On the Locality of Distributed Sparse Spanner Constructions

B. Derbel, C. Gavoille, D. Peleg, L. Viennot

University of Lille University of Bordeaux Weizmann Institute INRIA, Paris

PODC 2008 - Toronto

A spanner of a graph G is a subgraph spanning V(G)

A spanner of a graph G is a subgraph spanning V(G)

• a spanning tree

A spanner of a graph G is a subgraph spanning V(G)

- a spanning tree
- a Hamiltonian cycle

A spanner of a graph G is a subgraph spanning V(G)

- a spanning tree
- a Hamiltonian cycle
- a maximal bipartite subgraph
- ...

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G:

- size: its number of edges.
- stretch: its maximum distance distortion from G.

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G:

- size: its number of edges.
- stretch: its maximum distance distortion from G.

Goals:

- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

A complete Euclidian graph on $15 \ {\rm nodes}$

A (minimum cost) spanner with stretch 1.2

A (minimum cost) spanner with stretch 1.7

A (minimum cost) spanner with stretch 2.0

More Formally

Definition

An (α, β) -spanner S of G is spanner of G satisfying $d_S(x, y) \leq \alpha \cdot d_G(x, y) + \beta$ for all $x, y \in V(G)$.

More Formally

Definition

An (α, β) -spanner S of G is spanner of G satisfying $d_S(x, y) \leq \alpha \cdot d_G(x, y) + \beta$ for all $x, y \in V(G)$.

A (2,0)-spanner of size 11 which is a (1,1)-spanner as well.

Spanners to do What?

[Peleg-Ullman '87]: *"An optimal synchronizer for the Hypercube"* (440 Google hits)

Used for:

- communication networks
- distributed systems
- network design

Spanners to do What?

[Peleg-Ullman '87]: *"An optimal synchronizer for the Hypercube"* (440 Google hits)

Used for:

- communication networks
- distributed systems
- network design

Synchronizers [Awerbuch JACM '85]

Links with: Sparse Partition [Awerbuch et al. FOCS'90]; Distance Oracle [Thorup-Zwick STOC'01, Baswana et al. SODA'04]; Compact Routing [Peleg-Upfal STOC'89, Thorup-Zwick SPAA'01];

Variant: Geometric Spanners used for TSP (minimize $\sum_{e \in E(S)} \omega(e)$ of within a given stretch)

Theorem (Althöfer et al. '93)

Every graph has a (2k-1,0)-spanner with $O(n^{1+1/k})$ edges.

Theorem (Althöfer et al. '93)

Every graph has a (2k-1,0)-spanner with $O(n^{1+1/k})$ edges.

S := Ø (the empty graph)
While ∃e ∈ E(G) with stretch in S is > 2k - 1, S := S ∪ {e}
k = 2

Theorem (Althöfer et al. '93)

Every graph has a (2k - 1, 0)-spanner with $O(n^{1+1/k})$ edges.

S := Ø (the empty graph)
While ∃e ∈ E(G) with stretch in S is > 2k - 1, S := S ∪ {e}

Properties:

• Stretch of S is $\leq 2k - 1$.

Theorem (Althöfer et al. '93)

Every graph has a (2k - 1, 0)-spanner with $O(n^{1+1/k})$ edges.

- $S := \emptyset$ (the empty graph)
- While $\exists e \in E(G)$ with stretch in S is > 2k 1, $S := S \cup \{e\}$

Properties:

- Stretch of S is $\leq 2k 1$.
- Whenever e is added to S, one cannot create any cycle of length ≤ 2k.

Theorem (Althöfer et al. '93)

Every graph has a (2k - 1, 0)-spanner with $O(n^{1+1/k})$ edges.

- $S := \emptyset$ (the empty graph)
- While $\exists e \in E(G)$ with stretch in S is > 2k 1, $S := S \cup \{e\}$

Properties:

- Stretch of S is $\leq 2k 1$.
- Whenever e is added to S, one cannot create any cycle of length ≤ 2k. Theorem [Folk] ⇒ S has ≤ n^{1+1/k} edges.

Erdös-Simonovits Conjecture

"For each $k \ge 1$, there is a *n*-node graph with no cycle of length $\le 2k$ with $\Omega(n^{1+1/k})$ edges."

Erdös-Simonovits Conjecture

"For each $k \ge 1$, there is a *n*-node graph with no cycle of length $\le 2k$ with $\Omega(n^{1+1/k})$ edges."

 \Rightarrow

Conjecture (Proved for k = 1, 2, 3, 5)

Every (α, β) -spanner such that $\alpha + \beta < 2k + 1$ requires $\Omega(n^{1+1/k})$ edges for some worst-case graph.

Erdös-Simonovits Conjecture

"For each $k \ge 1$, there is a *n*-node graph with no cycle of length $\le 2k$ with $\Omega(n^{1+1/k})$ edges."

 \Rightarrow

Conjecture (Proved for k = 1, 2, 3, 5)

Every (α, β) -spanner such that $\alpha + \beta < 2k + 1$ requires $\Omega(n^{1+1/k})$ edges for some worst-case graph.

For k = 2: a (3, 0)-spanner, or a (1, 2)-spanner has $\Omega(n^{3/2})$ edges in the worst-case graph.

Distributed Algorithms (uniform edge-cost)

stretch size time DETERMINISTIC $2^{O(\sqrt{\log n})}$ [Panconesi et al. '05] O(n) $2\log n$ $O(kn^{1+1/k}) = 2^{O(k)} \log^{k-1} n$ [Derbel et al. '07] 4k - 5RANDOMIZED (expected size) $2^{O(\log^* n)} \log n$ $\log^{1+o(1)} n$ O(n)[Pettie '08] 2k-1 $O(kn^{1+1/k})$ k[Baswana et al. '05] $(1 + \varepsilon, \beta)$ $O(\beta n^{1+1/k})$ $O(\beta)$ [Elkin et al. '06] $\beta = (k/\varepsilon)^{O(k\log k)}$

Distributed Algorithms for k = 2

	stretch	size	time	
Det.	3	$O(n^{3/2})$	$O(\log n)$	[Derbel et al. '07]
RAND.	3	$O(n^{3/2})$	2	[Baswana et al. '05]

What the Locality of the Problem?

What is the smallest t such that if each node u of a graph knows B(u,t), then u can **deterministically** decide alone which incident edges to keep to form a (3,0)-spanner of size $O(n^{3/2})$?

(and more generally a (2k-1, 0)-spanner of size $O(n^{1+1/k})$?)

The Model

LOCAL model: (a.k.a. Free model, or Linial's model)

- synchrone
- unique IDs
- no size limit messages
- no failures
- simultaneous wake-up
- arbitrary computational power at nodes

Time complexity: number of rounds

(1 round = messages sent/received between all neighbors)

Theorem (1)

There is a deterministic distributed algorithm that for every n-node graph computes a (2k - 1, 0)-spanner of size at most $kn^{1+1/k}$ in time k.

Theorem (1)

There is a deterministic distributed algorithm that for every n-node graph computes a (2k - 1, 0)-spanner of size at most $kn^{1+1/k}$ in time k.

The time bound "k" is best possible (under the E.-S. Conjecture), even for randomized algorithms (expected time).

Theorem (1)

There is a deterministic distributed algorithm that for every n-node graph computes a (2k - 1, 0)-spanner of size at most $kn^{1+1/k}$ in time k.

The time bound "k" is best possible (under the E.-S. Conjecture), even for randomized algorithms (expected time).

If n is unkown (important in practice!), then the algorithm still requires time O(k).

Theorem (2)

For every $\varepsilon > 0$, there is a deterministic distributed algorithm that for every *n*-node graph (where *n* is unkown to the nodes) computes a $(1 + \varepsilon, 2)$ -spanner of size $O(\varepsilon^{-1}n^{3/2})$ in $O(\varepsilon^{-1})$ time.

Theorem (2)

For every $\varepsilon > 0$, there is a deterministic distributed algorithm that for every *n*-node graph (where *n* is unkown to the nodes) computes a $(1 + \varepsilon, 2)$ -spanner of size $O(\varepsilon^{-1}n^{3/2})$ in $O(\varepsilon^{-1})$ time.

We also prove that $(1 + \varepsilon, 2)$ -spanner of size $O(n^{3/2})$ cannot be computed in less than $\Omega(\varepsilon^{-1})$ expected time.

Ideas for Previous DETERMINISTIC Algorithms "Sparse Partition" like techniques, here for k = 2:

"Sparse Partition" like techniques, here for k = 2:

• Compute an maximal indendent set (MIS) X in G^2

 \Rightarrow points pairwise at distance $\geqslant 3$ and $\leqslant 5$

- Compute an maximal indendent set (MIS) X in G^2 \Rightarrow points pairwise at distance ≥ 3 and ≤ 5
- 2 Create independent regions with centers in $X|_{\deg \ge \sqrt{n}}$

- Compute an maximal indendent set (MIS) X in G^2 \Rightarrow points pairwise at distance ≥ 3 and ≤ 5
- ② Create independent regions with centers in $X|_{\text{deg} \ge \sqrt{n}}$ ⇒ regions of radius ≤ 2 and number of dense regions $\leq \sqrt{n}$

- Compute an maximal indendent set (MIS) X in G^2 \Rightarrow points pairwise at distance ≥ 3 and ≤ 5
- ② Create independent regions with centers in $X|_{\text{deg} \ge \sqrt{n}}$ ⇒ regions of radius $\leqslant 2$ and number of dense regions $\leqslant \sqrt{n}$
- In parallel compute a "good" spanner in each region

- Compute an maximal indendent set (MIS) X in G^2 \Rightarrow points pairwise at distance ≥ 3 and ≤ 5
- ② Create independent regions with centers in $X|_{\text{deg} ≥ \sqrt{n}}$ ⇒ regions of radius $\leqslant 2$ and number of dense regions $\leqslant \sqrt{n}$
- In parallel compute a "good" spanner in each region ⇒ optimal stretch-size tradeoff in 2 rounds

- Compute an maximal indendent set (MIS) X in G^2 \Rightarrow points pairwise at distance ≥ 3 and ≤ 5
- ② Create independent regions with centers in $X|_{\text{deg} \ge \sqrt{n}}$ ⇒ regions of radius $\leqslant 2$ and number of dense regions $\leqslant \sqrt{n}$
- In parallel compute a "good" spanner in each region ⇒ optimal stretch-size tradeoff in 2 rounds
- Cover inter-region edges (bipartite) with length-3 paths

- Compute an maximal indendent set (MIS) X in G^2 \Rightarrow points pairwise at distance ≥ 3 and ≤ 5
- ② Create independent regions with centers in X |_{deg≥√n} ⇒ regions of radius ≤ 2 and number of dense regions ≤ √n
- In parallel compute a "good" spanner in each region
 ⇒ optimal stretch-size tradeoff in 2 rounds
- Cover inter-region edges (bipartite) with length-3 paths \Rightarrow doable with size $n + 2|R_x|\sqrt{n}$ for dense region R_x

Computing quickly an MIS is difficult. It is solved sequentially by (inherently?) greedy algorithms.

- Upper bound: $2^{O(\sqrt{\log n})}$ [Panconesi et al. STOC'96]
- Lower bound: $\Omega(\sqrt{\log n / \log \log n})$ [Kuhn et al. PODC'06]

Ideas for RANDOMIZED Algorithms [Baswana-Pettie '05, here for k = 2]

- **1** $b_u := 1 | 0$ with proba $1/\sqrt{n}$. Let $X := \{u \mid b_u = 1\}$
- 2 $[u \in Z]$ if $B(u, 1) \cap X = \emptyset$, then $S_u := B(u, 1)$
- **3** $[u \in X]$ if $b_u = 1$, then $S_u := BFS(u, B(u, 2))$

Ideas for RANDOMIZED Algorithms [Baswana-Pettie '05, here for k = 2]

- **1** $b_u := 1 | 0$ with proba $1/\sqrt{n}$. Let $X := \{ u \mid b_u = 1 \}$
- 2 $[u \in Z]$ if $B(u, 1) \cap X = \emptyset$, then $S_u := B(u, 1)$
- $[u \in X]$ if $b_u = 1$, then $S_u := BFS(u, B(u, 2))$

Observations

In all previous algorithms:

- **(**) Need to distinguish some independent set of nodes (X).
- **2** Knowledge of n is required.
- **③** Performences not garanteed for randomized algorithms.

For every node u do:

For every node u do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } |B(u,3)|^{1/2} \text{ neighbors } \}$$

- **2** send R_u and receive R_v to/from its neighbors
- while $\exists w \in W$:

$$C := C \cup \{w\}$$

 $W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$

 $\textcircled{O} \hspace{0.1in} \text{Select edges from } u \text{ to } R_u \cup C$

For every node \boldsymbol{u} do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } |B(u,3)|^{1/2} \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C := \emptyset$$

• while $\exists w \in W$:

$$C := C \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

 $\textcircled{O} \hspace{0.1in} \text{Select edges from } u \text{ to } R_u \cup C$

Stretch: if $(u, v) \notin S$, then v removed from W in $\boxed{4.2}$.

For every node \boldsymbol{u} do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } |B(u,3)|^{1/2} \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C := \emptyset$$

• while
$$\exists w \in W$$
:

$$C := C \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

③ Select edges from u to $R_u \cup C$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2. Thus $\exists w \in C$ with $R_v \cap R_w \neq \emptyset$. Hence, stretch ≤ 3 .

For every node \boldsymbol{u} do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } |B(u,3)|^{1/2} \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C := \emptyset$$

• while
$$\exists w \in W$$
:

$$C := C \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

③ Select edges from u to $R_u \cup C$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2. Thus $\exists w \in C$ with $R_v \cap R_w \neq \emptyset$. Hence, stretch ≤ 3 .

For every node \boldsymbol{u} do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } |B(u,3)|^{1/2} \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C := \emptyset$$

• while $\exists w \in W$:

$$C := C \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

③ Select edges from u to $R_u \cup C$

Size:
$$\forall w \in W$$
 after 3 has degree $\geq |B(w,3)|^{1/2}$.

For every node \boldsymbol{u} do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } |B(u,3)|^{1/2} \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C := \emptyset$$

• while $\exists w \in W$:

$$C := C \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

③ Select edges from u to $R_u \cup C$

Size:
$$\forall w \in W$$
 after 3 has degree $\geq |B(w,3)|^{1/2}$. Thus, $\deg(w) \geq |B(u,2)|^{1/2}$ since $B(u,2) \subseteq B(w,3)$.

For every node \boldsymbol{u} do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } |B(u,3)|^{1/2} \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C := \emptyset$$

• while $\exists w \in W$:

$$C := C \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

③ Select edges from u to $R_u \cup C$

Size:
$$\forall w \in W$$
 after 3 has degree $\geq |B(w,3)|^{1/2}$. Thus, $\deg(w) \geq |B(u,2)|^{1/2}$
since $B(u,2) \subseteq B(w,3)$. R_w taken
in C are disjoint. #loops is $|C| \leq |B(u,2)|/|B(u,2)|^{1/2} \leq \sqrt{n}$. Size: $n \times 2\sqrt{n}$.

For every node \boldsymbol{u} do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } |B(u,3)|^{1/2} \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C := \emptyset$$

• while
$$\exists w \in W$$
:

$$C := C \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

 $\textcircled{O} \hspace{0.1in} \text{Select edges from } u \text{ to } R_u \cup C$

Conclusion:

- Stretch: 3
- Size: $2n^{3/2}$
- Time: 3 (or 2 if n known)

Early registration: August 25!!!

Thank You for your attention