On the Locality of Distributed Sparse Spanner Constructions

B. Derbel, C. Gavoille, D. Peleg, L. Viennot

University of Lille
University of Bordeaux
Weizmann Institute
INRIA, Paris

PODC 2008 - Toronto

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

- a spanning tree

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

- a spanning tree
- a Hamiltonian cycle

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

- a spanning tree
- a Hamiltonian cycle
- a maximal bipartite subgraph
- ...

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G :

- size: its number of edges.
- stretch: its maximum distance distortion from G.

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G :

- size: its number of edges.
- stretch: its maximum distance distortion from G.

Goals:

- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

A complete Euclidian graph on 15 nodes

A (minimum cost) spanner with stretch 1.2

A (minimum cost) spanner with stretch 1.7

A (minimum cost) spanner with stretch 2.0

A (minimum cost) spanner with stretch 3.0

More Formally

Definition

An (α, β)-spanner S of G is spanner of G satisfying $d_{S}(x, y) \leqslant \alpha \cdot d_{G}(x, y)+\beta$ for all $x, y \in V(G)$.

More Formally

Definition

An (α, β)-spanner S of G is spanner of G satisfying $d_{S}(x, y) \leqslant \alpha \cdot d_{G}(x, y)+\beta$ for all $x, y \in V(G)$.

A (2,0)-spanner of size 11 which is a $(1,1)$-spanner as well.

Spanners to do What?

[Peleg-Ullman '87]: "An optimal synchronizer for the Hypercube" (440 Google hits)

Used for:

- communication networks
- distributed systems
- network design

Spanners to do What?

[Peleg-Ullman '87]: "An optimal synchronizer for the Hypercube" (440 Google hits)

Used for:

- communication networks
- distributed systems
- network design

Synchronizers [Awerbuch JACM '85]
Links with: Sparse Partition [Awerbuch et al. FOCS'90]; Distance Oracle [Thorup-Zwick STOC'01, Baswana et al. SODA'04]; Compact Routing [Peleg-Upfal STOC'89, Thorup-Zwick SPAA'01];

Variant: Geometric Spanners used for TSP (minimize $\sum_{e \in E(S)} \omega(e)$ of within a given stretch)

Some Basic Facts

Theorem (Althöfer et al. '93)

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.

Some Basic Facts

Theorem (Althöfer et al. '93)

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
(1) $S:=\varnothing$ (the empty graph)
(2) While $\exists e \in E(G)$ with stretch in S is $>2 k-1$, $S:=S \cup\{e\}$

Some Basic Facts

Theorem (Althöfer et al. '93)

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
(1) $S:=\varnothing$ (the empty graph)
(2) While $\exists e \in E(G)$ with stretch in S is $>2 k-1$,

$$
S:=S \cup\{e\}
$$

Properties:

- Stretch of S is $\leqslant 2 k-1$.

Some Basic Facts

Theorem (Althöfer et al. '93)

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
(1) $S:=\varnothing$ (the empty graph)
(2) While $\exists e \in E(G)$ with stretch in S is $>2 k-1$,

$$
S:=S \cup\{e\}
$$

Properties:

- Stretch of S is $\leqslant 2 k-1$.
- Whenever e is added to S, one cannot create any cycle of length $\leqslant 2 k$.

Some Basic Facts

Theorem (Althöfer et al. '93)

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
(1) $S:=\varnothing$ (the empty graph)
(2) While $\exists e \in E(G)$ with stretch in S is $>2 k-1$,

$$
S:=S \cup\{e\}
$$

Properties:

- Stretch of S is $\leqslant 2 k-1$.
- Whenever e is added to S, one cannot create any cycle of length $\leqslant 2 k$. Theorem [Folk] $\Rightarrow S$ has $\leqslant n^{1+1 / k}$ edges.

Erdös-Simonovits Conjecture

"For each $k \geqslant 1$, there is a n-node graph with no cycle of length $\leqslant 2 k$ with $\Omega\left(n^{1+1 / k}\right)$ edges.'

Erdös-Simonovits Conjecture

"For each $k \geqslant 1$, there is a n-node graph with no cycle of length $\leqslant 2 k$ with $\Omega\left(n^{1+1 / k}\right)$ edges."
\Rightarrow
Conjecture (Proved for $k=1,2,3,5$)
Every (α, β)-spanner such that $\alpha+\beta<2 k+1$ requires $\Omega\left(n^{1+1 / k}\right)$ edges for some worst-case graph.

Erdös-Simonovits Conjecture

"For each $k \geqslant 1$, there is a n-node graph with no cycle of length $\leqslant 2 k$ with $\Omega\left(n^{1+1 / k}\right)$ edges."
\Rightarrow

Conjecture (Proved for $k=1,2,3,5$)

Every (α, β)-spanner such that $\alpha+\beta<2 k+1$ requires $\Omega\left(n^{1+1 / k}\right)$ edges for some worst-case graph.

For $k=2$: a $(3,0)$-spanner, or a $(1,2)$-spanner has $\Omega\left(n^{3 / 2}\right)$ edges in the worst-case graph.

Distributed Algorithms (uniform edge-cost)

```
stretch size time
```

DETERMINISTIC

$2 \log n$	$O(n)$	$2^{O(\sqrt{\log n})}$	[Panconesi et al. '05]
$4 k-5$	$O\left(k n^{1+1 / k}\right)$	$2^{O(k)} \log ^{k-1} n$ [Derbel et al. '07]	

RANDOMIZED (expected size)
$2^{O\left(\log ^{*} n\right)} \log n$
$\begin{array}{cc}O(n) & \operatorname{lo} \\ O\left(k n^{1+1 / k}\right) & k\end{array}$
$\log ^{1+o(1)} n$
[Pettie '08]
$2 k-1$
$(1+\varepsilon, \beta)$
$O\left(\beta n^{1+1 / k}\right) \quad O(\beta)$
[Baswana et al. '05]
[Elkin et al. '06]
$\beta=(k / \varepsilon)^{O(k \log k)}$

Distributed Algorithms for $k=2$

stretch size time

DET. $3 \quad O\left(n^{3 / 2}\right) \quad O(\log n) \quad$ [Derbel et al. '07]
RAND. $30\left(n^{3 / 2}\right) \quad 2 \quad$ [Baswana et al. '05]

What the Locality of the Problem?

What is the smallest t such that if each node u of a graph knows $B(u, t)$, then u can deterministically decide alone which incident edges to keep to form a $(3,0)$-spanner of size $O\left(n^{3 / 2}\right)$?
(and more generally a $(2 k-1,0)$-spanner of size $O\left(n^{1+1 / k}\right)$?)

The Model

LOCAL model: (a.k.a. Free model, or Linial's model)

- synchrone
- unique IDs
- no size limit messages
- no failures
- simultaneous wake-up
- arbitrary computational power at nodes

Time complexity: number of rounds
(1 round $=$ messages sent/received between all neighbors)

Our Results

Theorem (1)

There is a deterministic distributed algorithm that for every n-node graph computes a $(2 k-1,0)$-spanner of size at most $k n^{1+1 / k}$ in time k.

Our Results

Theorem (1)

There is a deterministic distributed algorithm that for every n-node graph computes a $(2 k-1,0)$-spanner of size at most $k n^{1+1 / k}$ in time k.

The time bound " k " is best possible (under the E.-S.
Conjecture), even for randomized algorithms (expected time).

Our Results

Theorem (1)

There is a deterministic distributed algorithm that for every n-node graph computes a $(2 k-1,0)$-spanner of size at most $k n^{1+1 / k}$ in time k.

The time bound " k " is best possible (under the E.-S. Conjecture), even for randomized algorithms (expected time).
If n is unkown (important in practice!), then the algorithm still requires time $O(k)$.

Our Results

Theorem (2)

For every $\varepsilon>0$, there is a deterministic distributed algorithm that for every n-node graph (where n is unkown to the nodes) computes a $(1+\varepsilon, 2)$-spanner of size $O\left(\varepsilon^{-1} n^{3 / 2}\right)$ in $O\left(\varepsilon^{-1}\right)$ time.

Our Results

Theorem (2)

For every $\varepsilon>0$, there is a deterministic distributed algorithm that for every n-node graph (where n is unkown to the nodes) computes a $(1+\varepsilon, 2)$-spanner of size $O\left(\varepsilon^{-1} n^{3 / 2}\right)$ in $O\left(\varepsilon^{-1}\right)$ time.

We also prove that $(1+\varepsilon, 2)$-spanner of size $O\left(n^{3 / 2}\right)$ cannot be computed in less than $\Omega\left(\varepsilon^{-1}\right)$ expected time.

Ideas for Previous Deterministic Algorithms

 "Sparse Partition" like techniques, here for $k=2$:
Ideas for Previous Deterministic Algorithms

"Sparse Partition" like techniques, here for $k=2$:
(1) Compute an maximal indendent set (MIS) X in G^{2}
\Rightarrow points pairwise at distance $\geqslant 3$ and $\leqslant 5$

Ideas for Previous Deterministic Algorithms

"Sparse Partition" like techniques, here for $k=2$:
(1) Compute an maximal indendent set (MIS) X in G^{2}
\Rightarrow points pairwise at distance $\geqslant 3$ and $\leqslant 5$
(2) Create independent regions with centers in $\left.X\right|_{\operatorname{deg} \geqslant \sqrt{n}}$

Ideas for Previous Deterministic Algorithms

"Sparse Partition" like techniques, here for $k=2$:
(1) Compute an maximal indendent set (MIS) X in G^{2}
\Rightarrow points pairwise at distance $\geqslant 3$ and $\leqslant 5$
(2) Create independent regions with centers in $\left.X\right|_{\operatorname{deg} \geqslant \sqrt{n}}$
\Rightarrow regions of radius $\leqslant 2$ and number of dense regions $\leqslant \sqrt{n}$

Ideas for Previous Deterministic Algorithms

"Sparse Partition" like techniques, here for $k=2$:
(1) Compute an maximal indendent set (MIS) X in G^{2} \Rightarrow points pairwise at distance $\geqslant 3$ and $\leqslant 5$
(2) Create independent regions with centers in $\left.X\right|_{\operatorname{deg} \geqslant \sqrt{n}}$ \Rightarrow regions of radius $\leqslant 2$ and number of dense regions $\leqslant \sqrt{n}$
(3) In parallel compute a "good" spanner in each region

Ideas for Previous Deterministic Algorithms

"Sparse Partition" like techniques, here for $k=2$:
(1) Compute an maximal indendent set (MIS) X in G^{2}
\Rightarrow points pairwise at distance $\geqslant 3$ and $\leqslant 5$
(2) Create independent regions with centers in $\left.X\right|_{\operatorname{deg} \geqslant \sqrt{n}}$ \Rightarrow regions of radius $\leqslant 2$ and number of dense regions $\leqslant \sqrt{n}$
(3) In parallel compute a "good" spanner in each region \Rightarrow optimal stretch-size tradeoff in 2 rounds

Ideas for Previous Deterministic Algorithms

"Sparse Partition" like techniques, here for $k=2$:
(1) Compute an maximal indendent set (MIS) X in G^{2} \Rightarrow points pairwise at distance $\geqslant 3$ and $\leqslant 5$
(2) Create independent regions with centers in $\left.X\right|_{\operatorname{deg} \geqslant \sqrt{n}}$ \Rightarrow regions of radius $\leqslant 2$ and number of dense regions $\leqslant \sqrt{n}$
(3) In parallel compute a "good" spanner in each region \Rightarrow optimal stretch-size tradeoff in 2 rounds
(4) Cover inter-region edges (bipartite) with length-3 paths

Ideas for Previous Deterministic Algorithms

"Sparse Partition" like techniques, here for $k=2$:
(1) Compute an maximal indendent set (MIS) X in G^{2} \Rightarrow points pairwise at distance $\geqslant 3$ and $\leqslant 5$
(2) Create independent regions with centers in $\left.X\right|_{\operatorname{deg} \geqslant \sqrt{n}}$ \Rightarrow regions of radius $\leqslant 2$ and number of dense regions $\leqslant \sqrt{n}$
(3) In parallel compute a "good" spanner in each region \Rightarrow optimal stretch-size tradeoff in 2 rounds
(9) Cover inter-region edges (bipartite) with length-3 paths \Rightarrow doable with size $n+2\left|R_{x}\right| \sqrt{n}$ for dense region R_{x}

Bottleneck: Sparse Partition Construction

Computing quickly an MIS is difficult.
It is solved sequentially by (inherently?) greedy algorithms.

- Upper bound: $2^{O(\sqrt{\log n})} \quad$ [Panconesi et al. STOC'96]
- Lower bound: $\Omega(\sqrt{\log n / \log \log n})$ [Kuhn et al. PODC'06]

Ideas for Randomized Algorithms

[Baswana-Pettie '05, here for $k=2$]
(1) $b_{u}:=1 \mid 0$ with proba $1 / \sqrt{n}$. Let $X:=\left\{u \mid b_{u}=1\right\}$
(2) $[u \in Z]$ if $B(u, 1) \cap X=\varnothing$, then $S_{u}:=B(u, 1)$
(0. $[u \in X]$ if $b_{u}=1$, then $S_{u}:=\operatorname{BFS}(u, B(u, 2))$

Ideas for RANDOMIZED Algorithms
 [Baswana-Pettie '05, here for $k=2$]

(1) $b_{u}:=1 \mid 0$ with proba $1 / \sqrt{n}$. Let $X:=\left\{u \mid b_{u}=1\right\}$
(2) $[u \in Z]$ if $B(u, 1) \cap X=\varnothing$, then $S_{u}:=B(u, 1)$
(0) $[u \in X]$ if $b_{u}=1$, then $S_{u}:=\operatorname{BFS}(u, B(u, 2))$

Time: 2 rounds Stretch: 3

Size: $2 n^{3 / 2}$ in expectation
(In expectation: $|X|=\sqrt{n}$, and if $u \in Z$, then $\operatorname{deg}(u) \leqslant \sqrt{n}$)

Observations

In all previous algorithms:
(1) Need to distinguish some independent set of nodes (X).
(2) Knowledge of n is required.
(Performences not garanteed for randomized algorithms.

The New Algorithm (for $k=2$)

For every node u do:

The New Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\left\{\right.$ any selection of $|B(u, 3)|^{1 / 2}$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C:=C \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Select edges from u to $R_{u} \cup C$

The New Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\left\{\right.$ any selection of $|B(u, 3)|^{1 / 2}$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C:=C \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Select edges from u to $R_{u} \cup C$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2 .

The New Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\left\{\right.$ any selection of $|B(u, 3)|^{1 / 2}$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C:=C \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Select edges from u to $R_{u} \cup C$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2. Thus $\exists w \in C$ with $R_{v} \cap R_{w} \neq \varnothing$. Hence, stretch $\leqslant 3$.

The New Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\left\{\right.$ any selection of $|B(u, 3)|^{1 / 2}$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C:=C \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Select edges from u to $R_{u} \cup C$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2. Thus $\exists w \in C$ with $R_{v} \cap R_{w} \neq \varnothing$. Hence, stretch $\leqslant 3$.

The New Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\left\{\right.$ any selection of $|B(u, 3)|^{1 / 2}$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C:=C \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Select edges from u to $R_{u} \cup C$

Size: $\forall w \in W$ after 3 has degree \geqslant $|B(w, 3)|^{1 / 2}$.

The New Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\left\{\right.$ any selection of $|B(u, 3)|^{1 / 2}$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C:=\varnothing$
(4) while $\exists w \in W$:
(1) $C:=C \cup\{w\}$
(2) $W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}$
(5) Select edges from u to $R_{u} \cup C$

Size: $\forall w \in W$ after 3 has degree \geqslant $|B(w, 3)|^{1 / 2}$. Thus, $\operatorname{deg}(w) \geqslant|B(u, 2)|^{1 / 2}$ since $B(u, 2) \subseteq B(w, 3)$.

The New Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\left\{\right.$ any selection of $|B(u, 3)|^{1 / 2}$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C:=\varnothing$
(9) while $\exists w \in W$:
(1) $C:=C \cup\{w\}$
(2) $W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}$
(5) Select edges from u to $R_{u} \cup C$

Size: $\forall w \in W$ after 3 has degree \geqslant $|B(w, 3)|^{1 / 2}$. Thus, $\operatorname{deg}(w) \geqslant|B(u, 2)|^{1 / 2}$ since $B(u, 2) \subseteq B(w, 3) . \quad R_{w}$ taken in C are disjoint. \#loops is $|C| \leqslant$ $|B(u, 2)| /|B(u, 2)|^{1 / 2} \leqslant \sqrt{n}$. Size: $n \times 2 \sqrt{n}$.

The New Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\left\{\right.$ any selection of $|B(u, 3)|^{1 / 2}$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C:=C \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Select edges from u to $R_{u} \cup C$

Conclusion:

- Stretch: 3
- Size: $2 n^{3 / 2}$
- Time: 3 (or 2 if n known)

Early registration: August 25!!!

Thank You

for your attention

