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Abstract

The end-to-end communication problem is a protocol design problem, for sending a packet from a specified source-
node s to a specified target-node t, through an unreliable asynchronous memoryless communication network. The protocol
must insure reception and termination. In this paper, we measure the complexity of the protocol in term of header size, i.e.,
the quantity of information that must be attached to the packets to insure their delivery. We show that headers of
Xðlog log sÞ bits are required in every network, where s denotes the treewidth of the network. In planar networks,
Xðlog sÞ bits are required.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The end-to-end communication problem is the
problem of sending a (sequence of) packet(s) from
a specified source-node s to a specified target-node
t, through an unreliable communication network G
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(see, e.g., [13,29]). The sequence transmission [38]
problem and the reliable communication [24] prob-
lem are other names for the end-to-end communica-
tion problem (cf. the survey [25]). By an unreliable
network, it is generally meant that links can lose,
reorder, and duplicate packets. Moreover, networks
are assumed to be asynchronous, i.e., the time for a
packet to traverse a link is finite but otherwise
unbounded. In particular, a processor cannot distin-
guish between an inoperational link and an opera-
tional link which is just very slow. Hence, an
instance of the end-to-end communication problem
is described by an (unreliable and asynchronous)
network, modeled by an undirected graph G, and
two nodes s and t of G. Solving the problem consists
in designing a distributed protocol which (1) allows
s to send a packet, or a sequence of packets, to t
.
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through the network G, and (2) generates a finite
amount of traffic for each packet. In other words,
the end-to-end protocol must satisfy the two follow-
ing requirements: (1) reception, i.e., the target must
eventually receive at least one copy of each packet
sent by the source; and (2) termination, i.e., after a
finite time, no copy of the packet(s) remains in the
network.

1.1. The oblivious single-packet end-to-end

communication problem

This paper considers a static model, that is, we
assume that each link is either operational or not.
If there exists at least one operational path from s

to t in G, it is the role of the protocol to find such
a non-faulty path, which is of course a priori
unknown. Note that the case of dynamic faults, that
is when links can alternate between being opera-
tional and inoperational, can be treated similarly
by assuming, as in [1,14,28], infinitely frequent path
stability, i.e., infinitely often there is a path P from s

to t such that a packet sent from s along P will
arrive at t (see also [3]).

Performance of end-to-end communication pro-
tocols is commonly measured in terms of (1) the
amount of communication performed over the links
of the network, and (2) the amount of storage space
used by intermediate nodes in the networks. Oblivi-

ous protocols, a.k.a. memoryless protocols, take
their routing decision at every node x (i.e., on which
link(s) x has to forward a packet) based solely on the
content of the header of the packet. In particular, a
node does not store any knowledge about the traffic
that previously passed through it. It can however
forward several copies of the received packet, and
it can modify the header of this packet. As men-
tioned in [1], the practical advantage of oblivious
protocols is their high tolerance to processor crashes.
Indeed, as soon as a node recovers from a crash, the
protocol is ready to proceed with no risk of corrup-
tion due to an altered writable memory (RAM).
Moreover, the extremal behavior of oblivious proto-
cols (in the sense that they consume no local memory
at all) allows concentrating the analysis of end-to-
end communication protocols on the amount of
information transmitted over the links of the net-
work. More specifically, this paper focuses on mini-
mizing the packet-header size, i.e., the quantity of
additional information that must be attached to
every packet to insure its correct delivery.
The header content has two distinct functions: (1)
to control the order in which packets arrive at the
destination; (2) to find a route from the source s

to the destination t (reception), and to insure that
residual packets are eventually removed from the
network (termination). In this paper, we are inter-
ested in the routing part of the problem, that is, in
the problem of finding the non-faulty route from
the source to the destination, while insuring termi-
nation. We will therefore concentrate our analysis
on the process of sending a single packet from s to
t. In other words, we consider the single-packet
end-to-end communication problem, as opposed to
the stream-of-packets end-to-end communication
problem, the latter problem requiring the transmis-
sion of a sequence of packets from the source to the
destination [22]. Hence, let us summarize our
problem.

1.1.1. Our problem
We are given an unreliable and asynchronous

network G, and two nodes s and t of G. We consider
the design of an oblivious distributed protocol
which allows the transmission of a packet from s

to t (if there is a fault-free path between s and t in
G), and which eventually leaves the network empty
of packets. Such a protocol is required to use
packet-headers of small size. The quality of the pro-
tocol is indeed measured by the maximum size of
the headers involved during its execution.

1.1.2. Previous work

In the context of static link failures (i.e., every link
is operational or not but its status does not change
during the execution of the routing protocol), the
hop-count protocol [32] uses headers of size
Oðlog nÞ in n-node networks. It proceeds by flooding
the network as follows. The source sends a copy of
the original packet to all its neighbors, with header
1. A node receiving a packet whose header contains
the hop count i < n � 1 updates the header by replac-
ing i by i + 1, and forwards a copy of the packet to
each of its neighbors. A node receiving a packet
whose header contains the hop count n � 1 removes
the packet from the network. If s and t are connected
despite the faulty links, then a path of length at most
n � 1 exists between s and t, and therefore at least
one copy of the packet sent by s eventually arrives
at t. Moreover, the remaining copies of the packet
are removed from the network after a finite time
since no packet can traverse n or more links.
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In [1], Adler and Fich showed that if a network G

contains H as a minor, i.e., if H can be obtained
from G by edge contraction, node and edge deletion,
then the oblivious single-packet end-to-end commu-
nication problem in G requires headers of size at
least as large as for H. Hence the problem is closed
under taking minors. They also showed that the
complete graph of n nodes requires headers of size
Xðlog nÞ. Therefore, an n-node network G which
contains the complete graph of k nodes as a minor
requires headers of size Xðlog kÞ. Adler and Fich
also gave upper bounds on the header size based
on the notion of feedback vertex sets. A feedback
vertex set is a subset of nodes S such that every cycle
in the network contains at least a node in S. They
showed that if there exists a feedback vertex set of
size f, then there exists an oblivious protocol using
headers with size Oðlog f Þ. They also pointed out
that any minimum feedback vertex set of anffiffiffi

n
p � ffiffiffi

n
p

mesh is of size X(n), and thus the feedback
vertex set protocol does not offer significant
improvement in the mesh, compared to the hop-
count protocol. Since the mesh is planar, it does
not contain K5 as minor, and thus it leaves a big
gap between the best known upper and lower
bounds for mesh networks. Adler et al. [2] recently
closed this gap for ‘‘narrow’’ meshes, i.e., p · q

meshes with p = O(1). They have shown that there
exists a protocol for n-node meshes using headers
of size Oðpðlog p þ log log nÞÞ, and that any p · q

mesh requires headers of size Xðlog log nÞ for
3 6 p 6 q. A constant size header protocol exists if
p 6 2.

1.2. Outline of our results

In this paper, we provide lower bounds of the
header size of oblivious end-to-end protocols as a
function of the treewidth of the input graph. The
notion of treewidth is a very rich concept with many
algorithmic implications. Many NP-complete prob-
lems are polynomial for graphs of bounded tree-
width [10,16]. In addition, the notion of treewidth
is in the kernel of the graph minor theory [20].
Recall that treewidth can be seen as a measure of
‘‘how far’’ a graph is from a tree. More precisely,
let G = (V,E) be a graph of n nodes, a tree-decompo-

sition of G is a pair ðS; T Þ where S is a collection
{Siji 2 I} of subsets of nodes and T = (I,F) is a tree,
such that the three following conditions are
satisfied:
1. ¨i2ISi = V;
2. For every edge e = {u,v} of G, there exists i 2 I

such that both u and v belong to Si;
3. For every u 2 V, the subgraph of T induced by

the set of nodes {i 2 Iju 2 Si} is a tree.

For any graph G, there exists at least one tree-
decomposition of G by choosing S ¼ fV g, i.e., T

is reduced to a single node. The width of a tree-
decomposition ðS; T Þ is defined as maxi2IjSij � 1.
The treewidth tw(G) of G is then defined as the min-
imum of the width of any tree-decomposition of G.
Roughly speaking, tw(G) denotes the minimum size
c such that G has a recursive separator of at most c

nodes. A c-decomposable graph has treewidth O(c),
a tree has treewidth 1, a cycle has treewidth 2, a
square mesh has treewidth

ffiffiffi
n
p

, and a complete
graph has treewidth n � 1. Determining the tree-
width of a graph is NP-hard [11]. However, Bodla-
ender [17] gave a linear time algorithm for
recognizing graphs of bounded treewidth. There
are also Oðlog nÞ-approximation algorithms for
computing the treewidth of an arbitrary graph
[18,33], and even Oðlog sÞ-approximation algo-
rithms where s is the treewidth [9,19].

In this paper, we provide a lower bound on the
header size for end-to-end communication as a
function of the treewidth of the network.

Theorem 1. Any protocol designed for the instance

(G, s,t) of the oblivious single-packet end-to-end

communication problem uses headers of size at least

Xðlog log sÞ bits where s is the treewidth of the graph
Gs,t obtained from G, s, and t by deleting every edge e

not on a simple path from s to t.

As we will see in more details in Section 3, the
bound of Theorem 1 derives from an optimal bound
for square meshes, and from an upper bound of the
‘‘excluding grid’’ theorem of Robertson and Sey-
mour [35]. This latter bound is likely far from best
possible and, as mentioned in [21], Robertson
et al. [36] think that the upper bound might be expo-
nentially improved so that the lower bound of The-
orem 1 would be Xðlog sÞ. In fact, independently
from whether the bound of the excluding grid theo-
rem can be exponentially improved, we believe that
end-to-end protocols with headers size smaller than
Xðlog sÞ are unlikely to exist. This belief is sup-
ported by the fact that, in order to insure termina-
tion, any protocol seems to be required to
compute how many times any given message crosses



P. Fraigniaud, C. Gavoille / Computer Networks 50 (2006) 1630–1638 1633
a separator of the network. Hence we conjecture the
following:

Conjecture. Any protocol designed for the instance

(G, s, t) of the oblivious single-packet end-to-end

communication problem uses headers of size at

least Xðlog sÞ bits where s is the treewidth of the

graph Gs,t.

If this conjecture holds, then the hop-count pro-
tocol will turn out to be asymptotically optimal in
large classes of graphs (namely those graphs with
treewidth X(n�) for any � > 0). Actually, for planar
graphs, we prove the lower bound Xðlog sÞ:

Theorem 2. Any protocol designed for the instance

(G, s, t) of the oblivious single-packet end-to-end

communication problem, G planar, uses headers of
size at least Xðlog sÞ bits where s is the treewidth of

the graph Gs,t.

In particular Theorem 2 solves the conjecture
mentioned in [1] stating that headers of Xðlog nÞ bits
are required to insure packet-delivery in the two
dimensional square mesh. All these results establish
(as also suggested in [1]) connections between, on
one hand, the number of header bits needed to send
a single packet through an unreliable network G,
and, on the other hand, graph-theoretic properties
of G�s topology.

Finally, notice that our lower bounds obviously
apply to the stream-of-packets problem too. More-
over, they also obviously apply to the case of
dynamic faults, that is when links can alternate
between being operational and inoperational. How-
ever, they do not necessarily apply to the models in
[3,4] that do not assume memoryless networks, and
for which protocols use the fact that links can be in
different states.

1.3. Related work

The case of links with fixed or bounded traversal
time has been considered in [8,41]. Probabilistic
faults and delivery times have been considered in
[27,30,31]. In the deterministic setting, i.e., the con-
text of this paper, solutions for the stream-of-pack-
ets end-to-end problem differ according to the type
of faults. Wang and Zuck [40] have shown that any
protocol tolerating both packet reordering and
duplication requires unbounded headers. Afek
et al. [6] have shown that packet reordering and
loss create the same effect, that is either unbounded
headers or non-termination (i.e., the same packet
can be received an unbounded number of times).
Fekete and Lynch [23] have shown that just packet
loss implies that some header information must be
attached to the packets for the stream of packets to
be treated correctly. These three latter results hold
even if G consists of a single edge {s, t}. Despite
these impossibility results, efficient protocols have
nevertheless been successfully designed. We refer
to [12,37,39] if links are subject to packet duplica-
tion, reordering and loss, to [15,30] if links are sub-
ject to packet duplication and loss (but no
reordering), and to [5,7,29] in case of static link
failures. In [1], it is noticed that the latter protocols
can be adapted to the case where links can lose
packets—but otherwise transmit them in order
and without duplication, by using the techniques
in [4]. Although some of these protocols use very
short headers, none of them is oblivious, i.e., they
all require the local storage of information at inter-
mediate nodes during the execution of the protocol.
The stream-of-packet protocol of Dolev and Welch
[22] is oblivious (i.e., intermediate processors do
not change state) and apply to the static link failure
(i.e., the model of this paper). It uses headers of
Oðlog pÞ bits where p is the number of distinct sim-
ple paths between s and t in G. Although p can be
quite large in general (e.g., X((n � 2)!) in Kn), this
protocol was proved optimal for many topologies,
including complete graphs, meshes, and series–par-
allel graphs (see [1]). Fich and Jakoby [26] consid-
ered the same model for directed acyclic graphs.
They proved that a single bit header suffices in
DAGs, which contrasts with the case of arbitrary
graphs.

Several oblivious protocols have been proposed
in the literature to solve the single-packet end-to-
end problem. We already presented the hop-count

protocol described by Postel [32], using headers of
Oðlog nÞ bits in n-node graphs. We also mentioned
the protocol of Dolev and Welch [22] which applies
to the single-packet problem as well. Adler and Fich
[1] derived lower and upper bounds for the header
size in specific networks (e.g., meshes, hypercubes,
butterflies, de Bruijn, etc.). Adler et al. [2] addressed
the problem in p · q meshes, p = O(1). They proved
the somewhat surprising result stating that headers
of size Hðlog log nÞ bits are necessary and sufficient
in 3 · n/3 meshes (whereas headers of constant size
are sufficient in 2 · n/2 meshes).

For a more detailed descriptions of the end-to-
end protocols mentioned above, we refer to [25],
and the references therein.
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2. End-to-end routing in meshes

We start by proving the following lemma which
is an extension of a result by Adler and Fich [1].
The result in [1] is valid for complete graphs. We
extend it to arbitrary graphs. Then, in Theorem 3,
we show how to apply this result to meshes.

Lemma 1. Let ei = {xi,yi}, i = 1, . . . , k, be k distinct
edges of G. Let P � Rk be a subset of permutations of

k symbols such that, for any p 2 P, there is a simple

path Pp in G from s to t, traversing the ei�s from the

xi�s to the yi�s, in the order ep(1), ep(2), . . . , ep(k). Then

any oblivious end-to-end communication protocol

from s to t requires headers of at least ðlog2jPjÞ=k
bits.

Proof. Given an oblivious end-to-end communica-
tion protocol A from s to t, let h be the total number
of distinct headers involved in protocol A. We use the
same terminology as in [1]. The transcript of a simple
path Pp is defined as the word wp of length k on the
alphabet {0, . . . ,h � 1} obtained by concatenating
the headers of the packets transmitted through the
eis, from the xis to the yis, when only the edges of
Pp are operational. More precisely, let us consider
a packet bp going from s to t along Pp. This packet
generates a word wp whose ith letter is the value of
the header hi of bi when traversing the edge ei from
xi to yi. This word is the transcript of Pp. (Obviously,
the transcript may depend on the choice of the packet
bp. This packet is chosen arbitrarily.) There are at
most hk transcripts, and therefore, if hk < jPj, then
at least two paths have the same transcript. Thus
assume, for the purpose of contradiction, that
hk < jPj, and let Pp and Pp 0 be two paths with the
same transcript h1h2 � � � hk. Since p 5 p 0, there is a
pair (i, j), i 5 j, such that ei is traversed before ej in
Pp, and ei is traversed after ej in Pp 0.

Assume now that both paths Pp and Pp0 are
operational. Since the protocol has no way to
distinguish an operational link from a link that is
just very slow, and since the protocol is oblivious, the
headers of packets bp and bp0, respectively following
Pp and Pp0, will be the same as those used to traverse
these two paths when only one of them is operational.
In particular, when yi receives a packet from xi with
header hi, it cannot know whether Pp, or Pp0, or both
paths, are operational. Therefore, yi forwards the
packet through both paths. The same holds for yj.

As a consequence, the following situation occurs.
A packet traverses ei with header hi, eventually
reaches xj along Pp, traverses ej with header hj,
eventually reaches xi along Pp0, traverses ei again,
still with header hi, and so on. This creates an
infinite loop, in contradiction with the termination
requirement. Therefore hk < jPj cannot hold, and
thus h P jPj1/k. h

The main theorem is the following:

Theorem 3. Any oblivious end-to-end communication

protocol in the p · q mesh requires headers of at least

Xðlog minfp; qgÞ bits.

Proof. Let Mp,q be the p · q mesh. Assume, w.l.o.g.
(without loss of generality), that p 6 q (otherwise
exchange the role of p and q). We see the mesh
Mp,q as with p rows and q columns. Rows are
labeled from 0 to p � 1, and columns from 0 to
q � 1. One can draw the mesh so that (0, 0) is the
top-left corner, and (p � 1,q � 1) is the bottom-
right corner. Let s and t be the source-node and
the target-node, respectively. The p · q mesh con-
tains three node-disjoint ðp � 2Þ � bq�2

3
c sub-meshes.

At least one of these sub-meshes does not contain s

nor t. Let M be this sub-mesh. One can construct
two disjoint paths Ps and Pt in Mp,qnM, respectively
leading from s to the ‘‘top-left’’ corner of M, and
from t to the ‘‘top-right’’ corner of M. Any oblivi-
ous end-to-end protocol must perform successfully
even if all links in Mp,qn(M [ Ps [ Pt) are faulty.
Hence one can assume, w.l.o.g., that s is node
(0, 0) and t is node (0,q � 1).

Let k ¼ bminfp�1
4 ;

ffiffiffiffiq
12

p
gc. Hence p P 4k + 1 and

q P 12k2 P 4k2 + 6k + 2. Let us consider the edges
ei = {xi,yi}, i = 1, . . . ,k, where xi = (2k, i(4k + 2) �
1) and yi = (2k,i(4k + 2)). Fig. 1 illustrates the idea
of the construction: eight edges are displayed on
row 2k (the horizontal and vertical scales are
different). From the setting of k, there are exactly
2k rows above row 2k (which contains all the eis),
and at least 2k rows below row 2k. Also, there are
exactly 4k columns separating column 0 from e1, 4k

columns separating two consecutive eis, and at least
4k columns separating column q � 1 from ek.

Let p 2 Rk be any permutation of k symbols. Let
us show that there is a simple path from s to t,
passing through ei from xi to yi for every i, in the
order ep(1),ep(2), . . . ,ep(k). To each ep(i) are associated

four rows and 4k columns. The rows associated to
ep(i) are rows

U i ¼ 2i� 2; U 0i ¼ 2i� 1;

Di ¼ 2k þ 2i� 2; and D0i ¼ 2k þ 2i� 1.



U
U’

D
D’

I I’ O’O I ’ O’IO
s t

(0,0) (0,q–1)

2k

(p–1,0) (p–1,q–1)

Fig. 1. Associated rows and columns.
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Fig. 1 shows the four rows associated to some ep(i).
U stands for ‘‘up’’, and D for ‘‘down’’. The dashed
rows are examples of rows associated to some ep(j),
j > i. Note that, since p P 4k + 1, row p � 1 is not
associated to any ep(i). Let ci = i(4k + 2) � 1 be the
column coordinate of xi, i = 1, . . . ,k. The columns
associated to ep(i) are columns

I i;j ¼ cj � 2iþ 1; Oi;j ¼ cj � 2i;

I 0i;j ¼ cj þ 2i� 1; and O0i;j ¼ cj þ 2i; j ¼ 1; . . . ; k.

Fig. 1 shows the 4k columns associated to some ep(i).
I stands for ‘‘inside’’, and O for ‘‘outside’’. The
dashed columns are examples of columns associated
to some ep(j), j > i. There is no overlapping between
associated columns. Moreover, columns 0, . . . , 2k

and 4k2 + 4k, . . . ,q � 1 are not associated columns.
Now, for i = 1, . . . ,k, we define the path Pi as

follows. (The construction is illustrated in Fig. 2
P1 P2

7                  2                  5                  8            
Row 2k

(0,0)
s

Fig. 2. The p
where the integer displayed above an edge indicates
the order of the edge in the permutation p.)

P1 starts from node s = (0, 0) following the row
U1 until it reaches column I1,j where j = p(1). Then
P1 follows I1,j downward until row 2k. At this point
P1 follows row 2k rightward until it traverses edge
ep(1). At node yj, P1 goes down to reach row 2k + 1,
and follows this row leftward until column O1,j.
Then it goes upward on O1,j until row U 01, and finally
follows this row until node (1,0) where it ends.

Pi starts from node (2(i � 1), 0). Let l1, l2, . . . , lh be
the indices l < i such that ep(l) is on the left of ep(i).
For instance, in Fig. 2, this sequence is 2,1,3, for
ep(4). Up to relabeling, one can assume, w.l.o.g., that
ep(la) is on the left of ep(la+1). Let j = p(i). Pi goes
rightward from node (2(i � 1),0) along row Ui until
it reaches column Ii, l1. Then it goes downward
until it reaches row Di, and goes right. Pi follows Di

until column I 0i;l1
, and then goes upward along that
P3 P4

      1                  3                  4                  6

(0,q–1)
t

 

ath Pis.
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column, until it reaches row Ui. This ‘‘detour’’
around the edges ep(la)s is repeated for each
1 6 a 6 h. (See for instance the path P4 in Fig. 2.)
More precisely, let a 2 {1, . . . ,h}. Pi remains on Ui

until it reaches column Ii,la
. Then it goes downward

until it reaches row Di, and goes right. Pi follows Di

until column I 0i;la
, and then goes upward along that

column, until it reaches row Ui again.
After the last detour around ep(lh), Pi goes

rightward on Ui until it reaches Ii,j. Then it goes
downward on Ii,j until it reaches row 2k, and turn
rightward along that row. Pi follows row 2k until it
traverses ej = ep(i). At node yj, Pi goes down to reach
row 2k + 1, and follows this row leftward until
column Oi,j. Then it goes upward on Oi,j until row
U 0i. At this point, Pi starts its journey leftward on
U 0i, back to column 0.

More precisely, Pi follows the same shape of path
as when it went rightward from column 0 (see
Fig. 2). That is, it proceeds along U 0i but takes
detour around edges ep(la)s. Let a 2 {1, . . . ,h}. A
detour around ep(la) consists in leaving U 0i to go
downward along O0i;la

until row D0i is reached. Then
Pi follows D0i leftward until column Oi,la

, and follows
this column upward until it reaches again U 0i. After
the last detour (i.e., the detour around ep(l1)), Pi

follows row U 0i until node (2i � 1,0) where it ends.
The following two properties are satisfied:

P1 For every 1 6 i 6 k, Pi is a simple path.
P2 For every i 5 j, Pi and Pj have no node in

common. More precisely, the paths fit one into
another as displayed in Fig. 3. In this figure,
a < b < i < j. Pa goes straight above e because
there is no need of a detour as Pb is not set yet.
Pb traverses e. Both Pi and Pj must go around
e. By construction, since i < j, they follow dif-
ferent associated rows and columns and there-
fore do not intersect.
Pi

Pj

Pa

Pb

e

Fig. 3. Two paths Pi and Pj do not intersect.
Now, let P be the following path from s to t:

P ¼ P 1; f1; P 2; f2; . . . ; P k�1; fk�1; P k;Q

where fi is the edge between nodes (2i � 1,0) and
(2i, 0), and Q is the simple path from node
(2k � 1,0) to t following column 0, then row
p � 1, and finally column q � 1. From properties
P1 and P2, P is a simple path from s to t which
traverse edges eis in the order ep(1),ep(2), . . . ,ep(k).

The construction applies for any permutation
p 2 Rk. Therefore, thanks to Lemma 1, any oblivious
end-to-end communication protocol in the p · q

mesh requires headers of at least Xðlogðk!Þ=kÞ ¼
Xðlog kÞ bits. Since k ¼ bminfp�1

4 ;
ffiffiffiffiq
12

p
gc, we get log

k ¼ Xðlog minfp; qgÞwhich completes the proof. h
3. Proofs of Theorems 1 and 2

3.1. Proof of Theorem 1

We use the ‘‘excluding grid’’ theorem of Robert-
son and Seymour, whose short proofs can be found
in [20,21]:

Theorem 4 (Robertson and Seymour [35]). For
every integer r there is an integer k such that every

graph of treewidth at least k has an r · r mesh as

minor.

So, let us define f(r) as the smallest integer k sat-
isfying Theorem 4. The constructive proof of the
excluding grid theorem, given in [21] shows that
f ðrÞ 6 25r5log2r. Let s be the treewidth of Gs,t, i.e.,
the graph obtained from G by deleting every
edge not on a simple path from s to t.
Let r ¼ bð1

5
log2sÞ

1=6c. By the excluding grid theo-
rem, Gs,t contains an r · r mesh as minor since
s P f(r).

Now, any oblivious end-to-end protocol on Gs,t

requires headers of size at least as large as those
required for the r · r mesh (recall that the end-to-
end problem is closed under minor taking, as shown
by Adler and Fich [1]). By Theorem 3, the headers
for r · r meshes are of size at least
Xðlog rÞ ¼ Xðlog log sÞ, which completes the proof
of Theorem 1.

Remark. Any polynomial upper bound on f(r) in r

would prove a lower bound of Xðlog sÞ on the
header size. So far, the best known upper bound
on f(r) is f ðrÞ 6 29r5

(cf. [36]). It is conjectured
that the correct order of magnitude for f(r) is
Oðr2 log rÞ.



Fig. 4. An 8 · 3 cylinder.
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3.2. Proof of Theorem 2

For r P 0, and c > 0, two integers, the r · c cylin-

der is the graph composed of r radial lines and c

circles as shown in Fig. 4.

Theorem 5 (Robertson and Seymour [34], p. 62). If

G is planar and has no r · r cylinder as minor, then G

has treewidth at most 3
2 ðr2 þ 2rÞ � 2.

It is clear that an r · r cylinder contains an r · r

mesh as minor. Let s = tw(Gs,t), and let
r ¼ b

ffiffiffiffiffiffiffi
s=5

p
c so that s > 3

2
ðr2 þ 2rÞ � 2. Thus, by

Theorem 5, Gs,t contains the r · r mesh as minor.
Therefore the header size for end-to-end communi-
cation in Gs,t is at least the header size for end-to-
end communication in the r · r mesh, that is at least
Xðlog rÞ ¼ Xðlog sÞ by Theorem 3. This completes
the proof of Theorem 2.
4. Conclusion

This paper provides lower bounds on the header
size for oblivious end-to-end communication in
both arbitrary and planar graphs. The design of
matching upper bounds remains open.

The treewidth of a graph G can be alternatively
defined as the minimum k for which G is a subgraph
of a triangulated graph H that has maximum clique
size k + 1. (Recall that a graph is triangulated if it
contains no chordless cycle of length greater than
three.) Solving the end-to-end communication prob-
lem in triangulated graphs of given maximum clique
size may be a good way to solve the problem for
arbitrary graphs.
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