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ABSTRACT
Graph augmentation theory is a general framework for ana-
lyzing navigability in social networks. It is known that, for
large classes of graphs, there exist augmentations of these
graphs such that greedy routing according to the shortest
path metric performs in polylogarithmic expected number
of steps. However, it is also known that there are classes of
graphs for which no augmentations can enable greedy rout-
ing according to the shortest path metric to perform better

than Ω(n1/
√

log n) expected number of steps. In fact, the
best known universal bound on the greedy diameter of arbi-
trary graph is essentially n1/3. That is, for any graph, there
is an augmentation such that greedy routing according to
the shortest path metric performs in Õ(n1/3) expected num-
ber of steps. Hence, greedy routing according to the short-
est path metric has at least two drawbacks. First, it is in
general space-consuming to encode locally the shortest path
distances to all the other nodes, and, second, greedy rout-
ing according to the shortest path metric performs poorly
in some graphs.

We prove that, using semimetrics of small stretch results
in a huge positive impact, in both encoding space and ef-
ficiency of greedy routing. More precisely, we show that,
for any connected n-node graph G and any integer k ≥ 1,
there exist an augmentation ϕ of G and a semimetric μ on G
with stretch 2k − 1 such that greedy routing according to μ
performs in O(k2n2/k log2 n) expected number of steps. As
a corollary, we get that for any connected n-node graph G,
there exist an augmentation ϕ of G and a semimetric μ on
G with stretch O(log n) such that greedy routing according
to μ performs in polylogarithmic expected number of steps.
This latter semimetric can be encoded locally at every node
using only a polylogarithmic number of bits.
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1. INTRODUCTION
Graph augmentation theory is a general framework for

analyzing navigability in social networks. It was introduced
in [21] where J. Kleinberg analyzed the small world phe-
nomenon observed in Milgram experiment [8, 27]. An aug-
mented graph model is a pair (G, ϕ) where G is an n-node
connected graph with positive edge cost function, and ϕ is a
collection of probability distributions {ϕu, u ∈ V (G)}. Ev-
ery node u ∈ V (G) is given one1 extra link pointing to some
node v, called the long range contact of u, chosen at random
among all nodes in G according to ϕu as follows:

Pr{u → v} = ϕu(v).

The link from a node to its long range contact is called a
long range link. The links of the underlying graph G are
called local links. Greedy routing in a graph of (G, ϕ) is
the oblivious routing protocol where the routing decision
taken at the current node u for a message with destination
t consists in

1. selecting a neighbor v of u that is the closest to t ac-
cording to the distance in G (this choice is performed
among all neighbors of u in G and the long range con-
tact of u), and

2. forwarding the message to v.

1Adding more that one link generally results in speeding
up navigability by a factor linear in the number of links,
and thus this dimension of the problem is ignored in this
paper which focusses on augmentations using one extra link
per node. Note that computing the minimum number of
links necessary to achieve a given navigability performance
is NP-hard [14].
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This process assumes that every node has knowledge of the
distances in G. On the other hand, every node is unaware of
the long range links added to G, except its own long range
link. Hence the nodes have no notion of the distances in the
augmented graph.

The greedy diameter of (G, ϕ) is defined as the maximum,
taken over all source-destination pairs (s, t), of the expected
number of steps for traveling from s to t, using greedy rout-
ing in (G, ϕ). A graph G is k-navigable if there exists a col-
lection ϕ of probability distributions such that (G, ϕ) has
greedy diameter at most k.

Lots of effort has been devoted to characterize the fam-
ily of n-node graphs that are polylog(n)-navigable (cf.
the surveys [16, 22]). For instance, it is known [21]
that for any fixed d ≥ 1, the d-dimensional meshes are
O(log2 n)-navigable. More generally, it was proved that all
graphs of bounded doubling dimension or bounded growth
are polylog(n)-navigable [9, 30]. Similarly, all graphs of
bounded treewidth, and more generally all graphs exclud-
ing a fixed minor are polylog(n)-navigable [1, 15]. All the
augmentation schemes proposed in the aforementioned pa-
pers are however specifically designed to apply efficiently to
each of the considered classes of graphs. Peleg [28] noticed

that any n-node graph is O(n1/2)-navigable using the uni-
form augmentation. This result is improved in [18], where is
described a universal augmentation ϕ such that greedy rout-
ing in (G, ϕ) performs essentially in n1/3 expected number
of steps for any n-node graph G. On the other hand, it is
known [19] that a function f such that every n-node graph

is f(n)-navigable satisfies f(n) = Ω(n1/
√

log n). This lower
bound is mostly due to the strong constraints induced by
routing according to the shortest path distance metric that
does not allow messages to take short detour for finding
short cuts leading closer to the target.

Actually, analyzing the small world phenomenon using
shortest path distance metrics also suffers from other prob-
lems. In particular, the assumption that all the entities
involved in routing know their mutual distances in the base
graph G is questionable. Indeed, if most person have some
notion of the distances between individuals, these distances
are only estimated. This estimation may be accurate enough
for geographical distances, but it may certainly become more
vague for criteria like professional distances, or distances
measured according to sociological parameters like ethnical
characters, religious beliefs, etc. In fact, for obvious memory
space constraints, an individual can hardly store2 its exact
distance to all other individuals in arbitrary networks.

1.1 Our results
We prove that, by using metrics or semimetrics3 of small

stretch results in a huge positive impact, in both encoding
space and efficiency of greedy routing. More precisely, a
semimetric μ : V (G)× V (G) → R

+ has stretch σ ≥ 1 if and

2It can even be proved that extracting exact distances in any
n-node network requires at least Ω(n) bits of information
about the network for some individuals [13, 31].
3A semimetric space generalizes the concept of a metric
space by not requiring the condition of satisfying the tri-
angle inequality. We stress that the triangle inequality can
be violated in several real world networks, in particular by
the interdomain routing latencies (RTT) in the Internet [5,
20].

only if, for any two nodes u and v, we have

distG(u, v) ≤ μ(u, v) ≤ σ · distG(u, v)

where distG(u, v) denotes the distance between u in v in G.
We show that, for any connected n-node graph G with a
positive edge cost function and any integer k ≥ 1, there ex-
ist an augmentation ϕ of G and a semimetric μ on G with
stretch 2k − 1 such that greedy routing in (G, ϕ) according

to μ performs in O(k2n2/k log2 n) expected number of steps.
A direct consequence of this result is that the best known
universal bound Õ(n1/3) for the navigability diameter of ar-
bitrary graphs in [18] is beaten by just using a semimetric
of small constant stretch.

As an important corollary, we get that, for any connected
n-node graph G, there exist an augmentation ϕ of G and a
semimetric μ on G with stretch O(log n) such that greedy
routing in (G, ϕ) according to μ performs in polylogarith-
mic expected number of steps. Therefore, polylogarithmic
greedy diameter is achievable for all graphs when using
semimetrics of only logarithmic stretch whereas this is im-
possible to achieve when using metrics (or semimetrics) of
stretch 1. Moreover, the semimetric μ can be encoded lo-
cally at every node using only polylog(n) log Δ bits, where
Δ = maxx �=y distG(x, y)/minx �=y distG(x, y) denotes the as-
pect ratio (or normalized diameter) of G.

The improvement provided by our approach, compared
to greedy routing according to shortest path distances, is
therefore three folded. First, greedy routing is guaranty to
perform polylogarithmically in all graphs; Second, the used
metric provides good approximations of the real distances
in the network (this fits with reality where individuals have
only good but not exact estimations of their distances to the
other nodes); And, third, this metric can be encoded com-
pactly at every node, as opposed to shortest path distances.

Our proof uses the concept of tree-covers, i.e., spanners
obtained as union of trees. It is important to note that a
low stretch spanner S of the base graph G is not sufficient
to guaranty that greedy routing according to the distance in
this spanner be efficient, even if S is polylog(n)-navigable.
Nevertheless, we propose a more sophisticated construction
of a semimetric μ in G which, combined with an appropriate
augmentation ϕ of G, where both ϕ and μ depend on a
tree-covering of G, insures polylogarithmic performances of
greedy routing in (G, ϕ) according to μ.

1.2 Related work
In addition to the contributions mentioned before, it is

worth to mention other important contributions to the anal-
ysis of the augmented graph model. Several attempts have
be made to increase the performances of greedy routing, by
slightly modifying the routing protocol (cf., e.g., [6, 17, 23,
24]). Lower bounds on the performances of greedy routing
in rings have been derived in [2, 4, 11, 14]. The distributed
setting of the long-range links has been studied in [10]. The
structure of augmented graphs has been analyzed in [25,
26]. Finally, models for the emergence of the small world
phenomenon have been proposed in [7, 29]

2. NAVIGABILITY DIAMETER
Let G be a connected graph with a positive edge cost func-

tion, and ϕ be an augmenting distribution for G. Greedy
routing in H ∈ (G, ϕ) to a target t ∈ V (H) according to
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a metric, or a semimetric, μ : V (G) × V (G) → R
+, is the

routing process in which every intermediate node u ∈ V (H)

1. selects among all its neighbors in H (i.e., its neighbors
in the base graph G plus its long range contact) the
node v that minimizes μ(v, t) (ties are broken arbitrar-
ily), and

2. forwards the message to v.

Note that greedy routing according to μ may not always
converge, even if μ is a metric. For instance, let

μ(u, v) =

j
1 if u �= v
0 otherwise.

Then greedy routing does not always converge. On the other
hand, if μ(u, v) = distG(u, v) then greedy routing always
converges, simply because the distance to the target (in the
base graph G) is reduced by at least minx �=y dG(x, y) > 0 at
each step.

Actually, greedy routing always converges if μ(u, v) =
distS(u, v) where S is a connected spanning subgraph (span-
ner) of the base graph G because the neighbor v of the cur-
rent node u along a shortest path from u to the target t in
S satisfies μ(v, t) = distS(u, t) − distS(u, v), and thus the
distance to the target (in the spanner S) can be reduced by
at least distS(u, v) > 0 at each step.

For any source-target pair (s, t) ∈ V (G) × V (G), let Xs,t

be the random variable that is equal to the number of steps
of greedy routing from s to t in (G, ϕ) according to μ.

Definition 1. The navigability diameter, nav(G, ϕ, μ),
of (G, ϕ, μ) is defined as the maximum, taken over all source-
destination pairs (s, t), of the expected number of steps of
greedy routing in (G, ϕ) from s to t, according to μ. That
is,

nav(G, ϕ, μ) = max
s,t

Eϕ(Xs,t).

Hence the greedy diameter of (G, ϕ) is the navigability
diameter of (G, ϕ, distG). Note that the underlying graph G
can be edge-weighted, with distG(u, v) defined as the sum
of the edge-weights of a shortest path between u and v.
However, the performances of greedy routing are measured
in term of number of hops, i.e., ignoring the edge-weights.

One can solve the navigability problem when no con-
straints are placed on the semimetric. In particular, for
any connected n-node graph G, by picking any spanning
tree T of G, by augmenting T using the augmentation ϕ de-
fined for trees in [14], and by setting μ(u, v) = distT (u, v),
one can prove that nav(G, ϕ, μ) = O(log n). The stretch of
μ is however Ω(n), even by selecting the ”best” spanning
tree T , as witnessed by the n-node cycles. Our objective
is, given a graph G, to find an augmentation ϕ, and a met-
ric or semimetric μ of low stretch such that nav(G, ϕ, μ) is
small. Unfortunately, using a spanner S of low stretch (i.e.,
the maximum, over all pairs {u, v} of nodes, of the ratio
distG(u, v)/distS(u, v) is small) does not imply that greedy
routing according to distS will be efficient. In fact, the per-
formances of greedy routing according to distS may even be
independent of the stretch of S. To illustrate this fact, we
state the following result.

Proposition 1. For every n ≥ 1 and ε ∈ (0, 1], there
exists an edge-weighted graph G of 8n + 4 vertices, a

(1 + ε)-spanner S of G, and an augmentation ϕ such that
nav(S, ϕ, distS) = polylog(n) but nav(G, ϕ, distS) = Ω(n).
(For ε = 1, the graph G is unweighted).

Proof. Let n ≥ 1. We consider the following weighted
graph G, as pictured on Figure 1. G has 8n + 4 nodes, and
consists of a cycle C = (x0, x1, . . . , x6n+2) of 6n + 3 nodes,
plus 2n + 1 nodes y0, y1, . . . , y2n where yi is connected to
the four nodes x3i, x3i+1, x3i+2, x3(i+1), for i = 0, 1, . . . , 2n.
The edge cost is 1 for all edges of G but for edges between
nodes x3i and x3i+1 for which the cost is ε. Let S be the
spanner of G obtained by removing all edges {yi, x3i} for
i = 0, 1, . . . , 2n. The stretch of S is 1 + ε. The graph is
augmented as follows. For every node u ∈

S2n
i=0{x3i, yi}, we

set

Pr(u → v) =

j
1 if u = v
0 otherwise,

and for every node u ∈
S2n

i=0{x3i+1, x3i+2}, we set

Pr(u → v) =

8<
:

0 if v ∈ {y0, y1, . . . , y2n}
1

4Hn·|i−j| if u ∈ {x3i+1, x3i+2} and

v ∈ {x3j+1, x3j+2} with i �= j.

where Hn =
Pn

i=1
1
i

is the nth harmonic number. In other
words, nodes x3i, yi are their own long-range contacts, and
the long-range contacts of x3i+1 and x3i+2 are distributed
harmonically in the cycle C in a way similar to [21]. Let ϕ
denotes this augmentation.

By the same arguments as in [21], nav(S, ϕ, distS) =
O(log2 n).

On the other hand, consider greedy routing in (G, ϕ) from
x0 to x3n, according to distS . For any i ∈ {0, 1, . . . , n − 1},
the neighbor of x3i that is closest to x3n in S is yi, and the
neighbor of yi that is closest to x3n in S is x3(i+1), because
all these nodes are their own long-range contacts. Therefore,
the greedy path from x0 to x3n is

x0, y0, x3, y1, . . . , x3i, yi, . . . , x3(n−1), yn−1, x3n

independently from the trials of the long-range links. This
path is of length 2n, and thus nav(G, ϕ, distS) ≥ 2n.

The proof of Proposition 1 illustrates the (perhaps coun-
terintuitive) fact that adding edges to a graph may result in
slowing down the performances of greedy routing consider-
ably. Hence using low-stretch spanners and/or low-stretch
metrics are not sufficient by themselves for solving the nav-
igability problem.

3. LOW STRETCH UNIVERSAL GRAPH
AUGMENTATION

In this section, we establish our main result about poly-
logarithmic navigability using semimetrics of logarithmic
stretch. Our proof technique is a combination of the use
of a certain kind of spanners, the design of specific augmen-
tations for these spanners, and the design of appropriate
semimetrics that fit with both the spanners and their aug-
mentations.

Theorem 1. For any n-node connected graph G with a
positive edge cost function, and any integer k ≥ 1, there exist
an augmenting distribution ϕ, and a semimetric μ on G with
stretch 2k − 1, such that nav(G, ϕ, μ) = O(k2n2/k log2 n).
The semimetric μ can be encoded at every node using
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Figure 1: Graph G in the proof of Proposition 1, for n = 2. Dotted lines represent the edges not in the
spanner S.

O(kn1/k log n log (kΔ)) bits, where Δ denotes the normal-
ized diameter of G.

A direct consequence of this result is that the best known
universal bound Õ(n1/3) for the navigability diameter of ar-
bitrary graphs in [18] is beaten by just using a semimetric
of small constant stretch. By chosing k = �log n� in Theo-
rem 1, we get the more important following corollary:

Corollary 1. For any n-node connected graph G, there
exist an augmenting distribution ϕ, and a semimetric μ on
G with stretch O(log n), such that nav(G, ϕ, μ) = O(log4 n).
The semimetric μ can be encoded at every node using
O(log2 n log (Δ log n)) bits, where Δ denotes the normalized
diameter of G.

To prove Theorem 1, let us fix a connected n-node graph
G. The proof uses the concept of sparse tree-cover [3]. A
(σ, δ)-tree-cover of G is a collection T of trees satisfying the
three following conditions:

Cover: Any T ∈ T is a subgraph of G, and for any node
u ∈ V (G) there is a tree T ∈ T containing u;

Stretch σ: For any (u, v) ∈ V (G)×V (G), there exists T ∈
T such that T spans both u and v, and distT (u, v) ≤
σ · distG(u, v);

Degree δ: For any u ∈ V (G), |{T ∈ T , u ∈ V (T )}| ≤ δ.

Theorem 1 directly follows from the lemma below af-
ter recalling that any graph has a (2k − 1, O(kn1/k))-tree-
cover [31], for any k ≥ 1.

Lemma 1. For any n-node graph G, if G has a (σ, δ)-tree-
cover with δ ≤ n, then there exist an augmenting distribution

ϕ, and a semimetric μ on G with stretch at most σ, such that
nav(G, ϕ, μ) ≤ (δ log n)2. The semimetric μ can be encoded
at every node using O(δ log n log (σΔ)) bits, where Δ is the
normalized diameter of G.

The rest of the section is devoted to the proof of this
lemma. Note that, as we underlined in Section 2, the given
of a low stretch spanner is not sufficient to guaranty that
greedy routing according to the distance in this spanner be
efficient. The proof below uses a more sophisticated con-
struction of a semimetric μ which, combined with an appro-
priate augmentation ϕ, insures good performances of greedy
routing in (G, ϕ) according to μ.

Proof. Let T be a (σ, δ)-tree-cover of G with δ ≤ n. To
establish the lemma, let μ : V (G) × V (G) → R

+ be the
following map. For any two nodes u and v, let Tu,v denotes
the set of trees T ∈ T such that both u and v are spanned
by T . We then define μ by

μ(u, v) = min
T∈Tu,v

distT (u, v).

This map μ is well defined because T satisfies the stretch
property, i.e., Tu,v �= ∅. It is a semimetric because it inherits
this property from the distance metric in trees. It is of
stretch at most σ because the stretch of T is σ.

The augmenting distribution ϕ for G is set as follow. Fix
u ∈ V (G). We define ϕu ∈ ϕ. To select its long-range
contact v, node u picks a tree T uniformly at random among
all trees in the tree-cover that are spanning u. The long
range contact of u is then chosen in T according to the
augmentation scheme defined in [15] for graphs of bounded
treewidth, applied to trees, i.e., to graphs of treewidth 1.
This augmentation is as follows.

Let |T | denote the number of nodes in T . Let c be a
centroid of T , i.e., a node such that any trees in T \ {c}
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has at most |T |/2 nodes. For every node u ∈ V (T ), we set

c(u,0) = c, and if u �= c(u,0), define T (u,1) as the tree of T \
{c(u,0)} containing u. Then, let c(u,1) be a centroid of T (u,1),

and, if u �= c(u,1) let T (u,2) be the tree of T (u,1) \ {c(u,1)}
containing u. And so on. One constructs in this way two
finite sequences (see Figure 2):

(T (u,0), T (u,1), . . . , T (u,q(u))) (1)

and

(c(u,0), c(u,1), . . . , c(u,q(u))) (2)

where T (u,0) = T , c(u,i) is the centroid of T (u,i) closest to
c in T , T (u,i+1) is the tree of T (u,i) \ {c(u,i)} containing u,

and c(u,q(u)) = u. Note that since |T | ≤ n, and |T (u,i+1)| ≤
|T (u,i)|/2, we get that both sequences are of length q(u)+1 ≤
log n.

To set up its long-range link, every node u proceeds as
follows:

• it considers the δu trees T1, . . . , Tδu of the tree-cover it
belongs to, where δu ≤ δ;

• it picks one of them uniformly at random, say Tj , 1 ≤
j ≤ δu; and

• it selects its long range contact as one of the at most

log n centroids c
(u,k)
j of Tj , 0 ≤ k ≤ q

(u)
j , uniformly at

random.

In other words, we select the long range contact v of node
u according to:

ϕu(v) =

8>><
>>:

1
δu

· 1

q
(u)
j +1

if v ∈ {c(u,0)
j , c

(u,1)
j , . . . , c

(u,q
(u)
j

)

j }
for some 1 ≤ j ≤ δu

0 otherwise

Let us now fix a source s and a target t in G, and let
us compute the expected number of steps of greedy routing
from s to t in (G, ϕ, μ). First, observe that greedy routing
in (G, ϕ, μ) does lead from s to t in any augmentation of
G. Indeed, if u is the current node, and if T ∈ Tu,t is
the tree for which μ(u, t) = distT (u, t), then the neighbor
v of u along the shortest path from u to t in T satisfies
distT (v, t) < μ(u, t), and thus the next node w on the greedy
path from u to t satisfies μ(w, t) ≤ μ(v, t) ≤ distT (v, t) <
μ(u, t). Hence the ”distance” measured by the semimetric μ
between the current node and the target decreases at each
step of greedy routing, and thus greedy routing in (G, ϕ, μ)
always succeeds.

For computing the efficiency of greedy routing in (G, ϕ, μ),
we consider the potential function Φ defined as follows. Let

P = u0, u1, . . . , u�

with u0 = s and u� = t, be the path followed by greedy
routing from s to t. The path P depends on the trial of
the long-range links as determined by ϕ, and the expected
number of steps of greedy routing from s to t is equal to
Eϕ(|P |). For i = 0, . . . , �, let

Pi = u0, u1, . . . , ui

be the prefix of P consisting of the i + 1 first nodes of P .
The potential Φ is a function of the Pis, more precisely of
their extremities uis. Φ uses the centroids as beacons, and

counts how many beacons are still closer to the target than
the current node is. It is defined by δt distinct functions φj ,
1 ≤ j ≤ δt, where each φj is associated to a distinct tree
Tj among the δt trees in T spanning the target t. (By the
degree property of the (σ, δ)-tree-cover, δt ≤ δ). Let

(c
(t,0)
j , c

(t,1)
j , . . . , c

(t,q
(t)
j )

j )

be the sequence of centroids for t ∈ Tj , as defined by Equa-
tions 1 and 2. Each φj returns a boolean vector of at most
log n coordinates, obtained by the application of at most

log n functions φ
(k)
j . More precisely,

φj = (φ
(0)
j , . . . , φ

(q
(t)
j

)

j )

where, for k = 0, . . . , q
(t)
j , we have

φ
(k)
j (Pi) =

j
1 if μ(ui, t) > μ(c

(t,k)
j , t)

0 otherwise.

In other words, we use the at most δ · log n nodes c
(t,k)
j ,

1 ≤ j ≤ δt, 0 ≤ k ≤ q
(t)
j , to represent as many beacons, and

we count how many beacons are still closer to the target
than the current node is, by defining

Φ(Pi) =

δtX
j=1

||φj(Pi)||1 , i.e., Φ(Pi) =

δtX
j=1

q
(t)
jX

k=0

φ
(k)
j (Pi) .

Since φ
(k)
j (Pi+1) ≤ φ

(k)
j (Pi), for all i, j, k, we get that

Φ(Pi+1) ≤ Φ(Pi)

for all i ≥ 0. Also,

Φ(P0) ≤
δtX

j=1

(1 + q
(t)
j ) ≤ δt log n ≤ δ log n. (3)

We have Φ(P ) = Φ(P�) = 0, and thus the target t is reached
after at most Φ(P0) 1-entries successively vanish in the vec-
tors φjs when traveling along P . Let Zi be the random
variable measuring the number of nodes in P between the
vanishing of the ith 1-entry and the vanishing of the (i+1)th
1-entry of Φ. By linearity of the expectation, we have

Eϕ(|P |) =

Φ(P0)X
i=0

Eϕ(Zi). (4)

The remaining of the proof consists in upper bounding
Eϕ(Zi).

The function Φ is based on the centroid decomposition

c
(t,k)
j for the target node t whereas the routing depends on

the long-range links of the current node ui that are set based

on the centroid decomposition c
(ui,k)
j for node ui. Here is

how these two decompositions are related. Let ui be the last
node of Pi, ui �= t. Let j be the index such that μ(ui, t) =
distTj (ui, t). Let k be the largest index such that

(c
(ui,0)
j , . . . , c

(ui,k)
j ) = (c

(t,0)
j , . . . , c

(t,k)
j )

where these sequences are defined for Tj according to Equa-

tions 1 and 2. The index k is well defined since c
(ui,0)
j =

c
(t,0)
j = cj , where cj is the centroid of Tj . The nodes

ui and t are separated by c
(ui,k)
j = c

(t,k)
j in Tj . For in-

stance, on Figure 2, nodes u and v are separated by their
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Figure 2: Centroid decomposition.

centroids of level 0: c(u,0) = c(v,0). On the same figure,
nodes u and x are separated by their centroids of level 1:
(c(u,0), c(u,1)) = (c(x,0), c(x,1)).

If ui = c
(ui,k)
j = c

(t,k)
j , then φ

(k)
j (Pi) = 0. On the other

hand, φ
(k)
j (Pi−1) = 1 because, as we observed before, greedy

routing according to μ satisfies μ(ui−1, t) > μ(ui, t), and

thus μ(ui−1, t) > μ(c
(t,k)
j , t). Hence at least one 1-entry

of Φ vanishes when reaching node ui. Assume now that

ui �= c
(ui,k)
j = c

(t,k)
j . Since

μ(ui, t) = distTj (ui, t)

and

distTj (ui, t) = distTj (ui, c
(ui,k)
j ) + distTj (c

(ui,k)
j , t),

we get that

μ(c
(ui,k)
j , t) ≤ distTj (c

(ui,k)
j , t) < distTj (ui, t) = μ(ui, t).

As a consequence, if the long-range contact of ui is c
(ui,k)
j =

c
(t,k)
j , then the next node ui+1 along P will satisfies

μ(ui+1, t) ≤ μ(c
(t,k)
j , t), and therefore φ

(k)
j (Pi+1) = 0. Hence

at least one 1-entry of Φ vanishes when reaching node ui+1.

The event ”the long-range contact of ui is c
(ui,k)
j ” occurs

with probability at least 1/(δ · log n) because every node be-
longs to at most δ trees, and there are at most log n levels
of centroids.

Summarizing the above arguments, at each step along P ,
either at least one 1-entry of Φ vanishes, or the probability
that at least one 1-entry of Φ vanishes at the next step is at
least 1/(δ · log n). As a direct consequence, since all long-
range links are chosen independently at each node,

Eϕ(Zi) ≤ δ · log n.

By combining this latter inequality with Equations 3 and 4,

and using the facts that δt ≤ δ and 1+ q
(t)
j ≤ log n for all j,

we finally get that

Eϕ(|P |) ≤ (δ · log n)2

which completes the proof of the Lemma as far as greedy
routing is concerned.

We now show how to encode μ compactly at every node.
We use the concept of distance-labeling [13]. Roughly, a

distance-labeling scheme for a graph class G is a pair (λ, α),
where λ is a labeling function applying to the nodes of every
graph in G, and α is a decoding function that, given two
labels of two nodes in G ∈ G, returns the distance between
these two nodes in G. That is, every node u ∈ V (G) is given
a label λ(u, G), and distG(u, v) = α(λ(u, G), λ(v, G)).

We will provide a compact labeling scheme (L, β) for our
semimetric μ. Given this scheme, greedy routing accord-
ing to μ is executed as follows. The target t ∈ V (G) is
identified by its label L(t, G). Let u be the current node.
Node u contacts its neighbors, and collects their labels. Us-
ing these labels, u computes, for every neighbor v, the value
μ(v, t) = β(L(v, G), L(t, G)), and it selects the neighbor with
the smallest value for forwarding the message.

It is known (see [12, 13]) that there exists a distance-
labeling scheme (λ, α) for trees using O(log nT log ΔT )-bit
labels, where nT is the number of nodes of the tree T and
ΔT its normalized diameter of T . The decoding function
α is a constant time and constant size algorithm. Let us
label the trees of the (σ, δ)-tree-cover T by pairwise distinct
integers from 1 to |T | ≤ δn. For each tree Ti ∈ T , λ(u, Ti)
is the labeling of u in Ti. We define the label L(u, G) by

L(u, G) =
“
(�1, λ(u, T�1)), (�2, λ(u, T�2)), . . . , (�δu , λ(u, T�δu

))
”

where T�i , i = 1, . . . , δu, are all trees covering u. Because of
the stretch property of μ, (normalized) distances in μ do not
exceed σΔ, where Δ is the normalized diameter of G. Thus
every label λ(u, T�i) is on O(log n log (σΔ)) bits. Each tree
identifier �i can be represented with O(log (δn)) bits, and,
by bounding δ ≤ n, we get that each label L(u, G) is on at
most

O(δ(log n log (σΔ) + log (δn)) = O(δ log n log (σΔ)) bits.

Given two labels L(u, G) and L(v, G), one can compute
μ(u, v) by selecting all trees that cover both u and v, com-
puting the distance between these two nodes in each of them
using α, and taking the minimum of these distances. This
completes the proof of Lemma 1, and thus the proof of The-
orem 1.

67



4. CONCLUSION
The main result in this paper is the design, for any given

connected n-node graph G, of an augmentation ϕ for G, and
of a compact semimetric μ in G with stretch O(log n), such
that nav(G, ϕ, μ) is polylogarithmic.

It would be interesting to check whether this is optimal
in term of stretch. In particular, is it possible to design, for
any given connected n-node graph G, an augmentation ϕ
for G, and a semimetric μ in G with constant stretch, such
that nav(G, ϕ, μ) is polylogarithmic?

It would also be interesting to check whether it is possible
to design a distance metric satisfying the same properties
as Corollary 1. In particular, is it possible to design, for
any given connected n-node graph G, an augmentation ϕ
for G, and a distance metric μ with polylogarithmic stretch
that can be stored locally using a polylogarithmic number of
bits at each node, such that nav(G, ϕ, μ) is polylogarithmic?
Again, the use of low stretch spanners does not lead directly
to the answer. Indeed, distance labeling requires labels of
size Ω(

√
n) even in graphs of maximum degree 3 (see [13]).

5. REFERENCES
[1] I. Abraham and C. Gavoille. Object Location Using

Path Separators. 25th ACM Symp. on Principles of
Distributed Computing (PODC), pp. 188-197, 2006.

[2] J. Aspnes, Z. Diamadi, and G. Shah. Fault-tolerant
routing in peer-to-peer systems. In 21st ACM Symp.
on Principles of Distributed Computing (PODC), pp.
223-232, 2002.

[3] B. Awerbuch, D. Peleg. Sparse Partitions. In 31st
IEEE Symp. on Foundations of Computer Science
(FOCS), pp. 503-513, 1990.

[4] L. Barrière, P. Fraigniaud, E. Kranakis, and D.
Krizanc. Efficient Routing in Networks with Long
Range Contacts. In 15th International Symp. on
Distributed Computing (DISC), LNCS 2180, pp.
270-284, Springer, 2001.

[5] S. Banerjee, T. Griffin, and M. Pias. The interdomain
connectivity of PlanetLab nodes. In 5th Workshop on
Passive and Active Measurements, LNCS 3015, pp.
73-82, Springer, 2004.

[6] D. Barbella, G. Kachergis, D. Liben-Nowell, A.
Sallstrom, and B. Sowell. Depth of field and
cautious-greedy routing in social networks. In 18th
International Symp. on Algo. and Computation
(ISAAC), LNCS 4835, pp. 574-586. Springer, 2007.

[7] A. Clauset and C. Moore How Do Networks Become
Navigable?
http://arxiv.org/abs/cond-mat/0309415v2.

[8] P. Dodds, R. Muhamad, and D. Watts. An
experimental study of search in global social networks.
Science 301, no5634, pp. 827-829, 2003.

[9] P. Duchon, N. Hanusse, E. Lebhar, and N. Schabanel.
Could any graph be turned into a small-world?
Theoretical Computer Science 355(1): 96-103 (2006).

[10] P. Duchon, N. Hanusse, E. Lebhar, and N. Schabanel.
Towards small world emergence. In 18th ACM Symp.
on Parallel Algo. and Architectures (SPAA), pp.
225-232, 2006.

[11] G. Giakkoupis and V. Hadzilacos On the complexity
of greedy routing in ring-based peer-to-peer networks

In 26th ACM Symp. on Principles of Distributed
Computing (PODC), pp. 99-108, 2007.

[12] C. Gavoille, M. Katz, N. A. Katz, C. Paul, and D.
Peleg. Approximate distance labeling schemes. In 9th
Europ. Symp. on Algo. (ESA), LNCS 2161, pp.
476-488. Springer, 2001.

[13] C. Gavoille, D. Peleg, S. Pérennès, and R. Raz.
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[29] O. Sandberg. Neighbor Selection and Hitting
Probability in Small-World Graphs. Annals of Applied
Probability (to appear).

[30] A. Slivkins. Distance estimation and object location
via rings of neighbors. In 24th ACM Symp. on
Principles of Distributed Computing (PODC), pp.
41-50, 2005.

[31] M. Thorup, and U. Zwick. Approximate Distance
Oracles. J. of the ACM, 52:1-14, 2005.

69



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


