
Local Computation of Nearly Additive Spanners

Bilel Derbel1,�, Cyril Gavoille2,��, David Peleg3,� � �, and Laurent Viennot4,†

1 Laboratoire d’Informatique Fondamentale de Lille (LIFL),
Université des Sciences et Technologies de Lille, France

bilel.derbel@lifl.fr
2 Laboratoire Bordelais de Recherche en Informatique (LaBRI),

Université de Bordeaux, France
gavoille@labri.fr

3 Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, Israel

david.peleg@weizmann.ac.il
4 INRIA, University Paris 7, France

Laurent.Viennot@inria.fr

Abstract. An (α, β)-spanner of a graph G is a subgraph H that approx-
imates distances in G within a multiplicative factor α and an additive
error β, ensuring that for any two nodes u, v, dH(u, v) ≤ α ·dG(u, v)+β.
This paper concerns algorithms for the distributed deterministic con-
struction of a sparse (α, β)-spanner H for a given graph G and distor-
tion parameters α and β. It first presents a generic distributed algorithm
that in constant number of rounds constructs, for every n-node graph
and integer k ≥ 1, an (α, β)-spanner of O(βn1+1/k) edges, where α and
β are constants depending on k. For suitable parameters, this algorithm
provides a (2k − 1, 0)-spanner of at most kn1+1/k edges in k rounds,
matching the performances of the best known distributed algorithm by
Derbel et al. (PODC ’08). For k = 2 and constant ε > 0, it can also
produce a (1+ ε, 2− ε)-spanner of O(n3/2) edges in constant time. More
interestingly, for every integer k > 1, it can construct in constant time
a (1 + ε,O(1/ε)k−2)-spanner of O(ε−k+1n1+1/k) edges. Such determin-
istic construction was not previously known. The paper also presents a
second generic deterministic and distributed algorithm based on the con-
struction of small dominating sets and maximal independent sets. After
computing such sets in sub-polynomial time, it constructs at its best a
(1 + ε, β)-spanner with O(βn1+1/k) edges, where β = klog(log k/ε)+O(1).
For k = 3, it provides a (1 + ε, 6 − ε)-spanner with O(ε−1n4/3) edges.
The additive terms β = β(k, ε) in the stretch of our constructions yield
the best trade-off currently known between k and ε, due to Elkin and
Peleg (STOC ’01). Our distributed algorithms are rather short, and can
be viewed as a unification and simplification of previous constructions.

� Supported by the équipe-projet INRIA “DOLPHIN”.
�� Supported by the ANR-project “ALADDIN”, and the équipe-projet INRIA

“CÉPAGE”.
� � � Supported by grants from the Israel Science Foundation and the Minerva Foundation.

† Supported by the ANR-project “ALADDIN”, and the équipe-projet INRIA
“GANG”.

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 176–190, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Local Computation of Nearly Additive Spanners 177

1 Introduction

Applications for networks. Sparse spanners are motivated by routing protocols
used in practical networks, where fast construction of a “skeleton” of the under-
lying network topology is crucial. As recently shown in [1], spanners and their
variants can be efficiently used for routing in ad-hoc networks in view of the
IETF standardized OLSR routing protocol [2].

Sparse spanners, as introduced by Peleg et al. [3,4], and implicitly used in [5], are
key ingredients of various distributed applications, e.g., synchronizers [6], comput-
ing almost shortest paths in distributed networks [7,8], or distance oracles
[9,10,11,12]. Spanners have also found applications in approximation algorithms
for geometric spaces [13], and for solving linear systems [14]. In all of those prob-
lems, the quality of the spanners used directly impacts the quality of the solutions.

Spanners and their variants. Given an undirected unweighted graphG, let dG(u, v)
denote the distance between u and v in G. An (α, β)-spanner of G is a spanning
subgraph H of G such that dH(u, v) ≤ α · dG(u, v) + β for every two nodes u, v.
There are several variations on the concept of spanners. A spanning H that is
not restricted to be a subgraph of G is called an (α, β)-emulator of G [15,16]. A
subgraph H of G that must preserve distances larger than d only is called a d-
preserver for G [17]. Other recent developments can be found in [18]. The paper
will not discuss any of these variants, as well as extensions for digraphs [19].

Constructing sparse spanners. There is an abundant literature on spanners and
related combinatorial objects, which is surveyed, e.g., by Pettie in [20]. It is well-
known that every n-node graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges,
which can be obtained by modification of the Kruskal’s minimum spanning tree al-
gorithm [21]. Moreover, according to Erdös-Simonovits Girth Conjecture [22,23],
it is believed that every (α, β)-spanner with α + β < 2k + 1 must have Ω(n1+1/k)
edges for some worst-case graphs. The lower bound suggests that (α, β)-spanners
such that α + β = 2k − 1 and α < 2k − 1 with O(n1+1/k) edges may exist
for all graphs. Indeed, for α = 1, (1, 2)-spanner of size O(n3/2) [24], and (1, 6)-
spanner of size O(n4/3) [25] exist for all graphs. It is not known whether (1, 4)-
spanners with O(n4/3) edges exist, or if (1, O(1))-spanner with o(n4/3) edges can
exist. Woodruff [26] proved, for every k > 0, that every (1, 2k−2)-spanner requires
Ω(n1+1/k) edges in the worst-case, independently of the Erdös-Simonovits Girth
Conjecture. For α = 1 + ε, and for small ε > 0, Elkin and Peleg [27] showed that
(1 + ε, β)-spanners with O(βn1+1/k) edges exist, where1 β = klog(log k/ε)+O(1).
Thorup and Zwick [16] showed that (1+ε, O(1/ε)k−2)-spanners with O(kn1+1/k)
edges exist. The stretch is worse than in the Elkin-Peleg construction, however it
holds simultaneously for all ε. Note that their construction is not local as it pos-
sibly involves collaboration between nodes at distance Ω(n). (This occurs, for in-
stance, for the n-node path.) Pettie [20,28] addressed the problem of constructing
spanners of linear size. E.g., (1, Õ(n9/16))-spanners2 and (O(1), Õ(1))-spanners
with O(n) edges are presented in [20].
1 All logarithms are in base two.
2 The notation Õ(f(n)) stands for f(n) logO(1) n.

178 B. Derbel et al.

Distributed algorithms. Efficiently constructing sparse spanners by distributed al-
gorithms is clearly important for network applications. Indeed, distributed algo-
rithms for constructing (2k − 1, 0)-spanners with O(kn1+1/k) edges exist. By the
above discussion, these constructions are essentially optimal in size and stretch
(distortion). A randomized algorithmachieving this performance (with guarantees
on the stretch and expected size) has been presented in [29]. It has been recently
shown in [30] that randomization is actually not required, and that (2k − 1, 0)-
spanners with O(kn1+1/k) edges can be constructed in k rounds. Interestingly, al-
lowing 2k additional rounds, the algorithm can work without any knowledge of n,
and still provide the same guarantee on the maximum spanner size.

When k tends to log n, such constructions achieve Ω(n log n) size only. A series
of (randomized) constructions producing linear or near-linear size has been pre-
sented in [28]. At its sparsest level, (1+ ε, β)-spanners with n · (ε−1 log log n)O(1)

edges are constructed in O(β) time, where β is in the form (ε−1 log log n)O(log log n).
For (1+ε, β)-spanners, only few distributed constructions are known. Actually,

it has been proved in [30,28] that (1, f(k))-spanners (for some function f(k) of
k), which are known to exist for k = 2 and k = 3, cannot be constructed quickly
(say, in polylog time). So the best polylogarithmic-time distributed constructions
one may hope for will yield (1+ε, f(k))-spanners. For k = 2, a (1+ε, 2)-spanner
with O(ε−1n3/2) edges is constructed in [30] in O(ε−1) time.

There were previous attempts to devise a distributed implementation of the
Elkin-Peleg construction of (1 + ε, β)-spanners with β = β(k, ε) and arbitrary
k, ε. However, as pointed out by several authors [31,20], the resulting construc-
tions, while achieving the goal of demonstrating the existence of sparse (1+ ε, β)-
spanners, can hardly serve as a basis for an efficient algorithm. (We refer the reader
to [31] for a discussion on the technical reasons for the difficulty of implementing
these constructions in a distributed setting.) Nevertheless, Elkin and Zhang [32]
proposed a distributed implementation of (1 + ε, β)-spanners (albeit through a
very complicated algorithm). The trade-off for β is worse than the one of [33]
by a factor of roughly klog k (more precisely, in [32], β = O((k log k)/ε)log k =
klog k · klog(log k/ε)+O(1)), and the algorithm is randomized.

Our results. In this article, we come up with an alternative construction of sparse
(1 + ε, β)-spanners, and demonstrate that the new construction leads to signifi-
cant improvements in the current state-of-the-art for the problem of computing
almost shortest paths in distributed settings. It positively answers Pettie’s open
question [28] concerning the deterministic construction of additive spanners.

We present two algorithms. The first (in Section 2) constructs sparse spanners
in constant time, for fixed k and ε. In the spirit of Pettie’s constructions [20], our
algorithm is generic. Depending on the parameters, it can achieve, for instance, a
(2k − 1, 0)-spanner with O(kn1+1/k) edges, or a (1+ ε, O(1/ε)k−2)-spanner with
O(ε−k+1n1+1/k) edges. More specifically, it can produce a (1 + ε, 2 − ε)-spanner
with O(ε−1n3/2) edges. Note that this latter construction is optimal even in the
sequential sense, since the absolute lower bound discussed above implies that
α + β = (1 + ε) + (2 − ε) ≥ 3 for such a number of edges. Other trade-offs
produced by our algorithm are summarized in the table of Section 2.2. Finally,

Local Computation of Nearly Additive Spanners 179

it has the extra feature that it does not require the nodes to know the value of n,
and still guarantees the desired size. This first contribution provides a positive
answer to Pettie’s open question [28].

Our second construction (Section 3) runs in sub-polynomial time, and relies
on the deterministic computation of maximal independent sets, which is known
to be difficult in the distributed setting [34]. Similarly to the first algorithm, it is
generic and can be parameterized to produce a new family of spanners. In partic-
ular (see the table in Section 3.3 for more details), it provides a (1+ε, β)-spanner
with O(βn1+1/k) edges in sub-polynomial time, where β = klog (log k/ε)+O(1). This
matches the performance of the best existential (sequential) constructions of [33].
As a particular case, our algorithm can also produce a (1 + ε, 8 − ε)-spanner
with O(ε−1n4/3) edges, and a specific construction, with the same number of
edges, actually provides a (1 + ε, 6 − ε)-spanner (Subsection 3.4). We also ob-
serve that using a Las Vegas algorithm for selecting a maximal independent set,
our algorithms can run in poly-logarithmic time while achieving the best known
stretches. Finally, our implementation is considerably simpler than that of [32].

In this paper we consider the classical LOCAL model of computation [35,36],
where in each time unit a node can send any amount of information to its
neighbors and perform any amount of local computations. Although the issue
of message size may be important (see e.g., [32,28]), we do not address it in
this paper, and leave open the question of deterministically constructing similar
spanners with low message complexity.

Open questions. We leave open two main questions for further study. First, can
the performances of the second construction be achieved deterministically in
polylog time without the bottleneck of “breaking symmetry”? and with short
messages? Second, do (1+ε, f(k))-spanners with at most g(k)·n1+1/k edges exist
for all graphs, for fixed ε > 0 and for some f(k) = kO(1)? or even f(k) = O(k)?
As far as we know, the best upper bound is f(k) ≤ klog log k+O(1).

2 A Local Algorithm

2.1 Description of Algorithm Local-Span

A distance sequence is a sequence of strictly positive integers. Given a distance
sequence ρ1, . . . , ρk, denote its partial sums by

ρ[i, j] =
{

ρi + · · · + ρj , if i ≤ j,
0, if i > j.

(1)

For every subgraph H of G, denote by BH(u, ρ) the ball of radius ρ in H centered
at u. The subscript is omitted when H = G is clear from the context.

The deterministic distributed algorithm Local-Span is presented next. Infor-
mally, the algorithm operates in k iterations, during which each node u builds a
cluster R(u) around itself. At any stage, the subgraph H consists of all the edges
selected to the spanner so far. This H enjoys the property that at any stage and

180 B. Derbel et al.

for any node u, the subgraph of H induced by the nodes of the cluster R(u) is
connected. In iteration i, the “target radius” of the constructed cluster is ρ[1, i].
Every node u learns the clusters R(v) of all the nodes v in its ρi-neighborhood,
B(u, ρi). Of those nodes, it keeps in the set W (u) all the candidates to join its
cluster R(u). In an internal loop, it selects up to σ such candidates w from W (u)
and adds their clusters R(w) to its own cluster R(u), by adding to H a shortest
path connecting w and u.

Input: a graph G = (V, E), a distance sequence ρ1, . . . , ρk

Output: a spanner H =
S

u∈V H(u) of G

Set σ to any value in the range [maxv∈B(u,ρ[1,k]) |B(v, ρ[1, k])|1/k, n1/k]1

R(u) := {u} /* cluster around u */2

F (u) := False /* termination flag */3

H(u) := ({u} , ∅) /* spanner edges selected by u */4

for i := 1 to k do5

Node u sends R(u), F (u) to all nodes in B(u, ρi),6

and receives R(v), F (v) from all v ∈ B(u, ρi)7

W (u) := B(u, ρi) \ {v | F (v) = True} /* candidate nodes to be covered */8

� := 09

while ∃w ∈ W (u) and � < σ do10

(a) Pick w ∈ W (u) such that dG(u, w) is minimal11

(b) Add a shortest path in G from u to w to H(u)12

(c) Add R(w) to R(u)13

(d) W (u) := W (u) \ {v ∈ W (u) | R(v) ∩ R(w) �= ∅}14

(e) � := � + 115

if W (u) = ∅ then F (u) := True else F (u) := False16

Algorithm 1. Algorithm Local-Span - Code for a node u

2.2 Results

Theorem 1. AlgorithmLocal-Span computes, for everyn-node graphGanddis-
tance sequence ρ1, . . . , ρk, a spanner H of at most ρ[1, k] ·n1+1/k edges. The stretch
of H and the time complexity ofLocal-Span are summarized in the following table.

stretch size time parameters

(2k − 1, 0) k · n1+1/k O(k) ρ1 = · · · = ρk = 1

(1 + ε, 2 − ε) (1 + 2
ε) · n3/2 O(ε−1) ρ1 = 1, ρ2 = 2/ε

ε ∈ (0, 2]

(1+ε, 4(1+ 4
ε)k−2−ε) (1 + 4

ε)k−1 ·

n1+1/k
O((1 + 4

ε)k−1) ρ1 = 1, ρi = 4
ε (1 + 4

ε)i−2

ε ∈ (0, 4]
(5, 2k − 4) 5k−1 · n1+1/k O(5k) ↪→ with ε = 4

(3, 4 · 3k−2 − 2) 3k−1 · n1+1/k O(3k) ↪→ with ε = 2

Local Computation of Nearly Additive Spanners 181

The correctness of algorithm Local-Span and Theorem 1 are proved in the
next section.

2.3 Analysis of Algorithm Local-Span

Let Hi(u), Ri(u), Fi(u), and Wi(u) denote the values of H(u), R(u), F (u), and
W (u), respectively, at the end of iteration i. The parameter u is omitted from
these notations when u is clear from the context.

Proposition 1. Algorithm Local-Span has time complexity ρ[1, k] if n is
known to each node, and 3ρ[1, k] otherwise.

Proof. At Step i, a node communicates with other nodes at distance at most ρi.
So after ρ[1, k] rounds the algorithm ends. If n is known, then σ can be set imme-
diately to n1/k. If it is not, then σ can be set to maxv∈B(u,ρ[1,k]) |B(v, ρ[1, k])|1/k,
and calculating this value requires 2ρ[1, k] extra rounds. ��

Proposition 2. The resulting spanner H has at most ρ[1, k] · n1+1/k edges.

Proof. Each node u adds to H , in each iteration i of its main loop, up to σ = σ(u)
paths of length at most ρi. Hence the overall contribution of u to the spanner
consists of at most σ · ρ[1, k] edges. The bound follows as σ ≤ n1/k. ��

The following proposition is proved by induction on i.

Proposition 3. For all i ≥ 0, Ri(u) ⊆ BHi(u, ρ[1, i]).

Proposition 4. Let x be a node at distance at most ρi from u and satisfying
Fi−1(x) = False. If Fi(u) = True then dHi(u, x) ≤ dG(u, x) + 2ρ[1, i − 1].

Proof. As Fi−1(x) = False, x is in W (u) before the while loop of iteration i.
As Fi(u) = True, i.e., Wi(u) = ∅, there must exist some w ∈ W (u) such that
Ri−1(w) ∩ Ri−1(x) 	= ∅. Consider the first vertex w satisfying this (eventually
w = x) and let z ∈ Ri−1(w) ∩ Ri−1(x). By the triangle inequality,

dHi(u, x) ≤ dHi(u, w) + dHi(w, z) + dHi(z, x)
≤ dHi(u, w) + dHi−1 (w, z) + dHi−1(z, x) (2)

The choice of w and step (b) in the while loop imply that dHi(u, w) = dG(u, w) ≤
dG(u, x). In addition, Proposition 3, applied to Ri−1(w) and Ri−1(x), implies
that dHi−1 (w, z) ≤ ρ[1, i − 1] and dHi−1(z, x) ≤ ρ[1, i − 1]. Hence (2) yields
dHi(u, x) ≤ dG(u, x) + 2ρ[1, i − 1].

In the special case i = 1, we indeed have dH1(u, x) = dG(u, x) since W1(u) = ∅

implies that R1(u) contains all nodes in B(u, ρ1). Indeed, as no nodes v satisfy
R0(v) = ∅, W (u) = B(u, ρ1) before the while loop. We then obtain dH1(u, x) ≤
dG(u, x) + 2ρ[1, 0] as claimed because ρ[1, 0] = 0. ��

Define R̄i(u) as the union of the sets R(w) added to R(u) during the while loop
of iteration i.

182 B. Derbel et al.

Proposition 5. If Fi(u) = False, then

|Ri(u)| ≥ |R̄i(u)| ≥ max
v∈B(u,ρ[i+1,k])

|B(v, ρ[1, k])|i/k.

Proof. By induction on i. The assertion is satisfied for i = 0 as |R0(u)| = 1.
Consider the sets Ri−1(w) added to R(u) in the while loop of iteration i. The
inductive hypothesis implies

|Ri−1(w)| ≥ max
v∈B(w,ρ[i,k])

|B(v, ρ[1, k])|(i−1)/k

≥ max
v∈B(u,ρ[i+1,k])

|B(v, ρ[1, k])|(i−1)/k

since dG(u, w) ≤ ρi. If Fi(u) = False, then

σ = max
v∈B(u,ρ[1,k])

|B(v, ρ[1, k])|1/k ≥ max
v∈B(u,ρ[i+1,k])

|B(v, ρ[1, k])|1/k

sets are added to R(u). As these sets are disjoint, the size of R̄i(u) is thus at
least maxv∈B(u,ρ[i+1,k]) |B(v, ρ[1, k])|i/k. ��

Proposition 6. For all u, Fk(u) = True.

Proof. Suppose, towards contradiction, that Fk(u) = False for some u. Propo-
sition 5 then implies

|R̄k(u)| ≥ max
v∈B(u,ρ[k+1,k])

|B(v, ρ[1, k])|k/k = |B(u, ρ[1, k])|.

Moreover, Proposition 3 implies R̄k(u) ⊆ B(u, ρ[1, k]). We thus deduce R̄k(u) =
B(u, ρ[1, k]). In particular, R̄k(u) contains B(u, ρk). As every node that is added
to R(u) is immediately removed from W (u), all B(u, ρk) is removed from W (u)
and necessarily Wk(u) = ∅. This is in contradiction with the fact that Fk(u) =
False. ��

Proposition 7. For every u, v, we have

dH(u, v) ≤ (1 + ε) · dG(u, v) + 4ρ[1, k − 1] − ε

where ε = max1≤i≤k {4ρ[1, i − 1]/ρi}.

Proof. We prove this by induction on dG(u, v). The claim is obviously satisfied
for dG(u, v) = 0. Now consider u and v at distance δ = dG(u, v) and suppose
that the property is verified for any pair of nodes u′, v′ such that dG(u′, v′) < δ.
Consider a shortest path P from u to v in G. Let xi denote the vertex at distance
ρi from u on P (we set x0 = u for i = 0 and xi = v if ρi ≥ dG(u, v)). Let Pi

denote the sub-path of P from u to xi.

Local Computation of Nearly Additive Spanners 183

Consider the lowest value of i such that Fi(y) = True for all y ∈ Pi. (Note
that i ≤ k by Proposition 6). Then Fi−1(y) = False for some y ∈ Pi−1.
As Fi(u) = True and Fi(xi) = True, Proposition 4 implies dHi(u, y) ≤
dG(u, y)+2ρ[1, i−1] and dHi(xi, y) ≤ dG(xi, y)+2ρ[1, i−1]. By the triangle in-
equality, dHi (u, xi) ≤ dHi(u, y)+dHi (y, xi) ≤ dG(u, y)+dG(y, xi)+4ρ[1, i−1] ≤
dG(u, xi) + 4ρ[1, i − 1].

In case xi = v, we thus obtain dH(u, v) ≤ (1 + ε) · dG(u, v) + 4ρ[1, k − 1] −
εdG(u, v) ≤ (1 + ε) · dG(u, v) + 4ρ[1, k − 1] − ε, since dG(u, v) ≥ 1.

In case xi 	= v (i.e., dG(u, v) > ρi), we have dG(u, xi) = ρi and dH(u, xi) ≤ ρi+
4ρ[1, i−1]. By the choice of ε, ε ≥ 4ρ[1, i−1]/ρi, and thus dH(u, xi) ≤ ρi +ερi =
(1+ε)ρi. By the induction hypothesis, dH(xi, v) ≤ (1+ε)·(δ−ρi)+4ρ[1, k−1]−ε;
the desired inequality for u, v follows. ��

Consider the sequence defined by ρ1 = 1 and ρi = α (1 + α)i−2 for i ≥ 2, which
is a distance sequence for every α ≥ 1. We have

ρ[1, i − 1] = 1 + α
i−3∑
j=0

(1 + α)j = 1 + α
(1 + α)i−2 − 1

(1 + α) − 1
= (1 + α)i−2 = ρi/α.

This yields ε = maxi {4ρ[1, i − 1]/ρi} = 4/α. By Proposition 7, for every ε ∈
(0, 4], dH(u, v) ≤ (1 + ε) · dG(u, v) + 4 (1 + 4/ε)k−2 − ε. By Proposition 2, the
number of edges of H is no more than (1 + 4/ε)k−1 · n1+1/k. For instance, for
ε = 2, 3 or 4, we get for H the stretches (2, 4 · 5k−2 − 1), (3, 4 · 3k−2 − 2), and
(5, 2k − 4), respectively.

We can obtain a better analysis when ρ1 = · · · = ρk−1.

Proposition 8. If ρ1 = · · · = ρk−1, then for all u, v, we have dH(u, v) ≤
(1 + ε) · dG(u, v) + 2ρ[1, k − 1] − ε where ε = max1≤i≤k {2ρ[1, i − 1]/ρi}.

Proof. In the proof of Proposition 7, consider the highest value of i such that
Fi(u) = False and Fi(x1) = False. Proposition 6 implies i < k. In case i =
k − 1, Proposition 4 implies dH(u, xk) ≤ dG(u, xk) + 2ρ[1, k − 1] since Fk(xk) =
True. In case i < k − 1, we have Fi+1(u) = True or Fi+1(x1) = True.
Proposition 4 then implies dH(u, x1) ≤ dG(u, x1) + 2ρ[1, i]. In both cases, we
have dH(u, xi+1) ≤ dG(u, xi+1) + 2ρ[1, i]. We can then conclude similarly to the
proof of Proposition 7. ��

Consider the distance sequence ρ1 = · · · = ρk = 1. Then ρ[1, k − 1] = k − 1
and ε = max1≤i≤k {2ρ[1, i − 1]/ρi} = 2(k − 1). By Proposition 7, it follows that
dH(u, v) ≤ (2k − 1) · dG(u, v). The number of edges is k · n1+1/k.

For k = 2, consider the distance sequence ρ1 = 1 and ρ2 = 2/ε, for every ε ∈
(0, 2]. We have max1≤i≤k {2ρ[1, i − 1]/ρi} = max {2ρ[1, 0]/1, 2ρ[1, 1]/(2/ε)} = ε,
and also ρ[1, k−1] = 1, which yields, for every ε ∈ (0, 2], a stretch of (1+ε, 2−ε)
for (1 + 2/ε) · n3/2 edges.

184 B. Derbel et al.

3 An Algorithm Based on Independent Dominating Sets

3.1 Definitions

Let us consider a graph G = (V, E). A triple (v, S, T) is called a cluster if S ⊆ V ,
v ∈ S, and T is a tree of G spanning3 S. The node v is called the center of the
cluster. Two clusters (v, Sv, Tv) and (w, Sw, Tw) are disjoint if Sv ∩ Sw = ∅.

Let C be a collection of clusters of G. If the clusters of C are pairwise disjoint,
we say that C is a partition of G. We denote by center(C) the set of centers of all
clusters of C. For v ∈ center(C), denote by Sv and Tv the subset and tree such
that (v, Sv, Tv) is a cluster of C.

For two node sets S, S′, let dG(S, S′) = min {dG(v, v′) | v ∈ S, v′ ∈ S′}. Denote
by Gρ(C) the graph whose vertex set is center(C), and whose edge set is the set
of all pairs of centers u, v such that dG(Sv, Sw) ≤ ρ.

Denote by G2 the graph obtained from G by adding an edge between every
two nodes at distance 2 in G. Given a set W of nodes, let G[W] denote the graph
induced by W in G. Denote by IDS(G, λ) an independent λ-dominating set of
G, i.e., a subset S of non-neighboring nodes such that every node v in G is at
distance at most λ of S (namely, dG(v, S) ≤ λ).

3.2 Description of Algorithm Dom-Span

Algorithm Dom-Span decomposes the node set of G into increasingly denser
clusters using a classical merging technique. The algorithm is formally described
below. Roughly speaking, at each iteration i, sparse unmerged clusters (kept in
the set L) are connected to their neighbors at distance ρi using few shortest paths
(in the loop of line 8). Next, the dense clusters are merged together (in the loop of
line 10). This process is repeated until all the clusters become sparse. Intuitively,
connecting sparse neighboring clusters with long shortest paths allows us to
obtain a small multiplicative stretch, but it can cause the size of the spanner
to increase too much. The general idea of the algorithm is to tune the sequence
ρi according to each iteration i so that not too many edges are added to the
spanner. In fact, as the clusters become dense, the number of clusters decreases
and thus we are allowed to connect clusters that lie at a large distance of each
other, i.e., the denser the clusters in an iteration i, the larger the distances ρi

we can choose.
The condition used to evaluate the sparseness of a cluster (line 4) guarantees

that the size of the clusters increases exponentially. As a consequence, within a
logarithmic number of iterations (in k), all clusters become sparse and all nodes
are connected together in the spanner. Using an independent dominating set X
on the dense clusters (in line 5) allows us to break the symmetry efficiently and
to grow the clusters in parallel.

One key ingredient of our construction is to ensure that the clusters grow
sufficiently in each iteration without overlapping. For that purpose, we use an
3 Note that S itself is not necessarily connected, and the tree T may span also some

nodes that do not belong to S.

Local Computation of Nearly Additive Spanners 185

independent dominating set to pick some independent dense clusters at distance
at least 3 from one another (set X of line 5). These independent clusters can
then grow in parallel. In fact, using a consistent coloring technique (in the loop
of line 6), each cluster determines the cluster in the independent set to which
it will be merged. Thus, at least the clusters in the neighborhood of each inde-
pendent cluster can be merged together in parallel without overlap (the loop of
line 10). This process of picking clusters using an independent set allows us to
enlarge them sufficiently while preventing new merged clusters from overlapping.

Input: a graph G = (V, E), a sequence ρ1, . . . , ρK where K = �log k� + 1, λ ≥ 1
Output: a spanner H of G
H := (V, ∅), C :=

S
v∈V (v, {v} , ({v} , ∅))1

for i := 1 to K do2

C′ := ∅, M := Gρi
(C)3

L := {v ∈ center(C) | degM (v) ≤ n1/k |Sv|} /* sparse clusters */4

X := IDS(M2[center(C) \L], λ) /* dominating set for the dense clusters */5

for v ∈ center(C) do6

if dM (v, X) ≤ 2λ then set c(v) to be its closest node of X in M7

(breaking ties by identities), else c(v) := ⊥

for v, w ∈ center(C) such that v, w are neighbors in M and c(v) = ⊥ do8

Add a shortest path in G from Sv to Sw to H9

for v ∈ center(C) ∩ X do10

S := Sv and T := Tv11

for w ∈ center(C) such that c(w) = v do12

Compute a shortest path v = x0, x1, . . . , xt = w in M13

for j := 1 to t do14

Add a shortest path in G from Sxj−1 to Sxj
to H and to T15

Add Sxj
to S, and add Txj

to T16

Add (v, S, T) to C′
17

C := C′
18

Algorithm 2. Algorithm Dom-Span

3.3 Analysis

Our result is summarized in the following theorem. (Recall the notation (1).)
Due to lack of space, the proof is omitted.

Theorem 2. Algorithm Dom-Span is a deterministic distributed algorithm that,
for all n-node graph G, integers k, λ ≥ 1, and distance sequence ρ1, . . . , ρK where
K =
log k� + 1, computes for G a spanner H of at most ρ[1, K] · (n1+1/k + n)
edges. The stretch of H and the time complexity of Dom-Span are summarized
in the table below.

In the following table, size and time complexities are stated up to a constant
factor. IDS(n, λ) denotes the complexity of computing (distributively) an inde-
pendent λ-dominating set of an n-node graph. The best currently known bounds
are IDS(n, 1) = 2O(

√
log n) [37], and IDS(n, 2 logn) = O(log n) (cf. [36]).

186 B. Derbel et al.

stretch size time parameters

(1 + ε, 8 − ε) ε−1 · n4/3 ε−1 + IDS(n, 1) ρ1 = 1, ρ2 = 8/ε, k = 3
≤ ε−1 + 2O(

√
log n) ε ∈ (0, 8]

(1 + ε, β1) β1 · n1+1/k β1 · IDS(n, 1) ρi = (9
log k� /ε)i−1

β1 = klog(log k/ε)+O(1) ≤ β1 · 2O(
√

log n) ε ∈ (0, O(log k)]
(1 + ε, β2) β2 · n

β2 · IDS(n, 2 log n) ↪→ k = log n

β2 = (log n/ε)O(log log n) ≤ β2 · log n ε ∈ (0, O(log log n)]

For k = 3, the stretch can be slightly improved as shown in Subsection 3.4.
Observe that an independent dominating set (λ = 1), which is nothing else than
a maximal independent set, can be computed in O(log n) expected time [38],
leading to better performances in our algorithm if Las Vegas algorithms are
considered.

3.4 An Improved Algorithm for k = 3

Finally, we propose a specific construction for k = 3, slightly improving the
stretch over the general algorithms Local-Span and Dom-Span. The construc-
tion, which combines ideas from both algorithms, yields to a (1+ε, 6−ε)-spanner
with O(ε−1n4/3) edges.

Theorem 3. There is a deterministic distributed algorithm that, for every n-
node graph and ε ∈ (0, 6], computes a (1 + ε, 6− ε)-spanner of O(ε−1n4/3) edges
in O(ε−1 + IDS(n, 1)) = O(ε−1) + 2O(

√
log n) time.

Proof. The proof is based on an ad-hoc construction obtained by merging both
algorithms Local-Span and Dom-Span.

Let us denote by D the set of nodes of degree at least n1/3, the dense nodes.
We first construct a small 2-dominating set X for nodes in D. More formally,
we compute a set X such that for every v ∈ D, dG(v, X) ≤ 2. This can be done
by computing distributively an MIS of G2[D] in O(IDS(n, 1)) time, as done in
Algorithm Dom-Span with λ = 1. We obtain a 2-dominating set X for D with
|X | ≤ n2/3.

From X , we create a partition of D into “clusters”, i.e., a connected subgraph
C(x) centered in each node x of X and of radius at most 2. This can be done in
O(1) time by a vote of each node of D of its closest “dominator” in X , equality
being break in a consistence nanner.

For each node v of G select a set R(v) composed of v and of min
{
degG(v), n1/3

}
of its neighbors. This phase is similar to the first phase of Algorithm Local-Span

with k = 3.
The edges of the spanner H are composed of:

(1) the edges between v and R(v) for each node v of G;
(2) the edges of BFS trees centered at each node x ∈ X and spanning C(x); and
(3) the edges of the shortest paths computed as follows (the next procedure is

similar to the while-loop of Algorithm Local-Span):

Local Computation of Nearly Additive Spanners 187

for each node x ∈ X , do (in parallel):

1. W (x) := (B(x, ρ) ∩ D) \ C(x), where ρ = 6/ε + 2
2. while W (x) 	= ∅ do

(a) pick the closest w ∈ W (x) from x;
(b) add a shortest path in G from x to w; and
(c) remove from W (x) all nodes v such that R(v) and R(w) intersect.

Time: The time complexity is O(IDS(n, 1)+ ε−1), since Phase (3) involves only
nodes at distance O(ε−1).

Size: The number of edges for Phase (1) is at most n4/3. For Phase (2) this is at
most n−|X | since {C(x)}x∈X is a partition of the nodes of G. For Phase (3) we
observe that the instructions of the while-loop are executed at most n/n1/3 =
n2/3 times since:

– the w’s selected at Step 2(a) have pairwise disjoint regions R(w);
– once w is picked, at least all nodes of R(w) are removed from G and cannot

be considered any more in W (x), because if v ∈ R(w) then R(v) ∩ R(w)
contains at least v since v ∈ R(v);

– the size of R(w) is n1/3 since w ∈ W (x) ⊆ D.

Each path added at Step 2(b) is of length at most ρ, so Phase (3) contributes
for at most |X | · n2/3 · ρ ≤ ρ · n4/3 edges. In total, the number of edges of H is
at most (ρ + 1) · n4/3 + n = O(ε−1n4/3).

Stretch: The stretch analysis is similar to the one of Proposition 7. One consider
two distinct nodes u, v in G, and let P be a shortest path from u to v in G. We
want to show that dH(u, v) ≤ (1+ ε)dG(u, v)+6− ε, that is H is a (1+ ε, 6− ε)-
spanner. We will proceed by induction, prove the result for “small distances”,
and then assume it holds for all distances δ < dG(u, v).

For that, we assume that P is not wholly included in H , since otherwise
dH(u, v) = dG(u, v) and we are done. Let us first show that:

Claim. If 1 ≤ dG(u, v) ≤ ρ − 2, then dH(u, v) ≤ dG(u, v) + 6.

Proof. Let u′, v′ ∈ P respectively be the closest and farthest node from u that
are in D. Both nodes exist otherwise P would be composed of only nodes of
degree less than n1/3 (i.e., not in D), and P ⊆ H : contradiction. Note that
dH(u, u′) = dG(u, u′) and dH(v, v′) = dG(v, v′). So it suffices to prove that
dH(u′, v′) ≤ (1 + ε)d′ + 6 − ε, where d′ = dG(u′, v′).

Let x ∈ X such that u′ ∈ C(x). Such x exists, since u′ ∈ D. If v′ ∈ C(x),
we are done dH(u′, v′) ≤ 2. Note that dG(x, v′) ≤ dG(x, u′) + dG(u′, v′) ≤ 2 + d′

that is at most ρ because d′ ≤ dG(u, v) ≤ ρ − 2 by assumption. In other words,
v′ ∈ B(x, ρ). It follows that v′ is in the set W (x) when initialized at Step 1.

Let w be the node picked at Step 2(a) in the while-loop such that v′ is removed
from W (x). Let P ′ be the shortest path added to H from x to w. We have

188 B. Derbel et al.

R(w) ∩ R(v′) 	= ∅ (v′ = w is possible). Since all the edges from a node z
to all its neighbors in R(z) are in H , we have dH(w, v′) ≤ 2. In other words,
there is a route from u′ to v′ through x and P ′, and through w to v′ thanks
to R(w) and R(v′). Note that dG(x, w) ≤ dG(x, v′) by the choice of w. Hence,
the length of P ′ is |P ′| ≤ dG(u′, w) + 2 because dG(u′, x) ≤ 2. So dH(u′, v′) ≤
dH(u′, x) + dH(x, v′) ≤ 2 + |P ′| + 2 ≤ dG(u′, v′) + 6, completing the proof of the
claim. ��

So, if dG(u, v) ≤ ρ − 2, then dH(u, v) ≤ dG(u, v) + 6 ≤ (1 + ε)dG(u, v) + 6 − ε
since dG(u, v) ≥ 1.

Assume now that dG(u, v) > ρ−2, and let z ∈ P be such that dG(u, z) = ρ−r.
By definition of ρ and the choice of ε ∈ (0, 6], ρ − 2 ≥ 1. Therefore u 	= z and
Claim 3.4 applies: dH(u, z) ≤ ρ − 2 + 6. Observe that ε(ρ − 2) ≥ 6, and thus
dH(u, z) ≤ ρ − 2 + ε(ρ − 2) = (1 + ε)(ρ − 2).

By induction hypothesis on the distance between z and v, which is < dG(u, v),
we get: dH(z, v) ≤ (1+ε)dG(z, v)+6−ε = (1+ε)(dG(u, v)−dG(u, z))+6−ε. If
follows that dH(u, v) ≤ dH(u, z) + dH(z, v) ≤ (1 + ε)(ρ − 2) + (1 + ε)(dG(u, v) −
(ρ − 2)) + 6 − ε = (1 + ε)dG(u, v) + 6 − ε. This completes the stretch analysis,
and the proof of Theorem 3. ��

References

1. Jacquet, P., Viennot, L.: Remote spanners: what to know beyond neighbors. In:
23rd IEEE International Parallel & Distributed Processing Symposium (IPDPS),
IEEE Computer Society Press, Los Alamitos (2009)

2. Adjih, C., Laouiti, A., Muhlethaler, P., Qayyum, A., Viennot, L.: The optimised
routing protocol for mobile ad-hoc networks: protocol specification. Technical Re-
port 5145, INRIA (March 2003)

3. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: 6th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pp. 77–85.
ACM Press, New York (1987)

4. Peleg, D., Schäffer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116
(1989)

5. Awerbuch, B.: Complexity of network synchronization. Journal of the ACM 32(4),
804–823 (1985)

6. Peleg, D., Ullman, J.D.: An optimal synchornizer for the hypercube. SIAM Journal
on Computing 18(4), 740–747 (1989)

7. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t.
SIAM Journal on Computing 28(1), 210–236 (1998)

8. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1+ε, β)-spanners in the
distributed and streaming models. Distributed Computing 18(5), 375–385 (2006)

9. Baswana, S., Goyal, V., Sen, S.: All-pairs nearly 2-approximate shortest-paths
in O(n2polylogn) time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 666–679. Springer, Heidelberg (2005)

10. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 591–602. IEEE Computer Society Press, Los
Alamitos (2006)

Local Computation of Nearly Additive Spanners 189

11. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52(1),
1–24 (2005)

12. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate dis-
tance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidel-
berg (2005)

13. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

14. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In: 36th Annual ACM Symposium
on Theory of Computing (STOC), pp. 81–90. ACM Press, New York (2004)

15. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM Journal on
Computing 29(5), 1740–1759 (2000)

16. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors.
In: 17th Symposium on Discrete Algorithms (SODA), January 2006, pp. 802–809.
ACM/ SIAM (2006)

17. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive
spanners. SIAM Journal of Discrete Mathematics 19(4), 1029–1055 (2006)

18. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: 41st Annual ACM Symposium on Theory of Computing (STOC).
ACM Press, New York (2009)

19. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in
directed graphs. ACM Transactions on Algorithms 3(4), Article 29 (2008)

20. Pettie, S.: Low distortion spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg
(2007)

21. Althöfer, I., Das, G., Dobkin, D., Joseph, D.A., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9(1), 81–100 (1993)

22. Erdös, P.: Extremal problems in graph theory, pp. 29–36. Publ. House Cszechoslo-
vak Acad. Sci., Prague (1964)

23. Erdös, P., Simonovits, M.: Compactness results in extremal graph theory. Combi-
natorica 2(3), 275–288 (1982)

24. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM Journal on Comput-
ing 28(4), 1167–1181 (1999)

25. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: New constructions of (α, β)-
spanners and purely additive spanners. In: 16th Symposium on Discrete Algorithms
(SODA), pp. 672–681. ACM/ SIAM (2005)

26. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In:
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
389–398. IEEE Computer Society Press, Los Alamitos (2006)

27. Elkin, M., Peleg, D.: (1 + ε, β)-spanner constructions for general graphs. SIAM
Journal on Computing 33(3), 608–631 (2004)

28. Pettie, S.: Distributed algorithms for ultrasparse spanners and linear size skele-
tons. In: 27th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pp. 253–262. ACM Press, New York (2008)

29. Baswana, S., Sen, S.: A simple linear time algorithm for computing a (2k − 1)-
spanner of O(n1+1/k) size in weighted graphs. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396.
Springer, Heidelberg (2003)

190 B. Derbel et al.

30. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed
sparse spanner construction. In: 27th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pp. 273–282. ACM Press, New York (2008)

31. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algo-
rithms 1(2), 283–323 (2005)

32. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1+ε, β)-spanners in the
distributed and streaming models. In: 23rd Annual ACM Symposium on Principles
of Distributed Computing (PODC), pp. 160–168. ACM Press, New York (2004)

33. Elkin, M., Peleg, D.: (1 + ε, β)-spanner constructions for general graphs. In: 33rd

Annual ACM Symposium on Theory of Computing (STOC), pp. 173–182. ACM
Press, New York (2001)

34. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
23rd Annual ACM Symposium on Principles of Distributed Computing (PODC),
pp. 300–309. ACM Press, New York (2004)

35. Linial, N.: Locality in distributed graphs algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

36. Peleg, D.: Proximity-preserving labeling schemes. Journal of Graph Theory 33(3),
167–176 (2000)

37. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-
sition. Journal of Algorithms 20(2), 356–374 (1996)

38. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15(4), 1036–1053 (1986)

	Introduction
	A Local Algorithm
	Description of Algorithm Local-Span
	Results
	Analysis of Algorithm Local-Span

	An Algorithm Based on Independent Dominating Sets
	Definitions
	Description of Algorithm Dom-Span
	Analysis
	An Improved Algorithm for k=3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

