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Abstract

This paper presents some analytic results concerning the pivot interval routing (PIR) strategy of [T. Eilam, C. Gavoille, D. Peleg,
Compact routing schemes with low stretch factor, J. Algorithms 46(2) (2003) 97–114, Preliminary version appeared. in: Proceedings
of the 17th ACM Symposium on Principles of Distributed Computing, June 1998, pp. 11–20.] That strategy allows message routing
on every weighted n-node network along paths whose stretch (namely, the ratio between their length and the distance between their
endpoints) is at most five, and whose average stretch is at most three, with routing tables of size O(

√
n log3/2 n) bits per node. In

addition, the route lengths are at most 2D (�1.5D� for uniform weights) where D is the weighted diameter of the network. The PIR
strategy can be constructed in polynomial time and can be implemented so that the generated scheme is in the form of an interval
routing scheme (IRS), using at most O(

√
n log n) intervals per link. Here, it is shown that there exists an unweighted n-node graph

G and an identity assignment ID for its nodes such that for every R ∈ PIR on G with a set of pivots computed by a greedy cover
algorithm (respectively, a randomized algorithm), AvStrG(R) > 3 − o(1) (respectively, with high probability). Also, it is shown that
for almost every unweighted n-node graph G, and for every R ∈ PIR on G, AvStrG(R)= 1.875 ± o(1). A comparison between PIR
and HCPk , the hierarchical routing strategy presented in [B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg, Improved routing strategies
with succinct tables, J. Algorithms 11 (1990) 307–341.] is also given.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background

The efficiency of routing schemes is commonly studied in terms of two conflicting parameters: the amount of
memory kept in each node for routing purposes and the stretch factor of the routing scheme, namely, the maximum
ratio between the length of the path traversed by a message and that of the shortest path between its source and
destination. A series of papers (e.g., [2–5,24]) established the existence of a tradeoff between the memory requirements
of a routing scheme and its worst-case stretch factor. In [24] it was shown that any routing strategy achieving stretch
factor s�1 must use a total of �(n1+1/(2s+4)) bits of routing information in the network. Moreover, any routing scheme
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with stretch factor s < 3 must use a total of �(n2) bits [11,17], and an optimal bound of �(n2 log n) bits holds for
stretch s < 1.4 including the shortest paths case s = 1 (cf. [21]). Conversely, a number of routing strategies proposed
in the literature achieve almost optimal efficiency–space tradeoffs. Specifically, in [24] it was shown that for every
graph and every integer k�1 it is possible to construct a hierarchical routing scheme with stretch factor O(k) which
uses a total of O(k3n1+1/k log n) bits of memory and names each node with an O(log2 n) bit label. The hierarchical
routing scheme presented in [2] uses O(kn1/k log n) bits of memory per node and guarantees a stretch factor O(k29k).
The scheme presented in [4] guarantees, for every k�1, a stretch factor of O(k2), while using O(kn1/klog2 n log D)

memory bits per node, where D is the weighted diameter of the network.
The major disadvantage of all the proposed hierarchical routing strategies is that they are rather complex, and thus

are impractical especially for high-speed networks for which the latency in each node must be very short.
Subsequently, considerable attention has been given recently to an opposing design philosophy, focusing on simple

and uniform compact routing strategies. Many compact routing strategies were proposed in the last decade (see, e.g.,
[10,12–14,25,27]).

The most popular such scheme is the interval routing scheme (IRS). It is presented in [25,27] and implemented
in the T9000 transputer router chip of INMOS. The idea of this scheme is to label nodes with unique integers from
{1, . . . , n}, and to label the outgoing arcs in every node with a set of destination labels in the form of a set of consecutive
intervals of the name segment. The collection of sets that label the outgoing arcs of a node forms a partition of the
name segment. When invoking the delivery protocol, a message is sent on the unique outgoing arc-labeled by a set that
contains the destination label. While the preprocessing stage of such a routing scheme (which is performed once in the
initialization of the network) might be complex, the delivery protocol consists of simple decision functions in every
node that depends only on the destination.

One of the desirable goals in interval routing is to minimize the maximum number of intervals that label an arc.
Unfortunately, while many lower bounds are known for this problem (see, e.g., [9,15,18,22,26]), few tradeoff results
between efficiency and space are known for any of these strategies for general graphs. For interval routing, a universal
strategy which is based on routing on a BFS-tree is presented in [25,27]. This scheme uses only one interval per edge,
thus the memory in a node with degree d is O(d log n), but it implies no upper bound on the stretch factor (cf. an n-node
ring). On the other extreme, it is shown in [20] that it is possible to generate for every network an IRS which uses at
most n/4 + o(n) intervals per edge and guarantees stretch factor s = 1. Lately, [22] showed that for every graph there
exists an IRS under which every message traverses a path of length at most �1.5D�, where D is the diameter of the
network, and which labels every arc with at most

√
n ln n + O(1) intervals. While this result implies an upper bound

on the dilation, i.e., the length of paths traversed by messages, it does not imply any non-trivial upper bound on the
stretch factor. Moreover, the paper does not present any efficient (say, polynomial time) preprocessing algorithm for
generating such an IRS for a given graph. For other results, a recent survey on IRS is presented in [16].

In an attempt to take all of the considerations discussed above into account, two polynomial time constructible
routing strategies, termed pivot interval routing (PIR), were presented in [8]. The first one, PIR1, generates for every
weighted graph with arbitrary link costs, a routing scheme with stretch factor s�5 that uses O(

√
n log3/2 n) bits per

node, and requires O(log n) latency (defined as the time required to extract the outgoing link on which a message is
to be forwarded in a node). The average stretch factor of these schemes is s�3. Moreover, the PIR1 preprocessing
algorithm actually generates for every graph an IRS which labels every arc with at most �

√
n log n intervals, where

� ≈ 1.17. The dilation guaranteed by the PIR1 strategy is 2D, where D is the weighted diameter of the network.
For the unweighted case, the slightly different routing strategy PIR2 (which also generates for every graph an IRS
with still �

√
n log n intervals per arc, where � ≈ 2.00) achieves the same memory requirements, stretch factor and

average stretch factor as PIR1 but guarantees a better dilation bound of �1.5D�. Thus, these routing strategies provide
the first constructive method for designing for every graph an IRS with constant stretch factor and o(n) intervals
per arc.

As the constructed routing schemes are IRSs, they enjoy the following properties: they employ a simple decision
function, depending only on the destination of the message, which is the only information coded in the header of the
message. Consequently, nodes executing the delivery protocol do not have to keep information on passing messages in
a local memory nor do they have to encode information by rewriting the header of the message. Also, the routing paths
traversed by messages are loop free. These properties are an advantage over the hierarchical routing schemes in which
headers of messages are rewritten, a message can bounce back to its originator, and the routing decision is complex
and does not depend only on the destination of the message.
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1.2. Our results

In this paper we supplement the construction methods of [8] with a number of analytic results concerning the quality
of the schemes. We first prove that the bound of s�3 on the average stretch factor of the proposed routing strategies
is tight. Nevertheless, we then show, using the family of random graphs Gn,p (with p = 1

2 ), that for almost all graphs
(specifically, all but a 1/n3 fraction of all the n-node graphs), the average stretch factor guaranteed by the PIR1 and
PIR2 routing strategies is asymptotically equal to 1.875. Note that other efficiency–space tradeoffs have been proposed
for random and Kolmogorov random graphs (see [7,19] for details). For instance, for optimal stretch s=1, it is proposed
in [19] a scheme with at most n+O(log4 n) bits per node for almost all graphs (actually, an IRS with at most 2 intervals
per link).

The PIR1 and PIR2 routing strategies are also compared with HCPk , one of the hierarchical routing strategies
proposed in [3]. It is shown that while the difference between the average stretch factor achieved by both strategies on
every graph does not exceed O(1), there are concrete examples in which our strategy is superior in terms of the average
stretch factor.

The rest of the paper is organized as follows. In Section 2 we give a precise definition of routing schemes and efficiency
measures, define interval routing and overview the covering techniques used for constructing the PIR schemes. In
Section 3 we review the PIR routing strategies. In Section 4 we show that for every R ∈ PIR on the unweighted
n-vertex complete graph Kn, AvStrKn(R) = 2 − o(1). We also show that there exists an unweighted n-node graph
G and an identity assignment ID for its nodes such that for every R ∈ PIR1 on G with a set of pivots computed
by the greedy cover algorithm (respectively, the randomized algorithm), AvStrG(R) > 3 − o(1) (respectively, with
high probability). Finally, we show that for almost every unweighted n-node graph G, and for every R ∈ PIR1 on
G, AvStrG(R) = 1.875 ± o(1). A comparison between PIR and HCPk , the hierarchical routing strategy presented in
[3] is given in Section 5. In particular, it is shown that for every n-node graph, and for every two routing schemes
RPIR1 ∈ PIR1 and RCP ∈ CP on G, AvStrG(RPIR1)�AvStrG(RCP) + o(1). Also, letting T be the star K1,n−1, and
letting r be its root, we show that if ID(r) is not the lowest ID, then for all RPIR1 ∈ PIR1 and RCP ∈ CP on T with set
of pivots computed by the random or the greedy cover algorithm, AvStrT (RCP) > 2 − o(1) (with high probability in
the randomized case), whereas AvStrT (RPIR1) = 1.

2. Model and definitions

2.1. Routing schemes and complexity measures

A point-to-point communication network is modeled as a symmetric, weighted, finite digraph G = (V , E, �),
|V |=n, where the set of nodes represent the processors of the network and every pair of two opposite arcs represents a
bidirectional communication link. Every arc of the network e ∈ E is associated with a non-negative weight �(e) (i.e.,
its cost) defining a metric. We assume that for every two opposite arcs e1 and e2, �(e1) = �(e2). In the special case
of uniform unit weight links, we say that the graph is unweighted, and denote it simply by G = (V , E). Graphs are
connected and do not contain self-loops or multiple arcs. We assume that every node v is named with a unique identity
integer ID(v). In what follows, we informally confuse between the node v and its name ID(v). Note that the identities
induce a total order on the nodes, thus for every two nodes u, v ∈ V either u < v or v < u.

The length of a directed path in the graph is the sum of weights of its arcs. The distance dG(u, v) between two nodes
u, v ∈ V is the length of a shortest path connecting them. The diameter of the graph G is defined as D=max{dG(u, v) |
u, v ∈ V }. For a node v ∈ V , let Ev denote its set of outgoing arcs, and denote its degree by deg(v) = |Ev|.

A routing scheme R is a distributed algorithm whose role is to deliver messages between nodes of the network.
The routing scheme consists of certain distributed data structures in the network, and a delivery protocol, which can
be invoked in any node u with two parameters: a routing label L(v) of the destination node v, and the message’s
information field. The message is delivered to v via a sequence of transmissions determined uniquely by the distributed
data structure. The length of the route traversed by a message from u to v in the graph G according to the routing
scheme R is denoted by �R(u, v).

A universal routing strategy is a function that returns, for every n-node graph G, a routing scheme on G. It is
implemented by a preprocessing algorithm, performed during setup time in order to construct the distributed data
structures and the labels required for the routing scheme.
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Let R be a routing scheme on an n-node graph G. Given a node u, the memory requirement of u, denoted by
MemoryG(R, u), is the smallest number of bits that are required in order to code Ru. Let us denote the total memory
requirements of a routing scheme R on G by MemoryG(R) =∑

u∈V MemoryG(R, u). The latency of R in u, denoted
by LatencyG(R, u), is the time complexity of Ru per node in the standard O(log n)-word RAM model. It corresponds
to the time required to extract from R the outgoing link on which the message is forwarded in u. The maximum and
average stretch factors of R are, respectively, defined as

StretchG(R) = max
u�=v

{
�R(u, v)

dG(u, v)

}
and AvStrG(R) = 1

n(n − 1)

∑
u�=v

�R(u, v)

dG(u, v)
.

A routing scheme of stretch factor 1 is termed a shortest path routing scheme. The dilation of a routing scheme R is
the maximal length of a path traversed by a message. Formally,

DilationG(R) = maxu�=v

{
�R(u, v)

}
.

2.2. Interval routing

An IRS R on G is a routing scheme consisting of a pair (L,I), generated in the preprocessing step, where L is a
node-labeling, L : V → {1, . . . , n}, and I is an arc-labeling, I : E → 2L(V ), that satisfy the following condition.
For any node u, the collection of sets that label all the outgoing arcs of u forms a partition of the name range (possibly
excluding u itself2). Formally, for every u ∈ V ,

1.
⋃

e∈Eu
I(e) ∪ L(u) = {1, . . . , n}.

2. I(e1) ∩ I(e2) = ∅ for every two distinct arcs e1, e2 ∈ Eu.
The delivery protocol is defined as follows. Given a destination node v, set the first header to be h1 = L(v). Also,

for every node u, input port q and header h, set Hu(q, h) = h and Pu(q, h) = p if and only if h ∈ I(u, v) and p is the
output port number of the arc (u, v). Namely, the message is sent on the arc which is labeled by a set that contains the
destination label. Note that we have the freedom to relabel the output port number of each arc in order to optimize the
memory requirements of the scheme at u.

Given an integer n and a subset I ⊆ {1, . . . , n}, define the compactness of I w.r.t. n, denoted by cn(I ), as the smallest
integer k such that I can be represented by the union of k intervals [a, b] of consecutive integers from {1, . . . , n},
with n and 1 being considered as consecutive (cyclically). The compactness of an IRS R = (L,I) on G, denoted by
CompG(R), is the maximum, over all arcs e ∈ E, of the compactness cn(I(e)) of the set I(e) labeling e. Intuitively,
smaller compactness and degrees imply smaller routing tables. The interval routing strategy presented in [25], based on
routing on a minimum spanning tree, has compactness 1 (for every graph) but unbounded stretch factor.Another example
is the ring Cn which admits an IRS R of compactness 1 with stretch factor 1 [25]. Therefore, MemoryCn

(R, u)=O(log n)

for every node u, as it suffices for u to store its label and the intervals assigned to the two arcs. Actually, every graph
G supporting an IRS R of compactness k satisfies MemoryG(R, u) = O(dk log(n/k)) where d = deg(u), using output
port relabeling from {1, . . . , d} (cf. [16]).

2.3. Balls, neighborhoods and covers

Our routing scheme constructions are based on the notions of neighborhoods, balls and covers. For every node v we
can order all the nodes of the graph w.r.t. v by increasing distance from v, breaking ties by increasing node identities.
Formally, x≺vy if and only if either dG(x, v) < dG(y, v), or dG(x, v) = dG(y, v) and x < y. The t-ball Bv(t) of v

is the set of the first t nodes according to the node ordering ≺v . The r-neighborhood of a node v ∈ V is defined as
�(v, r) = {u ∈ V | dG(v, u)�r}. Hence, intuitively, a ball is a neighborhood defined by volume rather than by radius.

Following is a simple fact which holds for both neighborhoods and balls.

2 A labeling excluding u from its arc-labels is termed strict. Although non-strict labeling may produce more compact schemes, in this paper we
restrict our attention to strict labeling only.
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Fact 2.1 (Monotonicity). If u ∈ Bv(t) (respectively, u ∈ �(v, r)) then for every node x on a shortest path from v to u,
u ∈ Bx(t) (respectively, u ∈ �(x, r)).

Consider a collection H of subsets of size t of elements from a set V. A set P ⊆ V is said to cover the collection
H if for every A ∈ H, A ∩ P �= ∅. We review two techniques presented in [3] for generating relatively small covers
for a given collection of sets of equal size.

The first technique is by using a greedy algorithm that starts with P = ∅ and iteratively adds to the set P an element
in V occurring in a maximum number of uncovered sets. The algorithm stops when P becomes a cover. The set P is
termed a greedy cover for H.

Lemma 2.2 (Lovász [23]). Let P be a greedy cover for H. Then |P | < |V|(ln |H| + 1)/t .

The second method is randomized, and takes each element of V to the set P with probability (c ln |H|)/t , for some
constant c > 1.

Lemma 2.3 (Awerbuch et al. [3]). Let P be the set constructed by the randomized cover algorithm under the as-
sumptions that |V|�2t and ln |H| = o(t). Then with probability at least 1 − 1/|H|c−1, P is a cover for H and
|P |�(2c|V| ln |H|)/t .

For our needs, |H| = |V| = n. In this paper, we are interested in the r-neighborhoods of nodes only for the case
r = �D/2�, where D is the diameter of the graph, and only for unweighted graphs. In particular, we would like to use
such neighborhoods in order to construct a small �D/2�-dominating set for our graph.

For every node vi , 1� i�n, let Wi = �(vi, �D/2�). Note that a cover for the set family W = {W1, . . . , Wn} (i.e.,
a set X ⊆ V whose intersection with each Wi is non-empty) is a �D/2�-dominating set for the graph. Also, note that
(since the weights on the graph arcs are uniform) W is an intersecting hypergraph, namely, the intersection Wi ∩ Wj

is non-empty for every i �= j , since otherwise dG(vi, vj ) > D. It is therefore easy to verify that W has a cover of
cardinality O(

√
n log n). Note that this cannot be deduced directly from Lemma 2.2, since |Wi | is not necessary in

�(
√

n log n). Nevertheless, we have the following.

Lemma 2.4. For every n-node unweighted graph G there exists a �D/2�-dominating set X of cardinality |X| <√
n(1 + ln n). Moreover, this set can be constructed by a straightforward greedy algorithm.

Proof. We rely on the following simple fact. Consider a step of the greedy algorithm, and let U be the collection of all
the sets Wi that were not covered so far. Let |U | = m. Then we claim that there is a node v ∈ V that occurs in at least
m

√
ln n/n sets in U. To see this, let dv denote the number of sets in U containing v, for every node v. Then,∑

v

dv =
∑

Wi∈U

|Wi | > m
√

n ln n.

Since there are at most n − |X|�n nodes in the sets remaining in U, we get by averaging that there must be a node v

for which dv �m
√

n ln n/n, as required.
We now claim that applying the greedy algorithm to W yields a �D/2�-dominating set X for G of cardinality

|X|�√
n ln n. To see that, denote by f (i) the number of sets remaining in U after i nodes were picked into X by the

greedy algorithm. We get that

f (i)�
{

n i = 0,

f (i − 1) − f (i − 1)/
√

n/ ln n otherwise.

This yields

f (i)�n

(
1 − 1√

n/ ln n

)i

,

and hence the set W is exhausted after no more than
√

n ln n elements have been added to X. �
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3. The PIR strategy

We now briefly overview the PIR strategies of [8]. The first one, PIR1, generates a routing scheme for every weighted
graph (Theorem 3.1) and the second one, PIR2, generates a routing scheme for unweighted graphs with improved
dilation (Theorem 3.2). These strategies are reminiscent of (and borrow some ideas from) the covering pivots (CP) of
[3]; a more thorough comparison is made in Section 5.

Theorem 3.1. For every n-node weighted graph G = (V , E, �) with weighted diameter D there exists an IRS
R = (L,I) on G such that MemoryG(R, u) = O(

√
n log3/2 n) and LatencyG(R, u) = O(log n), for every u ∈ V ,

StretchG(R)�5, AvStrG(R)�3, DilationG(R)�2D and CompG(R)��
√

n log n, where � ≈ 1.17. Moreover, R can
be constructed in polynomial time in n.

Intuitively, the idea of the PIR1 strategy is first to find the collection of t-balls of all the nodes of the graph, then to
cover this collection by a (comparatively small) set of nodes termed pivots, and finally to label the nodes and arcs of
the graph in such a way that a message with source u and destination v will be routed as follows. If the destination v is
in u’s t-ball, then the message will traverse a shortest path from u to v. Otherwise, it will traverse (in the worst case) a
shortest path to the pivot nearest to v, and then a shortest path from that pivot to v itself.

We present the preprocessing algorithm of the PIR1 strategy for any given ball size t and for any given cover P

of the collection of t-balls of nodes in the graph. The value of t is determined later where it is also shown how to
construct a cover P such that PIR1 will satisfy the properties in Theorem 3.1. We now give a formal description of
the PIR1 strategy. The preprocessing algorithm consists of three parts. In the first part, some preliminary structures are
constructed which are used later to define the node and arc-labeling functions L and I. The delivery protocol of PIR1
is the usual delivery protocol for IRSs.

3.1. Strategy PIR1: preprocessing and delivery protocol

We consider a weighted graph G = (V , E, �). We construct the IRS R = (L,I) as follows. The size of the balls is
fixed to t = √

n(1 + ln n)/2.
The preprocessing algorithm starts with some preliminary constructions. Let P be a cover for the collection of t-balls

of the nodes, {Bv(t)}v∈V . Let � = |P |. Assign to every node v its pivot p(v) ∈ P , where p(v) is the nearest node to v

in P (breaking ties by increasing node identities). For every pivot p ∈ P , let Sp ={v | p(v)=p} be its set of “clients”.
For every pivot p ∈ P , construct a minimum BFS spanning tree Tp rooted at p and spanning the entire graph G, and
let T̂p be the subtree of Tp induced by p and its set of clients Sp.

Next, the nodes are labeled as follows. Assume that P = {p1, . . . , p�}. We start by labeling the nodes in Sp1 . The
labeling is performed by traversing the tree T̂p1 (i.e., the subtree spanning Sp1 ), and assigning the nodes of T̂p1 a DFS
(preorder) numbering in sequential ascending order, starting from 1. In order to give an efficient implementation of
the scheme with low memory and low latency, a DFS is imposed so that, at any node x of T̂p1 , the children of x are
visited in a non-decreasing order of their number of descendants in the subtree. Once all the nodes of Sp1 have been
labeled, we continue by labeling the nodes in Sp2 in the same manner (traversing the tree T̂p2 ), starting from the integer
1 + |Sp1 |. Then we label the nodes of Sp3 , . . . , Sp�

in the same way, provided the node-labeling L.
The arcs are then labeled as follows. For every node x ∈ V , we label every arc e ∈ Ex by a set of destinations

I(e) ⊆ {1, . . . , n} in three main steps. We start by fixing I(e) = ∅ for every e ∈ Ex , and then we label the arcs Ex of
every node x as follows. For every A ⊆ V , we define L(A) = {L(a) | a ∈ A}.
(1) If x is not a leaf in the tree T̂p(x), let s1, . . . , sj be its successors in T̂p(x) and let T̂si be the subtree of T̂p(x) rooted

at si , for 1� i�j . Assign I(x, si) = {L(v) | v ∈ T̂si }, for every 1� i�j . Define L1 =⋃
1� i � jI(x, si).

(2) Define L2 = L(Bx(t))\L1. For every node v �= x such that L(v) ∈ L2, let e ∈ Exbe an arc on a shortest path
from x to v (if there is more than one such arc, choose one arbitrarily). Assign I(e) = I(e) ∪ {L(v)}.

(3) Let L3 = L(V )\(L1 ∪ L2). For every p ∈ P , let ep ∈ Ex be the arc from x to its predecessor on the tree Tp.
Assign I(ep) = I(ep) ∪ (L(Sp) ∩ L3).

Finally, the delivery protocol operates as follows. In a node x, a message M with destination v �= x is sent on the
unique arc e ∈ Ex , such that L(v) ∈ I(e).
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3.2. Strategy PIR2

Theorem 3.2. For every n-node unweighted graph G = (V , E) with diameter D there exists an IRS R = (L,I) on
G such that MemoryG(R, u) = O(

√
n log3/2 n) and LatencyG(R, u) = O(log n), for every u ∈ V , StretchG(R)�5,

AvStrG(R)�3, DilationG(R)��1.5D� and CompG(R)��
√

n log n, where � ≈ 2.00. Moreover, R can be constructed
in polynomial time in n.

Strategy PIR2 is very similar to PIR1, except that the preprocessing algorithm constructs a pivot collection covering
simultaneously the collection of t-balls and the collection of �D/2�-neighborhoods around the nodes of G. Formally,
the only necessary change is to replace the first step of the preprocessing algorithm of PIR1 by the following: let
P1 be a cover for the collection of t-balls of the nodes, {Bv(t)}v∈V . Let P2 be a cover for the collection of the
�D/2�-neighborhoods of the nodes, {�(v, �D/2�)}v∈V . Set P = P1 ∪ P2.

This change is responsible for the improvement in the dilation bound. Clearly, since P is a cover for the collection
of t-balls of the nodes, the PIR2 strategy is a special case of the PIR1 strategy.

4. Analytic results for PIR

We start with some analytic results on the PIR strategy. Let PIRi denote the set of all routing schemes generated
by the PIRi strategy (i = 1, 2) with t-balls on the class of n-node graphs for t = �(

√
n log n), and a cover P of size

O(
√

n log n). Let us set PIR = PIR1 ∪ PIR2. Since t is fixed from now on, let us denote, for every node u, Bu =Bu(t).
The results shown hereafter hold regardless of whether the cover P is constructed using the randomized or the greedy

algorithm, and some of these results hold for any cover P of size O(
√

n log n). Moreover, most of the results apply
also for the PIR2 strategy.

We first describe a property of the average stretch factor.

Proposition 4.1. For every R ∈ PIR on the unweighted n-vertex complete graph Kn, AvStrKn(R) = 2 − o(1).

Proof. Let R ∈ PIR be a routing scheme on Kn with pivot set P . Observe that the route from a node u to a node v

would be of length 1 if v ∈ Bu and of length 2 otherwise, and that t = |Bu| is independent of the choice of the set of
pivots. Consequently,

AvStrKn(R) = 1

n(n − 1)

∑
u�=v

�R(u, v) = n

n(n − 1)
(1 · (t − 1) + 2 · (n − t)) = 2 − o(1)

for t = �(
√

n log n). �

The next result shows that the bound of Theorem 3.1 on the average stretch factor is tight, as an average stretch factor
of 3 can be reached asymptotically with the PIR1 strategy.

Theorem 4.2. There exists an unweighted n-node graph G and an identity assignment ID for its nodes such that for
every R ∈ PIR1 on G with a set of pivots computed by the greedy cover algorithm (respectively, the randomized
algorithm), AvStrG(R) > 3 − o(1) (respectively, with high probability).

Proof. Given two suitable integers m, k�1, let us construct an unweighted n-node graph G=(V , E) defined as follows.
Let V = A ∪ B, where A is a clique of size mk, consisting of k subsets of size m, denoted by A1, ..., Ak . Likewise, B
is composed of 2k cliques of size t − 1, denoted by B1, ..., Bk and B ′

1, ..., B
′
k . In addition, for every i ∈ {1, . . . , k},

each node u ∈ Bi is connected to all the nodes of Ai , and B ′
i is connected to Bi by a matching. (See Fig. 1.) Hence,

n = |V | = mk + 2(t − 1)k (where m and k must be selected so as to insure that t = �(
√

n log n), as required from the
size of the balls of PIR1 schemes).

Consider the following identity assignment ID for the nodes of G, selected in order to enforce a specific choice of
the closest pivot. The identities for nodes of B are selected arbitrarily from the set {1, . . . , |B|}, and the identities of
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Fig. 1. A example for proving an average stretch factor of 3 − o(1).

the nodes of A are selected arbitrarily from the set {|B| + 1, . . . , n}. Then the balls around the vertices of G satisfy the
following claim.

Claim 4.3. For every u ∈ V , deg(u)� t − 1. Moreover, if u ∈ Ai , then Bu = {u} ∪ Bi , and if u ∈ Bi ∪ B ′
i , then

Bu ⊆ Bi ∪ B ′
i .

Proof. For every u ∈ A and v ∈ B, deg(u) = |A| − 1 + t , and deg(v)� t − 1. Hence, for every u ∈ V , Bu consists
of u and the t − 1 lowest-ID neighbors of u. Let us consider some i ∈ {1, . . . , k}. For each u ∈ Ai , the t − 1
lowest-ID neighbors of u consist of all the nodes of Bi , so Bu\{u} = Bi . For each u ∈ Bi ∪ B ′

i , u has exactly t − 1
neighbors in Bi ∪ B ′

i , because the identities of the nodes of B are lower than those of the nodes of A. Hence Bu ⊆
Bi ∪ B ′

i . �

Let P be the set of pivots. By Claim 4.3, for every i ∈ {1, . . . , k}, and for every u ∈ Ai ∪Bi ∪B ′
i , the ball Bu satisfies

Bu ⊆ Ai ∪Bi ∪B ′
i . Hence, no matter how P is chosen, there exists at least one pivot p ∈ P such that p ∈ Ai ∪Bi ∪B ′

i .
Let EOK denote the event that for every i ∈ {1, . . . , k} there is a pivot p ∈ P such that p ∈ Bi . Then the probability
that EOK holds satisfies the following claim.

Claim 4.4. (1) If P is computed by the greedy cover algorithm, then P(EOK) = 1.
(2) If P is computed by the randomized algorithm, then P(EOK) > 1 − 1/

√
n.

Proof. (1) Let p be the first pivot selected in Ai ∪ Bi ∪ B ′
i . Note that if p ∈ Ai then p covers only the ball around

p itself. Also, if p ∈ B ′
i then p covers at most deg(p) = |B ′

i | + 1 = t balls. On the other hand, if p ∈ Bi then p
covers at least |Ai | + |Bi | + 1 = m + t . It follows that for each i, the greedy algorithm will necessarily choose a pivot
in Bi .

(2) Recall that the randomized algorithm randomly picks each node of V into the cover with probability �= (c ln n)/t

for constant c > 1. For every i ∈ {1, . . . , k}, let Xi = |Bi ∩ P | denote the random variable counting the number of
pivots in Bi . For every i,

P(Xi = 0) = (1 − �)|Bi | = (1 − �)t−1,

so P(∃i, Xi = 0)�k(1 − �)t−1. It follows that

P(EOK) = P(∀i, Xi > 0)�1 − k(1 − �)t−1.

Note that k = n/(m + 2(t − 1))�√
n/2 (for n large enough). In order to bound the probability we use the following

known fact.
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Fact 4.5. For all 0 < ��1/2 and � > 0, (1 − �)� < e−��.

Hence,

P(EOK)�1 − ke−�(t−1) �1 −
√

n

2
e−c(1−1/t) ln n

> 1 − 1
2n−(1/2−1/t) > 1 − n−1/2,

completing the proof of Claim 4.4. �

By Claim 4.4, every clique Bi contains at least one pivot. Consider a routing scheme R ∈ PIR1 on G with pivot set
P . We want to lower bound AvStrG(R). Because dG(u, v) = 1 for all u, v ∈ A, we have

AvStrG(R) >
1

n(n − 1)

∑
u�=v∈A

�R(u, v).

For every node u ∈ V , let p(u) ∈ P denote the closest pivot of u, according to the distance definition. For every p ∈ P ,
let Tp be the minimum spanning tree rooted in p and used by R. Consider some pair u, v ∈ A, u �= v. Note that if
dG(u, p(v)) = 2 and {u, v} is not an edge of Tp(v) then �R(u, v) = 3. Given u, the number of nodes v ∈ A such that
{u, v} is an edge of Tp(v) is k − 1, since all the nodes of a same component Ai share a unique pivot in Bi , and hence
use the same tree to route inside Ai . Moreover, dG(u, p(v)) = 1 if and only if u and v are both in the same Ai . In total,
the number of nodes v such that �R(u, v) �= 3 is at most m + k − 1, so∑

v∈A\{u}
�R(u, v)�3(|A| − 1 − (m + k − 1)) = 3mk − 3(m + k).

Summing over all u ∈ A, it follows that∑
u�=v∈A

�R(u, v)�3(mk)2 − 3mk(m + k).

Letting k = √
n/ ln n, we have mk = n − 2(t − 1)k = n − cn/

√
ln n and m + k < c′√n ln n, for large n and for suitable

constants c, c′ > 0. Hence,

AvStrG(R) >
3(n − cn/

√
ln n)2 − 3(n − cn/

√
ln n)c′√n ln n

n(n − 1)

>
3n2 − 6cn/

√
ln n − 3c′n3/2

√
ln n

n2 > 3 − 6c

n
√

ln n
− 3c′√ln n√

n

> 3 − O

(√
log n

n

)
,

completing the proof of Theorem 4.2. �
Finally, we show that the average stretch factor of the PIR1 strategy is asymptotically 1.875 for almost all unweighted

graphs. This is done as follows. Let �(v)=�(v, 1). Call an n-vertex graph G= (V , E) typical if it enjoys the following

properties:
[TYP1] G is of diameter 2.
[TYP2] For every node v ∈ V , n/2 − 3

√
n ln n� |�(v)|�n/2 + 3

√
n ln n,

[TYP3] For every two nodes v, w ∈ V , n/4 − 3
√

n ln n� |�(v) ∩ �(w)|�n/4 + 3
√

n ln n.
Recall that Gn,p denotes the class of n-node random graphs, where p represents the probability to have an edge

between any two nodes. For random graphs selected from Gn,1/2 we have the following. (The simple bounds in the
definition of a typical graph suit our needs; see [6] for sharper statements.)

Lemma 4.6. With probability at least 1 − 1/n3, a random unweighted graph G ∈ Gn,1/2 is typical.
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Proof. Consider a random unweighted graph G ∈ Gn,1/2. We prove only that with high probability, G satisfies the
third property, [TYP3]. Fix a pair of nodes v, w ∈ V . For every other node x, let J (x) denote the event that x is adjacent
jointly to both v and w, namely,

J (x) = “ x ∈ �(v) ∩ �(w)” .

Note that this event occurs with probability 1
4 , and the events J (x) and J (x′) are independent for every x, x′ ∈ V .

Let Z denote a random variable counting |�(v) ∩ �(w)|. Then Z =∑
x �=v,wzx , where zx is the characteristic random

variable of the event J (x). Hence, Z is the sum of n − 2 mutually independent Bernoulli variables, and its expected
value is E(Z) = (n − 2)/4, and hence applying Chernoff’s bound (cf. [1]) we get

P

(
Z >

n − 2

4
+ 3

√
n ln n

)
< P

(
Z >

(
1 + 7

√
ln n

n

)
E(Z)

)

< exp

(
−49 ln n E(Z)

3n

)
<

1

n3

for n�8, and likewise

P

(
Z <

n − 2

4
− 3

√
n ln n

)
<

1

n3 ,

and the claim follows. �

Lemma 4.7. For every unweighted n-node typical graph G, and for every R ∈ PIR1 on G, AvStrG(R)=1.875±o(1).

Proof. Consider an unweighted n-node typical graph G. Fix some node v in G. Note that by property [TYP1], the
nodes of V \ {v} are partitioned into two sets, A = �(v)\ {v} and B = V \�(v), where every node in B is adjacent to
some node of A. Also note that by choice of the pivots, p(v) is necessarily in A. Let C = �(v) ∩ �(p(v)). By property
[TYP3] we have

n

4
− 3

√
n ln n� |C|� n

4
+ 3

√
n ln n. (1)

By property [TYP2] we have

n

2
− 3

√
n ln n� |�(v)|� n

2
+ 3

√
n ln n. (2)

Let us calculate the average stretch over all the routes leading to v. For every node x ∈ V , let s(x)=�R(x, v)/dG(x, v)

denote the stretch of the route from x to v. By case analysis we show that s(x) can assume only four possible values,
namely, 1, 1.5, 2 or 3. Denote the set of vertices x with s(x) = z by Mz.

Optimal stretch (s(x) = 1) is achieved for nodes x in the set M1 = Bv ∩ (B ∩ �(p(v))), where in Bv the shortest
path and the actual route are both of length 1, and in B ∩ �(p(v)) the length of both paths is 2. By construction,
|Bv| = t = �(

√
n log n), so |Bv|�c0

√
n ln n for some constant c0 > 0. By the definition of B,

B ∩ �(p(v)) = �(p(v)) ∩ (V \�(v)) = �(v)\�(p(v)) = �(v)\C,

so |B ∩ �(p(v))| = |�(v)| − |C|. By inequalities (1) and (2),

n

4
− 6

√
n ln n� |B ∩ �(p(v))|� n

4
+ 6

√
n ln n. (3)

Hence,

n

4
− 6

√
n ln n�M1 � n

4
+ 6

√
n ln n. (4)

The only nodes x for which s(x) = 1.5 are those nodes in M1.5 = B\�(p(v)). As

B\�(p(v)) = (V \�(v))\�(p(v)),
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we have |B\�(p(v))| = |V | − |�(v)| − |C|, and by inequalities (1) and (2) again,

n

4
− 9

√
n ln n� |M1.5| = |B\�(p(v))|� n

4
+ 9

√
n ln n. (5)

The nodes x for which s(x) = 2 are those in M2 = (A\Bv) ∩ �(p(v)). As

|C\Bv|� |(�(v)\Bv) ∩ �(p(v))|� |C|,
we have, by inequality (1) again,

n

4
− (3 + c0)

√
n ln n� |M2| = |(A\Bv) ∩ �(p(v))|� n

4
+ 3

√
n ln n. (6)

Finally, the nodes x for which s(x)= 3 are those in M3 =A\(Bv ∪�(p(v))). As A\(Bv ∪�(p(v)))=�(v)−C −Bv ,
by inequality (3),

n

4
− (6 + c0)

√
n ln n� |M3| = |A\(Bv ∪ �(p(v)))|� n

4
+ 6

√
n ln n. (7)

By inequalities (4)–(7), it follows that the average stretch from v to some x ∈ V , x �= v, is at most

1

n − 1
(1 · |M1| + 1.5 · |M1.5| + 2 · |M2| + 3 · |M3|)

� 1

n − 1

(
(1 + 1.5 + 2 + 3) · n

4
+ O

(√
n log n

))
�1.875 + O

(√
log n

n

)

and at least 1.875 − O(
√

(log n)/n), and hence the same bounds apply to the average over all destinations v, yielding

1.875 − O

(√
log n

n

)
�AvStrG(R)�1.875 + O

(√
log n

n

)
. �

Lemmas 4.6 and 4.7 immediately yield the following.

Theorem 4.8. For almost every unweighted n-node graph G, and for every R ∈ PIR1 on G, AvStrG(R)=1.875±o(1).

5. PIR vs. CP schemes

This section compares the PIR1 strategy with other general strategies developed in [3], in particular the CP strategies.
The strategy is similar to PIR, and imposes similar memory requirements, but gives a better bound on the stretch factor.
On the other hand, the CP schemes are not IRSs and thus do not enjoy the benefits of IRSs discussed above. In particular,
the paths followed by messages in the CP schemes are not loop free. We show that the average stretch factor guaranteed
by the PIR strategies is never worse than that guaranteed by the CP strategy, whereas for trees the PIR strategy is strictly
better.

Let HCPk be the routing strategy developed in [3] called hierarchical covering pivot.

Theorem 5.1 (Awerbuch et al. [3]). For every n-node weighted graph G, and for every integer k�1, HCPk generates
a routing scheme R on G such that3 MemoryG(R) = O(kn1+1/klog2−1/k n) and StretchG(R)�2k − 1. Moreover, R

is constructible in polynomial time.

The HCPk strategy first selects a hierarchy of sets of pivots, Pk−1 ⊂ · · · ⊂ P1 ⊂ P0 = V , each of size about n1−i/k .
Each pivot in Pi is able to route on a shortest path to nodes in its neighborhood of size roughly n(i+1)/k . When a node u

wants to send a message to v, the message is transferred through the chain of pivots associated with u from successively
higher levels, until it reaches a pivot able to route directly to v. For concreteness, let us consider k =2. Then the scheme

3 In the original paper the bound was O(kn1+1/k log2 n), but it can be improved by a factor log1/k n with a slightly better optimization.
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generated by HCP2 routes messages through one level of pivots, P1. (P0 = V is not considered here.) Hence the route
from u to v follows, successively, u, the pivot p(u) closest to u in P1, and then v. In comparison, the route generated
by the PIR1 or PIR2 strategy would go through u, p(v) and then v, allowing a loop-free routing, and bounding the
compactness of its interval routing implementation.

In the analysis of the memory complexity of the HCPk strategy it is assumed that the length of node identities is
O(log n) bits (the pivots need to keep some translation tables storing the identities of some nodes). For every k > 1, the
scheme generated by HCPk is not loop free, and the upper bound it gives on the local memory requirement of a node
is no better than O(n log n) bits.

Assuming the same total memory requirements, HCP2 and PIR are similar strategies, although the bound on the
stretch factor is only 3 for HCP2 and 5 for PIR. We are therefore interested in the schemes of the strategy HCP2. In
[3], the HCP2 strategy is called the CP strategy. We denote by t the common size of the neighborhoods (t-balls) used
for both strategies, and choose t = �(

√
n log n) to the size optimizing the total memory requirements.

We first show that in terms of their average stretch factor, the schemes of PIR1 are asymptotically never worse than
those of CP.

Theorem 5.2. For every n-node graph, and for every two routing schemes RPIR1 ∈ PIR1 and RCP ∈ CP on G,
AvStrG(RPIR1)�AvStrG(RCP) + o(1).

Proof. Consider a set of pivots P for both schemes, and any two nodes u, v at distance d. Three cases may occur:

(1) Bu ∩ Bv = ∅;
(2) v ∈ Bu and u ∈ Bv and
(3) v ∈ Bu and u /∈Bv , or the reverse.

For cases (1) and (2)

�RPIR1
(u, v) + �RPIR1

(v, u) = �RCP
(u, v) + �RCP

(v, u).

In case (3), �RPIR1
(u, v) = �RCP

(u, v) = d , while in the opposite direction �RPIR1
(v, u)�5d but �RCP

(v, u)�3d. So
RPIR1 may induce longer routing paths for case (3). However, given a node u, the number of pairs (u, v) such that
v ∈ Bu and u /∈Bv is bounded by |Bu| = t . Therefore, the total number of such pairs in the whole graph is at most
nt , which is only a t/(n − 1) fraction of all the pairs. For each such pair the stretch can increase by at most 2, so
AvStrG(RPIR1) − AvStrG(RCP)�2t/(n − 1) = o(1), as t = �(

√
n log n). �

As a corollary of Theorem 5.2, we have that AvStrKn(R)�2 − o(1) for R ∈ CP on Kn (Proposition 4.1), and also
that there exists some worst-case graph G with specific node IDs such that AvStrG(R) > 3 − o(1), for every R ∈ CP
on G with pivot set chosen randomly or computed with the greedy algorithm (Theorem 4.2). Similar to Theorem 4.8,
almost every graph G satisfies AvStrG(R)�1.875 − o(1) for R ∈ CP on G.

Next we illustrate the advantage of the PIR1 strategy over the CP strategy w.r.t. average stretch factor.

Theorem 5.3. Let T be the star K1,n−1, and let r be its root. If ID(r) is not the lowest ID, then for all RPIR1 ∈ PIR1
and RCP ∈ CP on T with set of pivots computed by the random or the greedy cover algorithm, AvStrT (RCP) > 2−o(1)

(with high probability in the randomized case), whereas AvStrT (RPIR1) = 1.

Proof. Clearly, AvStrT (R) = 1 for every R ∈ PIR1, as PIR1 always routes optimally on trees. Suppose that the IDs
assigned to the nodes of T are 1–n, and that ID(r) �= 1. Let l = t − 2. Note that in this case, the ball Bv built by the
scheme around each leaf v consists of the nodes {1, . . . , x} ∪ {r, v}, where

x =
{

l, v, r > l,

l + 1, v > l and r � l or vice versa,
l + 2, v, r � l,

and similarly for the ball Br around the root.
Let us first consider the greedy pivot selection algorithm. Assume that in the greedy algorithm, ties (between two

candidates to join the pivot set) are broken in favor of the smallest-ID candidate. Note that when selecting the first pivot,
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all nodes in {1, . . . , l}∪{r} are equal candidates, and hence the algorithm will pick 1 as the first (and only) pivot. Hence,
the resulting routing scheme R ∈ CP will route messages between all but O(nt) pairs of nodes (specifically, between any
v, w ∈ V such that v, w > l and v, w �= r) in four steps rather than two. Thus, AvStrT (RCP) > 2 − O(t/n) = 2 − o(1),
as t = �(

√
n log n).

As for the randomized cover algorithm, we are guaranteed that with high probability all balls are covered by at
least one pivot, but the probability that r was chosen as pivot is roughly ln n/

√
n, and moreover, the probability

that r was the smallest ID pivot chosen is even smaller. Hence, with probability at least 1 − ln n/
√

n, the analysis
of the greedy strategy applies to the randomized strategy as well, and hence with this probability AvStrT (RCP) >

2 − O(
√

(log n)/n). �
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