
On the Locality of Distributed
Sparse Spanner Constructions

B. Derbel, C. Gavoille, D. Peleg, L. Viennot

University of Lille
University of Bordeaux

Weizmann Institute
INRIA, Paris

PODC 2008 – Toronto

What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph

...

What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph

...

What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph

...

What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph

...

Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

size: its number of edges.

stretch: its maximum distance distortion from G.

Goals:
- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

size: its number of edges.

stretch: its maximum distance distortion from G.

Goals:
- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

A complete Euclidian graph on 15 nodes

A (minimum cost) spanner with stretch 1.2

A (minimum cost) spanner with stretch 1.7

A (minimum cost) spanner with stretch 2.0

A (minimum cost) spanner with stretch 3.0

More Formally

Definition
An (α, β)-spanner S of G is spanner of G satisfying
dS(x, y) 6 α · dG(x, y) + β for all x, y ∈ V (G).

A (2, 0)-spanner of size 11 which is a (1, 1)-spanner as well.

More Formally

Definition
An (α, β)-spanner S of G is spanner of G satisfying
dS(x, y) 6 α · dG(x, y) + β for all x, y ∈ V (G).

A (2, 0)-spanner of size 11 which is a (1, 1)-spanner as well.

Spanners to do What?

[Peleg-Ullman ’87]: “An optimal synchronizer for the
Hypercube” (440 Google hits)

Used for:

communication networks

distributed systems

network design

Synchronizers [Awerbuch JACM ’85]

Links with: Sparse Partition [Awerbuch et al. FOCS’90];
Distance Oracle [Thorup-Zwick STOC’01, Baswana et al.

SODA’04]; Compact Routing [Peleg-Upfal STOC’89,

Thorup-Zwick SPAA’01];

Variant: Geometric Spanners used for TSP
(minimize

∑
e∈E(S) ω(e) of within a given stretch)

Spanners to do What?

[Peleg-Ullman ’87]: “An optimal synchronizer for the
Hypercube” (440 Google hits)

Used for:

communication networks

distributed systems

network design

Synchronizers [Awerbuch JACM ’85]

Links with: Sparse Partition [Awerbuch et al. FOCS’90];
Distance Oracle [Thorup-Zwick STOC’01, Baswana et al.

SODA’04]; Compact Routing [Peleg-Upfal STOC’89,

Thorup-Zwick SPAA’01];

Variant: Geometric Spanners used for TSP
(minimize

∑
e∈E(S) ω(e) of within a given stretch)

Some Basic Facts

Theorem (Althöfer et al. ’93)

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch in S is > 2k − 1,
S := S ∪ {e}

u v
e

k = 2

Properties:

Stretch of S is 6 2k − 1.

Whenever e is added to S, one cannot create any cycle of
length 6 2k. Theorem [Folk] ⇒ S has 6 n1+1/k edges.

Some Basic Facts

Theorem (Althöfer et al. ’93)

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch in S is > 2k − 1,
S := S ∪ {e}

u v
e

k = 2

Properties:

Stretch of S is 6 2k − 1.

Whenever e is added to S, one cannot create any cycle of
length 6 2k. Theorem [Folk] ⇒ S has 6 n1+1/k edges.

Some Basic Facts

Theorem (Althöfer et al. ’93)

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch in S is > 2k − 1,
S := S ∪ {e}

u v
e

k = 2

Properties:

Stretch of S is 6 2k − 1.

Whenever e is added to S, one cannot create any cycle of
length 6 2k.

Theorem [Folk] ⇒ S has 6 n1+1/k edges.

Some Basic Facts

Theorem (Althöfer et al. ’93)

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch in S is > 2k − 1,
S := S ∪ {e}

u v
e

k = 2

Properties:

Stretch of S is 6 2k − 1.

Whenever e is added to S, one cannot create any cycle of
length 6 2k.

Theorem [Folk] ⇒ S has 6 n1+1/k edges.

Some Basic Facts

Theorem (Althöfer et al. ’93)

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e ∈ E(G) with stretch in S is > 2k − 1,
S := S ∪ {e}

u v
e

k = 2

Properties:

Stretch of S is 6 2k − 1.

Whenever e is added to S, one cannot create any cycle of
length 6 2k. Theorem [Folk] ⇒ S has 6 n1+1/k edges.

Erdös-Simonovits Conjecture

”For each k > 1, there is a n-node graph with no cycle of
length 6 2k with Ω(n1+1/k) edges.”

⇒

Conjecture (Proved for k = 1, 2, 3, 5)

Every (α, β)-spanner such that α + β < 2k + 1 requires
Ω(n1+1/k) edges for some worst-case graph.

For k = 2: a (3, 0)-spanner, or a (1, 2)-spanner has Ω(n3/2)
edges in the worst-case graph.

Erdös-Simonovits Conjecture

”For each k > 1, there is a n-node graph with no cycle of
length 6 2k with Ω(n1+1/k) edges.”

⇒

Conjecture (Proved for k = 1, 2, 3, 5)

Every (α, β)-spanner such that α + β < 2k + 1 requires
Ω(n1+1/k) edges for some worst-case graph.

For k = 2: a (3, 0)-spanner, or a (1, 2)-spanner has Ω(n3/2)
edges in the worst-case graph.

Erdös-Simonovits Conjecture

”For each k > 1, there is a n-node graph with no cycle of
length 6 2k with Ω(n1+1/k) edges.”

⇒

Conjecture (Proved for k = 1, 2, 3, 5)

Every (α, β)-spanner such that α + β < 2k + 1 requires
Ω(n1+1/k) edges for some worst-case graph.

For k = 2: a (3, 0)-spanner, or a (1, 2)-spanner has Ω(n3/2)
edges in the worst-case graph.

Distributed Algorithms
(uniform edge-cost)

stretch size time

Deterministic

2 log n O(n) 2O(
√

log n) [Panconesi et al. ’05]

4k − 5 O(kn1+1/k) 2O(k) logk−1 n [Derbel et al. ’07]

Randomized (expected size)

2O(log∗ n) log n O(n) log1+o(1) n [Pettie ’08]

2k − 1 O(kn1+1/k) k [Baswana et al. ’05]

(1 + ε, β) O(βn1+1/k) O(β) [Elkin et al. ’06]

β = (k/ε)O(k log k)

Distributed Algorithms for k = 2

stretch size time

Det. 3 O(n3/2) O(log n) [Derbel et al. ’07]

Rand. 3 O(n3/2) 2 [Baswana et al. ’05]

What the Locality of the Problem?

What is the smallest t such that if each node u of a graph
knows B(u, t), then u can deterministically decide alone
which incident edges to keep to form a (3, 0)-spanner of size
O(n3/2)?

(and more generally a (2k − 1, 0)-spanner of size O(n1+1/k)?)

The Model

LOCAL model: (a.k.a. Free model, or Linial’s model)

synchrone

unique IDs

no size limit messages

no failures

simultaneous wake-up

arbitrary computational power at nodes

Time complexity: number of rounds
(1 round = messages sent/received between all neighbors)

Our Results

Theorem (1)

There is a deterministic distributed algorithm that for every
n-node graph computes a (2k − 1, 0)-spanner of size at most
kn1+1/k in time k.

The time bound “k” is best possible (under the E.-S.
Conjecture), even for randomized algorithms (expected time).

If n is unkown (important in practice!), then the algorithm still
requires time O(k).

Our Results

Theorem (1)

There is a deterministic distributed algorithm that for every
n-node graph computes a (2k − 1, 0)-spanner of size at most
kn1+1/k in time k.

The time bound “k” is best possible (under the E.-S.
Conjecture), even for randomized algorithms (expected time).

If n is unkown (important in practice!), then the algorithm still
requires time O(k).

Our Results

Theorem (1)

There is a deterministic distributed algorithm that for every
n-node graph computes a (2k − 1, 0)-spanner of size at most
kn1+1/k in time k.

The time bound “k” is best possible (under the E.-S.
Conjecture), even for randomized algorithms (expected time).

If n is unkown (important in practice!), then the algorithm still
requires time O(k).

Our Results

Theorem (2)

For every ε > 0, there is a deterministic distributed algorithm
that for every n-node graph (where n is unkown to the nodes)
computes a (1 + ε, 2)-spanner of size O(ε−1n3/2) in O(ε−1)
time.

We also prove that (1 + ε, 2)-spanner of size O(n3/2) cannot
be computed in less than Ω(ε−1) expected time.

Our Results

Theorem (2)

For every ε > 0, there is a deterministic distributed algorithm
that for every n-node graph (where n is unkown to the nodes)
computes a (1 + ε, 2)-spanner of size O(ε−1n3/2) in O(ε−1)
time.

We also prove that (1 + ε, 2)-spanner of size O(n3/2) cannot
be computed in less than Ω(ε−1) expected time.

Ideas for Previous Deterministic Algorithms
“Sparse Partition” like techniques, here for k = 2:

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pairwise at distance > 3 and 6 5

2 Create independent regions with centers in X|deg>
√

n

⇒ regions of radius 6 2 and number of dense regions 6
√

n

3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in 2 rounds

4 Cover inter-region edges (bipartite) with length-3 paths

⇒ doable with size n + 2|Rx|
√

n for dense region Rx

Ideas for Previous Deterministic Algorithms
“Sparse Partition” like techniques, here for k = 2:

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pairwise at distance > 3 and 6 5

2 Create independent regions with centers in X|deg>
√

n

⇒ regions of radius 6 2 and number of dense regions 6
√

n

3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in 2 rounds

4 Cover inter-region edges (bipartite) with length-3 paths

⇒ doable with size n + 2|Rx|
√

n for dense region Rx

Ideas for Previous Deterministic Algorithms
“Sparse Partition” like techniques, here for k = 2:

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pairwise at distance > 3 and 6 5
2 Create independent regions with centers in X|deg>

√
n

⇒ regions of radius 6 2 and number of dense regions 6
√

n

3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in 2 rounds

4 Cover inter-region edges (bipartite) with length-3 paths

⇒ doable with size n + 2|Rx|
√

n for dense region Rx

Ideas for Previous Deterministic Algorithms
“Sparse Partition” like techniques, here for k = 2:

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pairwise at distance > 3 and 6 5
2 Create independent regions with centers in X|deg>

√
n

⇒ regions of radius 6 2 and number of dense regions 6
√

n

3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in 2 rounds

4 Cover inter-region edges (bipartite) with length-3 paths

⇒ doable with size n + 2|Rx|
√

n for dense region Rx

Ideas for Previous Deterministic Algorithms
“Sparse Partition” like techniques, here for k = 2:

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pairwise at distance > 3 and 6 5
2 Create independent regions with centers in X|deg>

√
n

⇒ regions of radius 6 2 and number of dense regions 6
√

n

3 In parallel compute a “good” spanner in each region

⇒ optimal stretch-size tradeoff in 2 rounds

4 Cover inter-region edges (bipartite) with length-3 paths

⇒ doable with size n + 2|Rx|
√

n for dense region Rx

Ideas for Previous Deterministic Algorithms
“Sparse Partition” like techniques, here for k = 2:

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pairwise at distance > 3 and 6 5
2 Create independent regions with centers in X|deg>

√
n

⇒ regions of radius 6 2 and number of dense regions 6
√

n

3 In parallel compute a “good” spanner in each region
⇒ optimal stretch-size tradeoff in 2 rounds

4 Cover inter-region edges (bipartite) with length-3 paths

⇒ doable with size n + 2|Rx|
√

n for dense region Rx

Ideas for Previous Deterministic Algorithms
“Sparse Partition” like techniques, here for k = 2:

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pairwise at distance > 3 and 6 5
2 Create independent regions with centers in X|deg>

√
n

⇒ regions of radius 6 2 and number of dense regions 6
√

n

3 In parallel compute a “good” spanner in each region
⇒ optimal stretch-size tradeoff in 2 rounds

4 Cover inter-region edges (bipartite) with length-3 paths

⇒ doable with size n + 2|Rx|
√

n for dense region Rx

Ideas for Previous Deterministic Algorithms
“Sparse Partition” like techniques, here for k = 2:

1 Compute an maximal indendent set (MIS) X in G2

⇒ points pairwise at distance > 3 and 6 5
2 Create independent regions with centers in X|deg>

√
n

⇒ regions of radius 6 2 and number of dense regions 6
√

n

3 In parallel compute a “good” spanner in each region
⇒ optimal stretch-size tradeoff in 2 rounds

4 Cover inter-region edges (bipartite) with length-3 paths
⇒ doable with size n + 2|Rx|

√
n for dense region Rx

Bottleneck: Sparse Partition Construction

Computing quickly an MIS is difficult.
It is solved sequentially by (inherently?) greedy algorithms.

Upper bound: 2O(
√

log n) [Panconesi et al. STOC’96]

Lower bound: Ω(
√

log n/ log log n) [Kuhn et al. PODC’06]

Ideas for Randomized Algorithms
[Baswana-Pettie ’05, here for k = 2]

1 bu := 1|0 with proba 1/
√

n. Let X := {u | bu = 1}
2 [u ∈ Z] if B(u, 1) ∩X = ∅, then Su := B(u, 1)

3 [u ∈ X] if bu = 1, then Su := BFS(u, B(u, 2))

Z Y
X

Time: 2 rounds
Stretch: 3
Size: 2n3/2 in expectation
(In expectation: |X| =

√
n, and if u ∈ Z, then deg(u) 6

√
n)

Ideas for Randomized Algorithms
[Baswana-Pettie ’05, here for k = 2]

1 bu := 1|0 with proba 1/
√

n. Let X := {u | bu = 1}
2 [u ∈ Z] if B(u, 1) ∩X = ∅, then Su := B(u, 1)

3 [u ∈ X] if bu = 1, then Su := BFS(u, B(u, 2))

X
YZ

Time: 2 rounds
Stretch: 3
Size: 2n3/2 in expectation
(In expectation: |X| =

√
n, and if u ∈ Z, then deg(u) 6

√
n)

Observations

In all previous algorithms:

1 Need to distinguish some independent set of nodes (X).

2 Knowledge of n is required.

3 Performences not garanteed for randomized algorithms.

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

vu

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

Stretch: if (u, v) /∈ S, then v removed from

W in 4.2 .

Thus ∃w ∈ C with Rv∩Rw 6= ∅.

Hence, stretch 6 3.

vu

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

Stretch: if (u, v) /∈ S, then v removed from

W in 4.2 . Thus ∃w ∈ C with Rv∩Rw 6= ∅.

Hence, stretch 6 3.

vu

w

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

Stretch: if (u, v) /∈ S, then v removed from

W in 4.2 . Thus ∃w ∈ C with Rv∩Rw 6= ∅.

Hence, stretch 6 3.

v

w

u

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

Size: ∀w ∈ W after 3 has degree >
|B(w, 3)|1/2.

Thus, deg(w) > |B(u, 2)|1/2

since B(u, 2) ⊆ B(w, 3).

Rw taken

in C are disjoint. #loops is |C| 6
|B(u, 2)|/|B(u, 2)|1/2 6

√
n. Size: n×2

√
n.

u

w

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

Size: ∀w ∈ W after 3 has degree >
|B(w, 3)|1/2. Thus, deg(w) > |B(u, 2)|1/2

since B(u, 2) ⊆ B(w, 3).

Rw taken

in C are disjoint. #loops is |C| 6
|B(u, 2)|/|B(u, 2)|1/2 6

√
n. Size: n×2

√
n.

u

w

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

Size: ∀w ∈ W after 3 has degree >
|B(w, 3)|1/2. Thus, deg(w) > |B(u, 2)|1/2

since B(u, 2) ⊆ B(w, 3). Rw taken

in C are disjoint. #loops is |C| 6
|B(u, 2)|/|B(u, 2)|1/2 6

√
n. Size: n×2

√
n.

w

u

w′

The New Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of |B(u, 3)|1/2 neighbors }
2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and C := ∅
4 while ∃w ∈ W :

1 C := C ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Select edges from u to Ru ∪ C

Conclusion:

Stretch: 3

Size: 2n3/2

Time: 3 (or 2 if n known)

w

u

w′

Early registration: August 25!!!

Thank You
for your attention

