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Abstract. A subgraph H of a graph G is isometric if the distances between vertices in H
coincide with the distances between the corresponding vertices in G. We show that for any integer

n \geqslant 1, there is a graph on 3n+O(log2 n) vertices that contains isometric copies of all n-vertex graphs.
Our main tool is a new type of distance labelling scheme, whose study might be of independent
interest.
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1. Introduction.

1.1. Universal graphs. A graph H is said to be induced-universal for a graph
class C if H contains all graphs G \in G as induced subgraphs. Let G denote the
class of all graphs, and Gn denote the class of all n-vertex graphs. It was proved
by Moon [26] in 1965 that Gn has an induced-universal graph with n \cdot 2n/2 vertices,
and that any induced-universal graph for Gn must contain at least 2(n - 1)/2 vertices.
After intermediate results by Alstrup et al. [7], Alon [1] recently proved that Gn has
an induced-universal graph with (1 + o(1))2(n - 1)/2 vertices, showing that the lower
bound of Moon (which follows from a simple counting argument) can be attained, up
to a lower order term.

A stronger notion of induced-universal graph is the following: we say that H is
an isometric-universal graph for a class C if H contains isometric copies of all graphs
G \in C, where a subgraph G of H is isometric if the distances between vertices of G
are the same in G and H: for any u, v in V (G) \subseteq V (H), dG(u, v) = dH(u, v) (where
dG(u, v) denotes the distance between u and v in G). Note that an isometric copy of
a graph G in a graph H is an induced copy of G in H, as two vertices are adjacent
in a graph if and only if they are at distance 1 in this graph. This implies that
any isometric-universal graph for a class C is also induced-universal for C. It turns
out that the property of being isometric-universal is significantly stronger than the
property of being induced-universal. For instance, Bollob\'as and Thomason [8] proved
that the random graph G(N, 1

2 ) with N = n2 \cdot 2n/2 is almost surely induced-universal
for Gn, but since it has diameter 2 almost surely, G(N, 1

2 ) only contains graphs of
diameter at most 2 as isometric subgraphs.
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The following natural question was recently raised by Peter Winkler (personal
communication).

Question 1.1. Is there a constant c > 1 such that the class Gn of all n-vertex
graphs has an isometric-universal graph on at most cn vertices?

The main result of the present paper is a positive answer to Question 1.1 for any
c > 3.

Theorem 1.2. For any integer n \geqslant 0, the class Gn of all n-vertex graphs has an
isometric-universal graph on at most 3n+O(log2 n) vertices.

We prove Theorem 1.2 by studying a new type of labelling scheme, as we explain
next.

1.2. Labelling schemes. For a set S, and an integer k \geqslant 0, the k-fold Cartesian
product S \times \cdot \cdot \cdot \times S is denoted by Sk. We write S\leqslant k =

\bigcup k
i=0 S

i and S\ast =
\bigcup \infty 

i=0 S
i

(i.e., S\ast denotes the set of finite sequences of elements of S, or equivalently, the set
of finite words, or strings, on the alphabet S). For instance, \{ 0, 1\} \ast denotes the set
of finite binary strings, while (\BbbN \cup \{ \infty \} )\ast denotes the set of finite sequences whose
elements are integers or \infty . For a string s \in S\ast , the length of s is denoted by | s| .
Throughout the paper, logn denotes the binary logarithm of n.

An adjacency labelling scheme for a graph class C is a function A : \{ 0, 1\} \ast \times 
\{ 0, 1\} \ast \rightarrow \{ 0, 1\} such that for any graphG \in C there is a function \ell G : V (G) \rightarrow \{ 0, 1\} \ast 
with the following property: for any pair of vertices u, v \in V (G), A(\ell G(u), \ell G(v)) = 1
if and only if u and v are adjacent in G. In other words, we can tell whether u and
v are adjacent in G by only looking at the labels \ell G(u) and \ell G(v). Note that the
function A depends on C (and not on a specific graph G \in C). We say that the
adjacency labelling scheme has labels of at most k bits if | \ell G(v)| \leqslant k for any G \in C
and v \in V (G).

Kannan, Naor, and Rudich [22, 23] noticed the following connection between
adjacency labelling schemes and induced-universal graphs.

Theorem 1.3 ([22, 23]). For any integer k \geqslant 0, a class C has an adjacency
labelling scheme with labels of at most k bits if and only if C has an induced-universal
graph with at most 2k+1  - 1 vertices.

The equivalence is proved as follows. Given an adjacency labelling scheme A
with labels of at most k bits, we define an induced-universal graph H with vertex
set \{ 0, 1\} \leqslant k by connecting any pair of vertices a, b by an edge in H if and only if
A(a, b) = 1. For any graph G \in C, the labelling function \ell G : V (G) \rightarrow \{ 0, 1\} \leqslant k

gives a natural embedding of G into H, and it easily follows from the definition of A
that the image of G by \ell G in H is an induced copy of G in H. Conversely, given an
induced-universal graph H for C with | V (H)| \leqslant 2k+1  - 1 vertices, we can identify
V (H) with (a subset of) \{ 0, 1\} \leqslant k, and define A(a, b) = 1 if and only if a and b exist
and are adjacent in H. For any graph G \in C, any embedding of G as an induced
copy in H naturally defines a labelling \ell G : V (G) \rightarrow V (H) \subseteq \{ 0, 1\} \leqslant k such that for
any u, v \in V (G), A(\ell G(u), \ell G(v)) = 1 if and only if u and v are adjacent in G.

Adjacency labelling schemes have been the main tool for constructing induced-
universal graphs with few vertices [1, 7, 10, 13, 15, 22, 23]. As a consequence, a
natural attempt to answer Question 1.1 would be to find a type of labelling scheme
that would be equivalent to isometric-universal graphs. A natural candidate is the
notion of the distance labelling scheme, introduced by Gavoille et al. in [17] (inspired
by the work of Graham and Pollak [21] in 1972; see also [28]), and further studied
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in [4, 6, 5, 3, 18, 19]. A distance labelling scheme for a graph class C is a function
B : \{ 0, 1\} \ast \times \{ 0, 1\} \ast \rightarrow \BbbN \cup \{ \infty \} such that for any graph G \in C there is a labelling
function \ell G : V (G) \rightarrow \{ 0, 1\} \ast with the following property: for any pair of vertices
u, v \in V (G), B(\ell G(u), \ell G(v)) = dG(u, v). In other words, we can determine the
distance between u and v in G using only the labels \ell G(u) and \ell G(v). As before, if
there is an integer k \geqslant 0 such that | \ell G(v)| \leqslant k for any graph G \in C and v \in V (G),
then we say that C admits a distance labelling scheme with labels of at most k bits.

Note that a distance labelling scheme tells us in particular whether two vertices are
at distance 1 (equivalently, if they are adjacent), and thus a distance labelling scheme
is also an adjacency labelling scheme. On the other hand, we have the following
partial analogue of Theorem 1.3.

Lemma 1.4. If a class C has an isometric-universal graph with at most 2k+1  - 1
vertices, for some integer k \geqslant 0, then C has a distance labelling scheme with labels of
at most k bits.

Proof. As above, given an isometric-universal graph H with at most 2k+1  - 1
vertices for C, we define a distance labelling scheme B for C as follows. We identify
the vertex set of H with (a subset of) \{ 0, 1\} \leqslant k, and for any graph G \in C we consider
an isometric embedding \ell G : V (G) \rightarrow V (H) \subseteq \{ 0, 1\} \leqslant k of G in H. Given a, b \in 
V (H) \subseteq \{ 0, 1\} \leqslant k, we simply define B(a, b) = dH(a, b). It follows from the definition
of an isometric-universal graph that the distance between u and v in a graph G \in C
coincides with the distance between \ell G(u) and \ell G(v) in H, so B is indeed a distance
labelling scheme for C, with labels of at most k bits.

Interestingly, in this case the connection between labelling schemes and universal
graphs does not go in both directions: distance labelling schemes cannot be automat-
ically converted into isometric-universal graphs.1 For instance, the distance labelling
scheme of Winkler [28] (see also [17]) leads to a graph with constant diameter, so it
can only contain isometric copies of graphs with constant diameter.

In section 2 we define a new type of labelling scheme, called the distance-vector
labelling scheme, and prove that having such a scheme with labels of k bits implies the
existence of isometric-universal graphs with 2k vertices. We then show how to obtain
distance-vector labelling schemes with labels ofO(n) bits for all n-vertex graphs, which
directly implies a positive answer to Question 1.1. We also explore the limitations of
this approach. In section 3 we prove Theorem 1.2. The proof does not use distance-
vector labelling schemes but a slightly more technical variant. The generality of the
proof also allows us to deduce improved bounds on the size of isometric-universal
graphs for families with sublinear separators, such as planar graphs or more generally
graphs avoiding some fixed minor. We conclude with some open problems in section 4.

2. Distance-vector labelling schemes. A distance-vector labelling scheme for
a graph class C is a function D : \{ 0, 1\} \ast \rightarrow (\BbbN \cup \{ \infty \} )\ast such that for any graph
G \in C there is an ordering v1, v2, . . . , vn of the vertices of G and a function \ell G :
V (G) \rightarrow \{ 0, 1\} \ast with the following property: for any vertex v \in V (G), D(\ell G(v)) =
(dG(v, v1), dG(v, v2), . . . , dG(v, vn)). In other words, we can determine the distance in
G between v and each vertex of G by only looking at the label \ell G(v). As before, if
there is an integer k \geqslant 0 such that | \ell G(v)| \leqslant k for any graph G \in C and v \in V (G),
then we say that C admits a distance-vector labelling scheme with labels of at most k
bits.

1On the other hand, distance labelling schemes can be converted into small universal distance
matrices in a natural way; see [16].
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We note that contrary to adjacency labelling schemes and distance labelling
schemes, in distance-vector labelling schemes the function D has a single parame-
ter.

We start by observing that any distance-vector labelling scheme can be translated
into a distance labelling scheme with labels of the same size.

Proposition 2.1. Let C be a graph class with a distance-vector labelling scheme
with labels of at most k bits, for some integer k \geqslant 0. Then C has a distance labelling
scheme with labels of at most k bits.

Proof. Let D be a distance-vector labelling scheme for C with labels of at most k
bits. Consider a graph G \in C, let v1, . . . , vn be the associated ordering of the vertices
ofG, and let \ell G : V (G) \rightarrow \{ 0, 1\} \ast be the associated labelling function. We now define a
distance labelling scheme B for C. We keep the same labelling functions (\ell G)G\in C. For
two vertices u, v \in G, we start by considering D(\ell G(u)) = (dG(u, v1), . . . , dG(u, vn))
and D(\ell G(v)) = (dG(v, v1), . . . , dG(v, vn)). In the first sequence, the unique index i
such that dG(u, vi) = 0 is such that u = vi, so we can find dG(v, vi) = dG(v, u) in the
second sequence. This shows how to obtain dG(u, v) from \ell G(u) and \ell G(v). So the
implicitly defined function B(\ell G(u), \ell G(v)) is indeed a distance labelling scheme for
C with labels of at most k bits, as desired.

For every vector x = (xi)
n
i=1 \in (\BbbN \cup \{ \infty \} )n, let \| x\| \infty = maxni=1 | xi| \in \BbbN \cup \{ \infty \} .

Adopting the convention that \infty  - \infty = 0, we observe that (x, y) \mapsto \rightarrow \| x - y\| \infty defines
a distance in (\BbbN \cup \{ \infty \} )n. We now prove that the existence of distance-vector labelling
schemes with small labels implies the existence of small isometric-universal graphs.

Lemma 2.2. If a graph class C has a distance-vector labelling scheme with labels
of at most k bits, for some integer k \geqslant 0, then C has an isometric-universal graph
with at most 2k+1  - 1 vertices.

Proof. Let D be a distance-vector labelling scheme for C with labels of at most k
bits. Let H be the graph with vertex set \{ 0, 1\} \leqslant k, where two vertices a, b \in \{ 0, 1\} \leqslant k

are adjacent in H if and only if D(a) and D(b) have the same length and \| D(a)  - 
D(b)\| \infty = 1.

Consider two vertices a, b \in V (H) = \{ 0, 1\} \leqslant k lying in the same connected com-
ponent of H, and let a0, a1, . . . , at be a shortest path between a = a0 and b = at in
H. Note that all the vectors D(ai), for 0 \leqslant i \leqslant t, have the same length. Moreover,
for any 1 \leqslant i \leqslant t, \| D(ai - 1)  - D(ai)\| \infty = 1, and thus it follows from the triangle
inequality that

\| D(a) - D(b)\| \infty \leqslant 
t\sum 

i=1

\| D(ai - 1) - D(ai)\| \infty = t = dH(a, b).

Consider a graph G \in C, let v1, . . . , vn be the associated sequence of vertices of
G, and let \ell G : V (G) \rightarrow \{ 0, 1\} \leqslant k = V (H) be the associated labelling function.

We now prove that \ell G maps G to an isometric copy of G in H. By definition,
D(\ell G(v)) = (dG(v, v1), . . . , dG(v, vn)) for any vertex v \in V (G). If uv \in E(G), then
u \not = v so \| D(\ell G(u)) - D(\ell G(v))\| \infty \geqslant 1. Moreover, | dG(u, vi) - dG(v, vi)| \leqslant dG(u, v) =
1 by the triangle inequality for all i, and thus \| D(\ell G(u)) - D(\ell G(v))\| \infty = 1. Hence we
find that G embeds as a subgraph of H via \ell G, and thus dH(\ell G(u), \ell G(v)) \leqslant dG(u, v)
for any u, v \in V (G). We now prove that for all u, v \in V (G), any path between
\ell G(u) and \ell G(v) in H has length at least dG(u, v), which shows that G is an isometric
subgraph of H.

D
ow

nl
oa

de
d 

11
/2

9/
21

 to
 1

47
.2

10
.1

28
.2

48
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



© 2021 Louis Esperet, Cyril Gavoille, and Carla Groenland

1228 LOUIS ESPERET, CYRIL GAVOILLE, AND CARLA GROENLAND

Let 1 \leqslant i, j \leqslant n be indices such that u = vi and v = vj . We know that the jth
entry D(\ell G(v))j of the vector D(\ell G(v)) is equal to dG(v, vj) = dG(v, v) = 0, while the
jth entry D(\ell G(u))j of the vector D(\ell G(u)) is equal to dG(u, vj) = dG(u, v), and so

\| D(\ell G(u)) - D(\ell G(v))\| \infty \geqslant | D(\ell G(u))j  - D(\ell G(v))j | = dG(u, v).

This shows that dH(\ell G(u), \ell G(v)) \geqslant \| D(\ell G(u)) - D(\ell G(v))\| \infty \geqslant dG(u, v).

We now show how to produce distance-vector labelling schemes with small la-
bels. It will be convenient to restrict ourselves to connected graphs, but as the next
proposition shows, we will not lose much generality by doing so.

Proposition 2.3. Assume that for some integer n \geqslant 1, the class of connected
graphs with at most n vertices has an isometric-universal graph Gn with at most g(n)
vertices. Then the class Gn of all n-vertex graphs has an isometric-universal graph
Hn with at most n \cdot g(n) vertices.

To see this, it suffices to define Hn as the disjoint union of n copies of Gn. Clearly,
each of the (at most n) connected components of any graph G \in Gn embeds as an
isometric subgraph in a different copy of Gn in Hn, and the resulting embedding is
an isometric embedding of G in Hn.

Note that we could be more precise here: when g(n) = cn for some c > 0, the
bound n \cdot g(n) in Proposition 2.3 can be replaced by (1 + o(1)) \cdot g(n), by considering
isometric-universal graphs for connected graphs of size n, n/2, n/3, . . . , 1 instead (as-
suming such isometric-universal graphs exist for all these values). However this would
not change the lower order terms in our constructions, so we prefer to use the simpler
bound n \cdot g(n).

We start with a simple distance-vector labelling scheme with labels of at most
(4 + o(1))n bits (leading to an isometric-universal graph of (16 + o(1))n vertices for
the class Gn). The proof follows the lines of the proof of [18, Lemma 2.2] for distance
labelling schemes; we include it for the convenience of the reader and since our analysis
is slightly simpler due to the fact that we have no requirements on the decoding time.
With the additional arguments from [18], constant decoding time could be achieved
if desired. Moreover, we can improve the 4n above to 3n by adapting the proof of the
follow-up paper [5].

Theorem 2.4. For any integer n \geqslant 1, the class of all connected n-vertex graphs
has a distance-vector labelling scheme with labels of at most 4n+O(log n) bits.

Proof. Let G be a connected n-vertex graph. It is well known that there is a tour
visiting all vertices of G that uses at most 2n edges. Indeed, consider any spanning
tree T of G, double every edge of T , and note that the resulting graph is Eulerian;
the corresponding Eulerian walk gives the desired tour. In particular, if we order the
vertices v1, . . . , vn according to their first appearance in the tour (fixing an arbitrary
starting vertex v1), then

dG(v1, v2) + \cdot \cdot \cdot + dG(vn - 1, vn) \leqslant 2n.

For any vertex v \in G, in order to encode the distances dG(v, vi), for all i = 1, . . . , n,
it is sufficient to record dG(v, v1), and for any 2 \leqslant i \leqslant n, \delta i = dG(v, vi) - dG(v, vi - 1).
From the triangle inequality, we find that

n\sum 
i=2

| dG(v, vi) - dG(v, vi - 1)| \leqslant 
n\sum 

i=2

dG(vi, vi - 1) \leqslant 2n.

D
ow

nl
oa

de
d 

11
/2

9/
21

 to
 1

47
.2

10
.1

28
.2

48
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



© 2021 Louis Esperet, Cyril Gavoille, and Carla Groenland

ISOMETRIC UNIVERSAL GRAPHS 1229

We use n - 1 bits to store the signs of \delta 2, . . . , \delta n. For their absolute values, we note that
there is a simple bijection between sequences of integers b1, . . . , bn - 1 \geqslant 0 satisfying\sum n - 1

i=1 bi \leqslant 2n and binary sequences of length at most 3n with exactly n 1's (it suffices
to write a 1 followed by bi 0's, for each i = 1, . . . , n in order). In total, we use at most
n  - 1 + 3n + O(log n) = 4n + O(log n) bits, where we used a further \lceil log n\rceil bits in
order to record dG(v, v1).

Note that the bound 4n above can easily be optimized in several different ways,
but here we choose to present a simplest possible proof instead. Theorem 2.4 directly
implies the following exponential upper bound on the size of an isometric-universal
graph for Gn, providing a positive answer to Question 1.1.

Theorem 2.5. For any integer n \geqslant 1, the class Gn of all n-vertex graphs has an
isometric-universal graph on at most 16n+O(logn) vertices.

Proof. Let n \geqslant 1 be an integer. Theorem 2.4 and Lemma 2.2 imply that the
class of connected n-vertex graphs has an isometric-universal graph Gn with at most
24n+O(logn) vertices. Since any connected graph of at most n vertices is an isometric
subgraph of some connected n-vertex graph, Gn is isometric-universal for the class of
connected graphs with at most n vertices. By Proposition 2.3, this shows that the
class Gn has an isometric-universal graph with at most n \cdot 24n+O(logn) = 16n+O(logn)

vertices, as desired.

A natural problem is to determine the smallest constant c > 0 such that the class
Gn has a distance-vector labelling scheme with labels of at most cn bits. While simple
counting arguments show that adjacency labelling schemes for Gn require labels of
(n - 1)/2 bits [26], the unary nature of the distance-vector labelling scheme allows us
to show that in our case, c \geqslant 1 is the natural lower bound.

Theorem 2.6. Any distance-vector labelling scheme for the class Gn of all n-
vertex graphs needs labels of at least (1 - o(1))n bits.

Proof. Let 0 < \epsilon < 1
2 and n \in \BbbN . Suppose for convenience that \epsilon n is an integer.

Consider the family Bn of n-vertex bipartite graphs with a part of size \epsilon n and another
part of size (1 - \epsilon )n. Since the complete bipartite graph in Bn contains \epsilon n \cdot (1 - \epsilon )n =
\epsilon (1 - \epsilon )n2 edges, there are at least

2\epsilon (1 - \epsilon )n2

n!
\geqslant 2\epsilon (1 - \epsilon )n2 - n logn

isomorphism types in Bn.
Suppose we have a distance-vector labelling with labels of at most f(n) bits for

Gn. Since Bn \subset Gn, we can use this scheme to encode the graphs in Bn as follows.
Given G \in Bn, there is an ordering v1, . . . , vn of the vertices such that each vertex has
a label of at most f(n) bits from which we can decode the distances to all the vertices.
Consider the binary string obtained by concatenating the labels of the vertices of the
partite set of size \epsilon n. This binary string has size at most \varepsilon n \cdot f(n), and it can be
observed that it is enough to reconstruct (an isomorphic copy of) G. Indeed, the
labels telling the distances give in particular the index of each vertex (the unique
vertex at distance 0) and the neighbors of each vertex (the set of vertices at distance
1). This shows that

\epsilon n \cdot f(n) \geqslant \epsilon (1 - \epsilon )n2  - n log n,

which implies that f(n) \geqslant (1 - \epsilon )n - \epsilon  - 1 log n.
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Together with Theorem 2.4, this shows that the smallest constant c such that the
class Gn has a distance-vector labelling scheme with labels of at most c \cdot n bits satisfies
1 \leqslant c \leqslant 4 (again, we can decrease the bound 4 in Theorem 2.4 at the cost of a more
careful analysis, but currently not beyond 3). As our main result will be proved using
a different type of distance-vector labelling scheme, we do not try to obtain the best
constant c here (although the problem of optimizing c might be interesting in its own
right; see section 4).

In the remainder of this paper, we prove Theorem 1.2. As alluded to above,
instead of using distance-vector labelling schemes directly, we consider a technical
variant in which each vertex only records its distance to a certain subset of ancestors.
On the way, we observe that distance labelling schemes constructed in [17, 19] for
graph classes with sublinear separators can be adapted to construct small isometric-
universal graphs for these classes.

3. Proof of Theorem 1.2. Given a graph G, assume that there are a rooted
tree T and a partition (Bt)t\in V (T ) of the vertex set of G into nonempty sets (called
bags) indexed by the nodes of T . Recall that the ancestors of a node t \in T are the
nodes lying on the unique path from the root of T to t in T (we consider t to be an
ancestor of itself). Given a vertex v \in V (G), and a pair (T, (Bt)t\in V (T )) as above, let
t \in V (T ) be such that v \in Bt. Then Bt is called the bag of v, and all the bags Bt\prime 

such that t\prime is an ancestor of t in T are called the ancestor bags of v and Bt.
A pair (T, (Bt)t\in V (T )) as above is called a hierarchical decomposition of G if for

each edge uv \in E(G), u lies in an ancestor bag of v, or vice versa.
Given an ordering v1, v2, . . . , vn of the vertices of a graph G, the V (G)-index of

a vertex v \in V (G) is the integer 1 \leqslant j \leqslant n such that v = vj . Assume we have an
ordering v1, v2, . . . , vn of the vertices of a graph G, and a hierarchical decomposition
(T, (Bt)t\in V (T )) of G. Let v \in V (G). We say that a vertex u \in V (G) is an ancestor
of v (with respect to the decomposition (T, (Bt)t\in V (T )) and the ordering v1, . . . , vn)
if u lies in a strict ancestor bag of v (i.e., in an ancestor bag of v distinct from the
bag of v), or if u and v lie in the same bag and the V (G)-index of u is at most the
V (G)-index of v. If the decomposition and the ordering are clear from the context,
we simply say that u is an ancestor of v.

Note that for each vertex v, the set of ancestors of v is totally ordered by the
ancestor relation (as this relation is transitive, and for any two ancestors u,w of v,
one of u,w is an ancestor of the other). The corresponding ordering of the ancestors
of v is called the natural ordering of the ancestors of v with respect to the hierarchical
decomposition (T, (Bt)t\in V (T )) and the ordering v1, . . . , vn (again when the decompo-
sition and the ordering are clear from the context we omit them in the terminology).
An equivalent way to consider this ordering is the following: if the ancestor bags
of v are Bt1 , . . . , Btk in order, where t1 is the root of T and Btk is the bag of v,
then the natural ordering of the ancestors of v corresponds to enumerating, for each
i = 1, . . . , k in order, the vertices of Bti , where the vertices in each bag are sorted
according to their V (G)-indices and for the bag Btk of v we only consider the vertices
of the V (G)-index at most the V (G)-index of v. Note that v is always the final vertex
in the natural ordering of its ancestors.

Let C be a class of graphs. Assume that there is a decoding functionD : \{ 0, 1\} \ast \rightarrow 
\BbbN \ast such that the following holds. For each G \in C, there are an ordering v1, v2, . . . , vn
of the vertices of G, a labelling function \ell G : V (G) \rightarrow \{ 0, 1\} \ast , and a hierarchical
decomposition (TG, (Bt)t\in V (TG)) of G, such that for any v \in V (G), D(\ell G(v)) =
(p(v), x(v)), where
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\bullet p(v) \in \{ 1, . . . , n\} \leqslant n is a vector such that for any 1 \leqslant i \leqslant | p(v)| , the ith entry
of p(v) (denoted by p(v)i) is the V (G)-index of the ith vertex in the natural
ordering of the ancestors of v;

\bullet x(v) \in \{ 0, . . . , n\} \leqslant n is a vector with | x(v)| = | p(v)| , such that for any 1 \leqslant i \leqslant 
| x(v)| , the ith entry of x(v) is equal to dG(v, vj), where j = p(v)i.

In other words, D(\ell G(v)) allows us to find the indices of the ancestors of v in the
decomposition, from the root of TG to v, and the distances from v to each of these
vertices in G. We call this a hierarchical distance-vector labelling scheme for C. As
before, if | \ell G(v)| \leqslant k for all G \in C and v \in V (G), then we say that the scheme has
labels of at most k bits.

Hierarchical distance-vector labelling schemes (and distance-vector labelling schemes)
can be seen as a special case of hub-labelling, where each vertex v stores its distances
to some set Sv of vertices, in such a way that for any two vertices u and v, some
shortest path between u and v intersects Su\cap Sv (see [24] and the references therein).

In the proof of the next result it will be convenient to consider distances between
vectors of different lengths. We define the L\infty -pseudodistance between two vectors
x, y \in \BbbN \ast of different lengths as the L\infty -distance between the prefixes of x and y of
length min(| x| , | y| ).

Lemma 3.1. Let C be a class of graphs with a hierarchical distance-vector labelling
scheme with labels of at most k bits, for some integer k \geqslant 0. Then C has an isometric-
universal graph with at most 2k+1  - 1 vertices.

Proof. Let D denote a hierarchical distance-vector labelling scheme for C, with
labels of at most k bits, and let (\ell G)G\in C denote the associated labelling functions
and (TG, (Bt)t\in V (TG))G\in C the associated hierarchical decompositions.

We define a graph H whose vertex set consists of all z \in \{ 0, 1\} \leqslant k, such that
D(z) = (p, x) exists, and the final entry of x is a 0.

The number of vertices in H is at most 2k+1  - 1. We define adjacency in H
as follows: let z1, z2 be two vertices of H, and let us denote D(z1) = (p1, x1) and
D(z2) = (p2, x2). Then z1 is adjacent to z2 in H if and only if

\bullet one of p1, p2 is a prefix of the other, and
\bullet x1 is at L\infty -pseudodistance 1 from x2.

We now prove that H is isometric-universal for C. Consider some graph G \in C, and
let v1, . . . , vn be the ordering of the vertices of G associated to the decoding function
D. We write T = TG for the rooted tree in the hierarchical decomposition of G
associated to D, and \ell = \ell G for the labelling function. Given a vertex v \in V (G), we
map v to \ell (v) in H. Note that | \ell (v)| \in \{ 0, 1\} \leqslant k and that D(\ell (v)) is defined. Moreover,
if we write D(\ell (v)) = (pv, xv), then since v is the final vertex in the natural ordering
of its ancestors, the final entry of xv is equal to dG(v, v) = 0. This shows that \ell (v) is
indeed a vertex of H. It remains to prove that this gives an isometric embedding of
G in H.

Let u, v \in V (G). We write D(\ell (u)) = (pu, xu) and D(\ell (u)) = (pv, xv). If uv \in 
E(G), then u \not = v and we may assume that u is an ancestor of v (since (T, (Bt)t\in V (T ))
is a hierarchical decomposition of G, one of u, v is an ancestor of the other). This
implies that pu is a prefix of pv. Note that xu is a vector recording the distance
from u to each ancestor of u, and the prefix of xv of size | pu| = | xu| records the
distance between v and the same vertices, in the same order. Since uv \in E(G), it
follows from the triangle inequality that for each vertex w in the sequence, | dG(u,w) - 
dG(v, w)| \leqslant 1, and thus the two vectors xu and xv are at L\infty -pseudodistance at
most 1. Moreover, dG(u, u) = 0 while dG(v, u) = 1, so the two vectors are at L\infty -
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pseudodistance exactly 1.
This shows that G embeds as a subgraph of H via the mapping u \mapsto \rightarrow \ell (u), and

thus
dH

\bigl( 
\ell (u), \ell (v)

\bigr) 
\leqslant dG(u, v)

for any u, v \in V (G). In the remainder of the proof, we show that for all u, v \in V (G),
any path between \ell (u) and \ell (v) in H has length at least dG(u, v), which implies that
G is an isometric subgraph of H.

First consider a shortest path z0, z1, . . . , zt in H, and write D(zi) = (pi, xi) for
any 0 \leqslant i \leqslant t. We first consider the special situation in which, for each i \geqslant 0, p0 is a
prefix of pi. For any 0 \leqslant i \leqslant t, we write x\prime 

i for the prefix of xi of length | x0| . Note
that for any 1 \leqslant i \leqslant t, \| x\prime 

i - 1  - x\prime 
i\| \infty \leqslant 1 by the definition of H, and thus it follows

from the triangle inequality that

\| x0  - x\prime 
t\| \infty \leqslant 

t\sum 
i=1

\| x\prime 
i - 1  - x\prime 

i\| \infty \leqslant t.

We now consider a shortest path P = z0, z1, . . . , zt in H between z0 = \ell (u) and
zt = \ell (v) for vertices u and v in some graph G. We again write D(zi) = (pi, xi) for
any 0 \leqslant i \leqslant t. Let j \in \{ 0, . . . , t\} be such that | pj | = | xj | is minimal. Since for any
1 \leqslant i \leqslant t, one of pi, pi - 1 is a prefix of the other, it follows that pj is a common prefix
of all pi for 0 \leqslant i \leqslant t. For any 0 \leqslant i \leqslant t, we write x\prime 

i for the prefix of xi of length
| xj | . By the paragraph above, we obtain that

\| x\prime 
0  - xj\| \infty \leqslant j and \| xj  - x\prime 

t\| \infty \leqslant t - j.

Let w be the | pj | th ancestor of u (in the natural ordering of the ancestors of u). By
transitivity, since prefixes of p0, p1, . . . , pt of size | pj | coincide along the edges of the
path, w is also the | pj | th ancestor of v. It follows that the | pj | th entry in x0 (and x\prime 

0) is
equal to dG(u,w), and the | pj | th entry in xt (and x\prime 

t) is equal to dG(v, w). By definition
of the vertex set of H, since zj \in V (H) and D(zj) = (pj , xj), it follows that the | pj | th
entry of xj is equal to 0. This implies that \| x\prime 

0  - xj\| \infty \geqslant | dG(u,w)  - 0| = dG(u,w)
and similarly \| xj  - x\prime 

t\| \infty \geqslant dG(w, v). As a consequence,

dG(u, v) \leqslant dG(u,w) + dG(v, w) \leqslant \| x\prime 
0  - xj\| \infty + \| xj  - x\prime 

t\| \infty 
\leqslant j + t - j = t.

This shows that t = dH
\bigl( 
\ell (u), \ell (v)

\bigr) 
\geqslant dG(u, v), as desired.

We now explain how to obtain a hierarchical distance-vector labelling scheme for
Gn with labels of size roughly log 3 \cdot n. We will need the following lemma---proved in
[5, section 4] using classical tools from [27]---which is the main technical ingredient for
the construction of a distance labelling scheme with labels of at most ( 12 log 3+o(1))n
bits in [5].

Lemma 3.2 ([5]). For any rooted tree T , there are a (nonnecessarily proper) 2-
coloring of the vertices of T with colors red and blue, and an ordering v1, . . . , vn of
the vertices of T such that the following hold:

1. v1 is the root of T and is colored blue.
2. Each vertex has O(log n) blue ancestors.
3. For every red vertex u, the parent v of u appears directly before u in the

ordering: there is an integer 1 \leqslant i \leqslant n - 1 such that v = vi and u = vi+1.
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Note that a consequence of Lemma 3.2 is that for any vertex v in T , the path
from the root to v can be divided into O(log n) subpaths, each containing at most
one blue vertex, and such that any two adjacent vertices in any of these subpaths are
consecutive in the ordering.

Theorem 3.3. For any n \geqslant 1, the class of all connected n-vertex graphs has a
hierarchical distance-vector labelling scheme with labels of at most n \cdot log 3+O(log2 n)
bits.

Proof. Let n \geqslant 1, and let G be an n-vertex connected graph. Let T be a Depth-
First-Search spanning tree of G, with root r. It is well known that any edge uv in G
connects a vertex to one of its ancestors in T . So if we define Bv = \{ v\} for any vertex
v \in V (G), then we obtain that (T, (Bt)t\in V (T )) is a hierarchical decomposition of G.

Apply Lemma 3.2 to T , and let v1, . . . , vn be the corresponding ordering of the
vertices of T (and thus G). Let v be a vertex of G, and let P = t1, . . . , tk be the
unique path from t1 = r to tk = v in T . Note that the vertices t1, . . . , tk are the
ancestors of v not only in T , but also in G (with respect to the hierarchical decompo-
sition (T, (Bt)t\in V (T )) and the ordering v1, . . . , vn), and the natural ordering of these

ancestors of v is precisely t1, . . . , tk. Let p(v) \in \{ 1, . . . , n\} k be the vector in which,
for any 1 \leqslant i \leqslant k, the ith entry (denoted by p(v)i) is the V (G)-index of ti. By
Lemma 3.2, the path P is divided into O(log n) subpaths in which all V (G)-indices
are consecutive. In order to store p(v), it suffices to store the V (G)-indices of the
O(log n) endpoints of these subpaths. (We allocate a fixed number of bits for this for
fixed n, so the number of subpaths does not need to be stored explicitly.) It follows
that p(v) can be encoded with O(log2 n) bits.

Let x(v) \in \{ 0, . . . , n\} k be the vector in which, for any 1 \leqslant i \leqslant k, the ith entry is
equal to dG(v, ti). To store x(v), we record the distance dG(v, r) = dG(v, t1) explicitly,
using O(log n) bits, and for each 2 \leqslant i \leqslant k we store \delta i = dG(v, ti)  - dG(v, ti - 1) \in 
\{  - 1, 0, 1\} . As k \leqslant n, this can be recorded in n \cdot log 3 + O(log n) bits in total. It
follows that the class of all connected n-vertex graphs has a hierarchical distance-
vector labelling scheme with labels of at most n \cdot log 3 +O(log2 n) bits.

It should be noted that even if we use the same technical tool as the proof of
the distance labelling scheme with labels of ( 12 log 3 + o(1))n bits in [5], our proof
here is quite different. In particular, if Pk

n is the class of all n-vertex graphs with no
path of length more than k for some integer k = k(n), then the proof above gives a
distance-vector labelling scheme for Pk

n with labels of at most k \cdot log 3 + O(log2 n)
bits, as any Depth-First-Search tree in such a graph has height at most k. However,
in [5] the bound on the height of the tree does not affect the leading term of the label
size of a vertex v, which is caused by storing dG(v, x) - dG(v,parent(x)) \in \{  - 1, 0, 1\} 
for about n/2 vertices x.

With Theorem 3.3 and Lemma 3.1 in hand, we are now ready to prove Theo-
rem 1.2.

Proof of Theorem 1.2. Let n \geqslant 1 be an integer. Theorem 3.3 and Lemma 3.1
imply that the class of connected n-vertex graphs has an isometric-universal graph
Gn with at most 2n log 3+O(log2 n) vertices. Since any connected graph of at most n
vertices is an isometric subgraph of some connected n-vertex graph, Gn is isometric-
universal for the class of connected graphs with at most n vertices. By Proposi-
tion 2.3, this shows that the class Gn has an isometric-universal graph with at most
n \cdot 2n log 3+O(log2 n) = 3n+O(log2 n) vertices, as desired.

The generality of hierarchical distance-vector labelling schemes allows us to also
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derive good bounds on the size of isometric-universal graphs for classes with small
separators, as we now explain.

A vertex set S in an n-vertex graph G is said to be a balanced separator if V (G) - S
can be partitioned into two sets X,Y , each of size at most 2n/3, such that no edge
of G has one endpoint in X and the other in Y . It is well known that every tree has
a balanced separator consisting of a single vertex (see, for instance, [11]), and more
generally every graph of bounded treewidth has a balanced separator of constant size.
The planar separator theorem of Lipton and Tarjan [25] states that n-vertex planar
graphs have balanced separators of size O(

\surd 
n), and it was proved that the same holds

for any proper minor-closed class [2].
In the remainder of the paper it will be convenient to assume that C is a hereditary

class of graphs, that is, every induced subgraph of a graph of C is also in C. Note that
we can decompose any graph G \in C by constructing some (binary) rooted tree TG

and some partition (Bt)t\in V (TG) of V (G) inductively as follows. Let S be a nonempty2

balanced separator of G, and let X,Y be a partition of V (G)  - S into two sets of
at most two thirds of the vertices, with no edges between X and Y . Inductively, we
construct rooted trees T1 and T2 for G1 = G[X] and G2 = G[Y ], respectively, as well
as corresponding partitions (Bt)t\in V (T1) of X and (Bt)t\in V (T2) of Y . We add a root r,
set Br = S, and then define TG as the tree with root r having at most two children t1
and t2, so that the subtree rooted in ti is equal to Ti for i = 1, 2 (note that a vertex
ti does not exist if Ti and the corresponding subgraph of G are empty). It follows
from the inductive construction that (Bt)t\in TG

is indeed a partition of G. Note that
by the definition of separators, for any edge uv \in E(G), u is in some ancestor bag of
v, or vice versa. This shows that the pair (TG, (Bt)t\in V (TG)) constructed in this way
is a hierarchical decomposition of G.

Given a class C, we denote by Cn the class of n-vertex graphs of C. We say that
a graph class C has balanced separators of size at most f(n), for some nondecreasing
function f : \BbbN \rightarrow \BbbN , if for any n \geqslant 1, any graph G \in Cn has a balanced separator of
size at most f(n).

Theorem 3.4. Let C be a hereditary class with balanced separators of size at most
f(n). Then for any integer n \geqslant 1, the class Cn has an isometric-universal graph with

at most 2O(f(n)\cdot log2 n) vertices.

Proof. Given any graph G \in Cn, let (TG, (Bt)t\in TG
) be a hierarchical decompo-

sition of G obtained as above, by taking only balanced separators of size at most
f(n). Note that by the definition of balanced separators, the height of TG is O(log n).
Consider any ordering v1, . . . , vn of the vertices of G. For each vertex v \in V (G), we
store the V (G)-indices of the ancestors of v and the distances from v to these vertices.
Note that v has O(log n) ancestor bags and each contains at most f(n) vertices, so
we only need to store O(f(n) \cdot log n) indices and distances (which are elements of
\{ 0, . . . , n\} , so this takes at most O(f(n) \cdot log2 n) bits per vertex).

This gives a hierarchical distance-vector labelling scheme for Cn, with labels of
at most O(f(n) \cdot log2 n) bits. By Lemma 3.1, this implies that Cn has an isometric-

universal graph with at most 2O(f(n)\cdot log2 n) vertices, as desired.

When the separator size f(n) is at least n\epsilon , for some \epsilon > 0, a multiplicative factor
of log n can be avoided in the exponent by observing that the size of the bags decreases
geometrically with the depth in the tree, so each vertex only needs to store distances

2Note that any empty balanced separator in an nonempty graph can be converted to a nonempty
separator by adding an arbitrary vertex to the separator.
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to O(f(n)) ancestors in this case. Using the separator theorem from [2], this shows
that n-vertex graphs from any proper minor-closed class have an isometric-universal
graph with at most 2O(

\surd 
n logn) vertices. It is possible to avoid another multiplicative

factor of log n in the exponent in the case of planar graphs, using the ideas of [19],
which leads to an isometric-universal graph with at most 2O(

\surd 
n) vertices for this

class. Using Lemma 1.4, this shows that the best known bounds on distance-labelling
schemes for classes with small separators can be obtained from isometric-universal
graphs. Since any distance labelling scheme for the class of n-vertex planar graphs
requires labels of \Omega (n1/3) bits [17], Lemma 1.4 also shows that any isometric-universal

graph for the class of n-vertex planar graphs needs 2\Omega (n1/3) vertices.

4. Conclusion. A natural problem is to find the smallest constant c such that
Gn has an isometric-universal graph on at most 2cn vertices. It is possible that
c = 1

2 + o(1), but currently any improvement over the best known constant for dis-
tance labelling scheme from [5], that is, proving that c < 1

2 log(3), would already be
significant. As we have mentioned in the introduction, almost all n-vertex graphs
have diameter 2, so it follows that almost all n-vertex graphs embed isometrically in
any induced-universal graph for Gn (with at most 2n/2 vertices). As a consequence,
we only need to consider a vanishing proportion of the graphs in Gn.

It was mentioned in the previous section that for the class of n-vertex planar

graphs, any isometric-universal graph needs at least 2\Omega (n1/3) vertices. On the other
hand, it was proved in [13] that the same class has an induced-universal graph with
n1+o(1) vertices. So in general the minimum size of an isometric-universal graph for
a class C can be very different from the minimum size of an induced-universal graph
for C. However, it might be possible that for dense hereditary classes (classes C

such that | Cn| = 2\Theta (n2)), the two sizes coincide, up to lower order terms (see [9] for
more on induced-universal graphs for dense hereditary classes). If true, this would
in particular imply the existence of isometric-universal graphs for Gn with 2n/2+o(n)

vertices, and the existence of a distance labelling scheme for Gn with labels of at most
n/2 + o(n) bits.

For distance-vector labelling schemes, which we introduce in this paper, it is
possible that labels of n+ o(n) bits are sufficient for the class Gn. Proving this would
again improve on the best known distance labelling scheme for Gn, but the unary
nature of the problem seems to require new tools.

Finally, we wonder whether the bound 2O(f(n) log2 n) in Theorem 3.4 can be re-
placed by 2O(f(n)+log2 n). The motivation for this question is the following: on the one
hand, we have seen that for planar graphs we can improve the bound of Theorem 3.4
from 2O(

\surd 
n log2 n) to 2O(

\surd 
n); on the other hand, it is known that for n-vertex trees

(which admit balanced separators of size 1), the minimum size of the labels in a dis-
tance labelling scheme is ( 14 + o(1)) log2 n [14] and the constant 1

4 is best possible [6].

This shows in particular that the log2 n term cannot be avoided in Theorem 3.4 and in
a possible improvement with 2O(f(n)+log2 n) vertices. The work on distance labelling
in trees mentioned above also motivates the natural question, What is the smallest
constant c > 0 such that the class of n-vertex trees has an isometric-universal graph
with at most 2c log

2 n vertices? The lower bound on distance labelling schemes in trees
[6] shows that c \geqslant 1

4 , while known upper bounds on the size of trees containing all
n-vertex trees as subgraphs [20, 12] (and thus also as isometric subgraphs) show that
c \leqslant 1

2 + o(1).
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