have to set intervals on the path P. Let

e be the edge of P of extremity vo, we set &e =

[L’(vi), L’(w)]. Let e be the edge of P of extremity
/

Vk+l, we Set Iuk+l,e = 0. Let e= (ui, vi+l), l~i~ k,

we set I~,,e = [~’(U+l,nH + k]. Let e = (~i-llui),

1 < i ~ k, we set 1:,,, = [1,~’(v~-~]. It is -y

to check that R’ = (L’, Z’) is a linear strict interval

routing function on H’. Properties (i) and (iii) are of

course still satisfied. Assume v E V(H), e 6 E(H)

and Iv,. = [a, b]. If l,’(y) E l~,e, then b ~ Z(vo)

because otherwise L’(y) would be strictly less than

L(vo), thus f.?(y) = L(y) and b = n which is im-

possible if b < L(vo). There are two cases: eitker

Z(y) ~ ,C(VO), or L(y) > ,C(VO). In both cases, if

L’(y) c 1: ~, then ,C(y) E lu,e and b = nH, that is

nH+k G ~~,e. It is also easy to check that properties

(ii) also holds for the intervals on P. Thus R’ satisfies

property (ii) on H’.

Let H := H’ and repeat this process until n~ =

IV(G)I. ❑

Lemma 4 Let G E 1-LIRS strict. Let H be the gruph

obtained from G by adding to G a set of vertices S

such that for all x 6 S, x is connected to only one

vertex of G. Then H E I- LIRS.

Proof. Let R = (-C, Z) that makes G E 1-LIRS strict.

For any vertex x in G, we denote V(Z) the number of

vertices of S that are connected to x in H. Then we de-

fine the labeling C’ of the vertices of H as follows. For

all z E V(G), L’(z) = ~($) + ~yEV(G)l L()<.c(~)

f

V(y).

If x is connected in H to p vertices o S, namely

SI, SZ,. ... SP, then f’(s~) = Z’(X) + i for all i,l <

i~p.

An interval [L(u), Z(v)] c Z is transformed in

[L’(u), L’(v) + v(v)] G Z’ and we set new intervals in

Z’: Ic,(x,,,j = [E’(si)] and l$,,(,,,Z] = [1, IV(H)!]. El

Now, we can state our proof:

Proof of Theorem 2.

Let G = (V, E) be a connected graph that is not

a lithium-graph, and let n = [VI. We say that an

edge of E is a strong bridge, if it is a bridge (that

is a cut-edge) that splits G in two connected compo-

nents, each of at least 2 vertices. Let us decompose

G in the maximum number of connected components

Go,..., Gk, these components being linked by ail the

strong bridges. In this decomposition, k is the total

number of strong bridges of G and note that some

component may cent ain only one vertex.

221

Since G is not a lithium-graph, each component Gi

is connect to at most two other components. There-

fore, we can assume that G is a “path” of Gi’s of

the form GO– G1 –... – Gk. Let xi E V(Gi) and

yi - 1 c V(Gi - 1) be the vertices such that the strong

bridges are the edges (yi-l, ~i), i = 1,. ... k. Let us

also define xo = yo and yk = xk.

For any i, O ~ i ~ k, let G; be the graph obtained

from Gi by removing all the vertices of degree 1 in G,

and let G’ = U~=oG~. From Lemma 3, each G; E 1-

LIRS strict and, more precisely, one can find a strict

linear interval routing function F& = (Li, Zi) such that

2. Z~(2!j)= 1

iii. let z be the vertex such that &(z) = lV(G~)l,

3e c out(z), e = (z, U) c E(G~), Li(U) < Li(yi)

and Iz,e = 0 E Zi.

From the routing functions ~ = (Li, Xi) of the

G~’s, i = 1 ,. ... k, one can define a strict interval

routing function R = (,C, Z) of G’ as follows. Let z

be any vertex of G’ and let i such that z is a ver-

tex of G;. We set Z(z) by simple shift of Li(z):

L(z) = ~~j~ lv(Gj)l + Li(z). The intervals of xi

are shifted similarly by adding ~~~~ [V(G;) [to both

extremities excepted in the following cases: if one of

the extremities is 1, this extremity is unchanged; if

one of the extremities is IV(G~) 1, we set this extrem-

ity to IV(G’) 1. We also replace the empty intervals Iz ,e

defined by property (iii) by l.,= =] Z(z), IV(G’){]. Fi-

nally, we set lX,,I~,,y,_lJ = [1, ~(~i)[and ~Y,,(~,,~,+lj =

l& lv(Gj)l> IV(G’)11.

With these labeling and intervals, property (i) in-

sures that the route from a vertex in G; to a vertex

of G:, j < i, goes through xi and leaves G; by the

strong bridge (~i, Vi-1), then goes to xi– 1 and leaves

G~_ ~ by the strong bridge (~i- 1, ~i-2), etc. Property

(ii) insures that the route from a vertex z in G;, with

Z(Z) < ,C(yi), to a vertex of ~j, j > i, go= through yi

and leaves G; by the strong bridge (yi, ~i+l). Property

(iii) insures that the route from a vertex z in G:, with

t(z) > .C(yi), to a vertex of G;, j > i, goes through the

vertex of the heighest label in G:, then reaches a vertex

of G{ with a label smaller than vi, then goes through

vi and leaves G: by the strong bridge (yt, ~i+l). Then

it goes to yi+l and leaves G~+l by the strong bridge

(Yi+l, ~i+z), etc. We get G’ ~ 1-LIRS strict.

We conclude the proof by applying Lemma 4. •l

Therefore, it is quite easy to know if a graph belongs

to 1-LIRS or not. For instance:

Corollary 2 Any interval graph belongs 10 I-LIRS.

Proof. Let a ~-graph be a particular case of lithium-

graphs: there exist three bridges that connect a same

connected component (the kernel) with three distinct

connected components (the electrons) of exactly two

vertices. Note that the vertices of the kernel that con-

nect each electron with the kernel can be distinct of

not. It is easy to check that any Y-graph is not an in-

terval graph (see [10, 9]). Now, any lithium-graph has

a ~-graph as induced subgraph, and any induced sub-

graph of an interval graph is an interval graph. There-

fore a lithium-graph is not an interval graph, that is

equivalent to say that any interval graph belongs to

1-LIRS (from Theorem 2). •l

Note that Cn, n ~ 3 (the cycle of n vertices) is not

an interval graph [10]. However C& ~ 1-LIRS (Z is a

cyclic labeling and the intervals are lZ,(Z,Y) = [1, n] if

L(y) = 1 or Z(y) > .L(z), and IZ,(Z,Y) = 0 otherwise).

Therefore, the class 1-LIRS is not reduced to the in-

terval graphs. In fact, this class contains most of the

usual graphs considered for interconnecting PE’s of a

distributed memory computer. Therefore, the news of

Theorem 2 is quite as good as the one of Theorem 1.

Moreover, it means that the cyclic intervals facility are

not necessary to build an interval routing function on

usual networks. However, as the news of Theorem 1,

the onc of Theorem 2 must be moderated because the

routes built by the linear interval routing function are

not shortest pat hs.

4 Characterization

of the graphs that belong to

1-LIRS strict

Definition 7 A weak lithium-graph is a graph with

a least three bridges that connect a same connected

component (the kernel) with three other distinct con-

nected components (the electrons) – the cardinality of

the electrons does not matter (see figure 2).

Note that any lithium-graph is a weak lithium-graph

(a lithium-graph is indeed a weak lithium-graph where

each of the three electrons has at least two vertices).

222

Theorem 3 G g 1-LIRS strict ~ G is not a weak

lithmm-graph.

Proof.

* Assume G E 1-LIRS strict and G is a weak lithium-

graph. Consider the three vertices of the three elec-

trons that connect the electrons to the kernel. Nec-

essarily, one of these vertices is not labeled 1 nor n

(where n is the number of vertices of G). Let us call z

this vertex and let e be the bridge between z and the

kernel. The interval lZ,~ is equal to [1, n] otherwise

the routing function would be not connected. How-

ever, from the hypothesis 1 < L(z) < n, and we get

that IZ,. contains ,C(Z), a contradiction.

e If G is not a weak lithium-graph then it is not a

lithium-graph and we can decompose Gas in the proof

of the Theorem 2 to obtain a “path” GO –Gl –. . .–Gk,

where the GI’s are connected by strong bridges. Since

G is not a weak lithium-graph, we get 6(z) > 1 for

any vertex x of G1, O < i < k. Now, in GO and Gk

there is at most one vertex of degree 1 if k >0, and

there are at most two vertices of degree 1 if k = O.

That means that we can decompose G in a “path”

{z}-G&-G, -... – G\ – {y} where z (resp. y) is the

vertex of degree 1 of Go (resp. Gk) if exists, and G;

(resp. G~) is obtain from Go (resp. Gk) by removing

z (resp. y). Then we can apply the same construction

as in the proof of theorem 2 on the “path” {x} – Gj –

G1 – . . . – G~ – {y}. Since each component has edge-

connectivity 2, the constructed routing function uses

only strict intervals (from Lemma 3). ❑

Theorem 3 has a direct simple consequence:

Corollary 3 Let G and H be two graphs of at least 2

vertices, then G x H E 1-LIRS strict.

5 Conclusion

Figure 4 summarizes the results we obtained in this

paper (we call a strictly weak lithium-graph a weak

lithium-graph that is not a lithium-graph).

We refer to [4] for many other results concerning in-

terval routing. In particular discussions about a trade-

off between the length of the routes built by an inter-

val routing function and the compactness. Also, the

reader will find in [4] results concerning usual networks

as meshes, hypercube, CCC, Butterfly,. . .

1-I.lFIS .t.%at 1 -LXRS 1-IRS .tti -- -u ~.

Figure 4: Classes

strict.

References

l-IRS strict, 1-LIRS and 1-IAR,S

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Baruch Awerbuch, Amotz Bar-Noy, Nat&an

Linial, and David Peleg. Improved routing strzke-

gies with succint tables. Journal of Algoritkats,

11:307-341, February 1990.

Erwin M. Bakker, Jan van Leeuwen, and

Richard B. Tan. Linear interval routing. A@o-

rithms Review, 2:45–61, 1991.

Fr6d&ic Desprez, Eric Fleury, and Michel Loi.

T9000 et c104 : La nouvelle gh%ation de trans-

puters. Technical Report 93-01, LIP-ENS Lyre,

February 1993.

P. Fraigniaud and C. Gavoille. Interval Ibut-

ing Schemes. Research Report 94-04, Labora-

toire de l’Informatique du Paral161isme, ENS-

Lyonl France, 1994. Submitted to the Journal

of the ACM.

P. Fraigniaud and E. Lazard. Methods and Prwb-

lems of Communication in Usual Networks. Dis-

crete Applied Maths (special issue on broadcast-

ing), (to appear).

Greg N. Fredrickson and Ravi Janardan. Design-

ing networks with compact routing tables. Algo-

rt~hn~~cu, pages 171–190, 1988.

Greg N. Fredrickson and Ravi Janardan. Effi-

cient message routing in planar networks. SIAM

Journal on Computing, 18(4):843-857, August

1989.

Greg N. Fredrickson and Ravi Janardan. @ace-

efficient message routing in c-decomposable net-

works. SIAM Journal on Computing, 19(1} 164–

181, February 1990.

Paul C. Gilmore and Alan J. Hoffman. A charac-

terization of comparability graphs and of iuterval

graphs. Canad. J. Math., 16:539-548, 1964.

223

[10] Martin Charles Golumbic. Algorithmic Graph

Theory and Perfect Graphs. A Subsidiary of Har-

court Brace Jovanovich, academic press edition,

1980.

[11] M.D. May, P.W. Thompson, and P.H. Welch.

Networks, routers and transputers: Function,

performance, and applications. Technical report,

inmos, SGS-THOMSON, 1993.

[12] Nicola Santoro and Ramez Khatib. Labelling and

implicit routing in networks. The Computer Jour-

nal, 28(1):5–8, 1985.

[13] Jan van Leeuwen and Richard B. Tan. Interval

routing. The Computer Journal, 30(4):298-307,

1987.

Acknowledgements: The authors are grateful to

Eric Fleury, Jean-Claude Konig and Claudine Peyrat

for many helpful remarks.

224

