On the Locality of Distributed
Sparse Spanner Constructions

B. Derbel, C. Gavoille, D. Peleg, L. Viennot

University of Lille
University of Bordeaux
Weizmann Institute
INRIA, Paris

PODC 2008 — Toronto

What is a Spanner?

A spanner of a graph G is a subgraph spanning V' (G)

What is a Spanner?

A spanner of a graph G is a subgraph spanning V' (G)

@ a spanning tree

What is a Spanner?

A spanner of a graph G is a subgraph spanning V' (G)

@ a spanning tree

@ a Hamiltonian cycle

What is a Spanner?

A spanner of a graph G is a subgraph spanning V' (G)

@ a spanning tree
@ a Hamiltonian cycle
@ a maximal bipartite subgraph

Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

@ size: its number of edges.

@ stretch: its maximum distance distortion from G.

Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

@ size: its number of edges.

@ stretch: its maximum distance distortion from G.

- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

X

=\ \\ e XX
NS %
!

A complete Euclidian graph on 15 nodes

A (minimum cost) spanner with stretch 1.2

A (minimum cost) spanner with stretch 1.7

A (minimum cost) spanner with stretch 2.0

A (minimum cost) spanner with stretch 3.0

More Formally

Definition

An (a, 3)-spanner S of G is spanner of G satisfying
ds(z,y) < a-dg(z,y) + 6 for all z,y € V(G).

More Formally

Definition

An (a, 3)-spanner S of G is spanner of G satisfying
ds(z,y) < a-dg(z,y) + 6 for all z,y € V(G).

A (2,0)-spanner of size 11 which is a (1, 1)-spanner as well.

Spanners to do What?

[Peleg-Ullman '87]: “An optimal synchronizer for the
Hypercube” (440 Google hits)
Used for:

@ communication networks

o distributed systems

@ network design

Spanners to do What?

[Peleg-Ullman '87]: “An optimal synchronizer for the
Hypercube” (440 Google hits)
Used for:

@ communication networks

o distributed systems

@ network design

Synchronizers [Awerbuch JACM '85]

Links with: Sparse Partition [Awerbuch et al. FOCS'90];
Distance Oracle [Thorup-Zwick STOC'01, Baswana et al.
SODA'04]; Compact Routing [Peleg-Upfal STOC'89,
Thorup-Zwick SPAA'01];

Variant: Geometric Spanners used for TSP
(minimize > . ;g w(e) of within a given stretch)

Some Basic Facts

Theorem (Althdfer et al. '93)

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Some Basic Facts

Theorem (Althdfer et al. '93)

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := O (the empty graph)
@ While Je € E(G) with stretch in S'is > 2k — 1,

Some Basic Facts

Theorem (Althdfer et al. '93)

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := O (the empty graph)
@ While Je € E(G) with stretch in S'is > 2k — 1,

S:=SU{e}
k=

é
Properties:

@ Stretch of S is < 2k — 1.

Some Basic Facts

Theorem (Althdfer et al. '93)

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := O (the empty graph)
@ While Je € E(G) with stretch in S'is > 2k — 1,

S:=SuUe}
k=2

é
Properties:
@ Stretch of S is < 2k — 1.

@ Whenever ¢ is added to S, one cannot create any cycle of
length < 2%.

Some Basic Facts

Theorem (Althdfer et al. '93)

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := O (the empty graph)
@ While Je € E(G) with stretch in S'is > 2k — 1,

S:=SU{e}
k=2

é
Properties:
@ Stretch of S is < 2k — 1.

@ Whenever ¢ is added to S, one cannot create any cycle of
length < 2k. Theorem [Folk] = S has < n!*'/* edges.

Erdos-Simonovits Conjecture

"For each k > 1, there is a n-node graph with no cycle of
length < 2k with Q(n't1/*) edges.”

Erdos-Simonovits Conjecture

"For each k > 1, there is a n-node graph with no cycle of
length < 2k with Q(n't1/*) edges.”

=
Conjecture (Proved for k = 1,2, 3,5)

Every («, 3)-spanner such that o+ < 2k + 1 requires
Q(n'*'/k) edges for some worst-case graph.

Erdos-Simonovits Conjecture

"For each k > 1, there is a n-node graph with no cycle of
length < 2k with Q(n't1/*) edges.”

=
Conjecture (Proved for k = 1,2, 3,5)

Every («, 3)-spanner such that o+ < 2k + 1 requires
Q(n'*'/k) edges for some worst-case graph.

For k = 2: a (3,0)-spanner, or a (1,2)-spanner has Q(n%/2)
edges in the worst-case graph.

Distributed Algorithms

(uniform edge-cost)

stretch size time
DETERMINISTIC
2logn O(n) 20(VIogn) [Panconesi et al. '05]
4k —5 O(kn!t1/k)y 20() 10gk~1 y [Derbel et al. '07]
RANDOMIZED (expected size)
20(log" n) logn O(n) log1+0(1) n [Pettie '08]
2k —1 O(kn't1/k) K [Baswana et al. '05]
(1+¢,8) OBn*Y%) 0O(p) [Elkin et al. '06]

8= (k,/E)O(klogk:)

Distributed Algorithms for £ = 2

stretch size time

DET. 3 O(n3?) O(logn) [Derbel et al. '07]

RAND. 3 O(n/?) 2 [Baswana et al. '05]

What the Locality of the Problem?

What is the smallest ¢ such that if each node u of a graph
knows B(u,t), then u can deterministically decide alone

which incident edges to keep to form a (3,0)-spanner of size
O(n?®?)?

(and more generally a (2k — 1,0)-spanner of size O(n!'*1/¥)?)

The Model

LOCAL model: (a.k.a. Free model, or Linial's model)
@ synchrone
@ unique IDs
@ no size limit messages
@ no failures
@ simultaneous wake-up

@ arbitrary computational power at nodes

Time complexity: number of rounds
(1 round = messages sent/received between all neighbors)

Our Results

There is a deterministic distributed algorithm that for every
n-node graph computes a (2k — 1,0)-spanner of size at most
kEn' % in time k.

Our Results

There is a deterministic distributed algorithm that for every
n-node graph computes a (2k — 1,0)-spanner of size at most
kEn' % in time k.

The time bound “k” is best possible (under the E.-S.
Conjecture), even for randomized algorithms (expected time).

Our Results

There is a deterministic distributed algorithm that for every
n-node graph computes a (2k — 1,0)-spanner of size at most
kEn' % in time k.

The time bound “k” is best possible (under the E.-S.
Conjecture), even for randomized algorithms (expected time).

If n is unkown (important in practice!), then the algorithm still
requires time O(k).

Our Results

For every € > 0, there is a deterministic distributed algorithm
that for every n-node graph (where n is unkown to the nodes)
computes a (1 + €,2)-spanner of size O(¢~'n3/?) in O(s7)
time.

Our Results

For every € > 0, there is a deterministic distributed algorithm
that for every n-node graph (where n is unkown to the nodes)
computes a (1 + €,2)-spanner of size O(¢~'n3/?) in O(s7)
time.

We also prove that (1 + €,2)-spanner of size O(n*?) cannot
be computed in less than Q(s7!) expected time.

|deas for Previous DETERMINISTIC Algorithms

“Sparse Partition" like techniques, here for k = 2:

|deas for Previous DETERMINISTIC Algorithms

“Sparse Partition" like techniques, here for k = 2:

@ Compute an maximal indendent set (MIS) X in G?
= points pairwise at distance > 3 and < 5

|deas for Previous DETERMINISTIC Algorithms

“Sparse Partition" like techniques, here for k = 2:

@ Compute an maximal indendent set (MIS) X in G?
= points pairwise at distance > 3 and < 5

© Create independent regions with centers in X|qeo>

an®
&

|deas for Previous DETERMINISTIC Algorithms

“Sparse Partition" like techniques, here for k = 2:

@ Compute an maximal indendent set (MIS) X in G?
= points pairwise at distance > 3 and < 5

© Create independent regions with centers in X|qeo>
= regions of radius < 2 and number of dense regions < /n

an®
&

|deas for Previous DETERMINISTIC Algorithms
“Sparse Partition" like techniques, here for k = 2:

@ Compute an maximal indendent set (MIS) X in G?
= points pairwise at distance > 3 and < 5

© Create independent regions with centers in X|qeo>
= regions of radius < 2 and number of dense regions < /n
© |In parallel compute a “good” spanner in each region

&
Sen

|deas for Previous DETERMINISTIC Algorithms
“Sparse Partition" like techniques, here for k = 2:
@ Compute an maximal indendent set (MIS) X in G?
= points pairwise at distance > 3 and < 5

© Create independent regions with centers in X|qeo>
= regions of radius < 2 and number of dense regions < /n

© |In parallel compute a “good” spanner in each region
= optimal stretch-size tradeoff in 2 rounds

&
Sen

|deas for Previous DETERMINISTIC Algorithms
“Sparse Partition" like techniques, here for k = 2:
@ Compute an maximal indendent set (MIS) X in G?
= points pairwise at distance > 3 and < 5

© Create independent regions with centers in X|qeo>
= regions of radius < 2 and number of dense regions < /n

© |In parallel compute a “good” spanner in each region
= optimal stretch-size tradeoff in 2 rounds

O Cover inter-region edges (bipartite) with length-3 paths

o

SSES K
Al N7 Sl
Wyt
N <J

=

|deas for Previous DETERMINISTIC Algorithms
“Sparse Partition" like techniques, here for k = 2:
@ Compute an maximal indendent set (MIS) X in G?
= points pairwise at distance > 3 and < 5

© Create independent regions with centers in X|qeo>
= regions of radius < 2 and number of dense regions < /n

© |In parallel compute a “good” spanner in each region
= optimal stretch-size tradeoff in 2 rounds

O Cover inter-region edges (bipartite) with length-3 paths
= doable with size n + 2|R;|\/n for dense region R,

=
&r
st

T 7>
A')"

Ok
<
PN
‘hm-mf:? ’%k
\2\

N\

Bottleneck: Sparse Partition Construction

Computing quickly an MIS is difficult.
It is solved sequentially by (inherently?) greedy algorithms.

o Upper bound: 20(vicen) [Panconesi et al. STOC'96]
o Lower bound: Q(y/logn/loglogn) [Kuhn et al. PODC'06]

|deas for RANDOMIZED Algorithms
[Baswana-Pettie '05, here for k = 2]

@ b, := 1|0 with proba 1/y/n. Let X := {u | b, = 1}
Q@ [ueZ]if Blu,1)NX =@, then S, := B(u,1)
Q@ [ue X]ifb, =1, then S, := BFS(u, B(u,2))

|deas for RANDOMIZED Algorithms
[Baswana-Pettie '05, here for k = 2]

@ b, := 1|0 with proba 1/y/n. Let X := {u | b, = 1}
Q@ [ueZ]if Blu,1)NX =@, then S, := B(u,1)
Q@ [ue X]ifb, =1, then S, := BFS(u, B(u,2))

Time: 2 rounds

Stretch: 3

Size: 2n%/? in expectation

(In expectation: |X| = /n, and if u € Z, then deg(u) < v/n)

Observations

In all previous algorithms:
© Need to distinguish some independent set of nodes (X).
© Knowledge of n is required.

© Performences not garanteed for randomized algorithms.

The New Algorithm (for k = 2)

For every node u do:

The New Algorithm (for k = 2)

For every node u do:
Q R, := {u} U { any selection of |B(u, 3)|"/* neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C := @
Q while Jw € W:

0 C:=CU{w}
0 W =W\{veW|R,NR, # I}

© Select edges from u to R, UC

The New Algorithm (for k = 2)

For every node u do:
Q R, := {u} U { any selection of |B(u, 3)|"/* neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C := @
Q while Jw € W:

0 C:=CU{w}
0 W =W\{veW|R,NR, # I}

© Select edges from u to R, UC

Stretch: if (u,v) ¢ S, then v removed from

Win.

The New Algorithm (for k = 2)

For every node u do:
Q R, := {u} U { any selection of |B(u, 3)|"/* neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C := @
Q while Jw € W:

0 C:=CU{w}
0 W =W\{veW|R,NR, # I}

© Select edges from u to R, UC

Stretch: if (u,v) ¢ S, then v removed from

v
W in[4.2] Thus 3w € C with RyNRy # &. ’ .
Hence, stretch < 3. = ‘

The New Algorithm (for k = 2)

For every node u do:
Q R, := {u} U { any selection of |B(u, 3)|"/* neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C := @
Q while Jw € W:

0 C:=CU{w}
0 W =W\{veW|R,NR, # I}

© Select edges from u to R, UC

Stretch: if (u,v) ¢ S, then v removed from
W in|4.2] Thus 3w € C with R,NR,, # @.
Hence, stretch < 3.

The New Algorithm (for k = 2)

For every node u do:
Q R, := {u} U { any selection of |B(u, 3)|"/* neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C := @
Q while Jw € W:

0 C:=CU{w}
0 W =W\{veW|R,NR, # I}

© Select edges from u to R, UC

Size: Yw € W after has degree >
|B(w,3)]"/.

The New Algorithm (for k = 2)

For every node u do:
Q R, := {u} U { any selection of |B(u, 3)|"/* neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C := @
Q while Jw € W:

0 C:=CU{w}
0 W =W\{veW|R,NR, # I}

© Select edges from u to R, UC

Size: Yw € W after has degree >
|B(w,3)['?. Thus, deg(w) > |B(u,2)|"/?
since B(u,2) < B(w,3).

The New Algorithm (for k = 2)

For every node u do:
Q R, := {u} U { any selection of |B(u, 3)|"/* neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C := @
Q while Jw € W:

0 C:=CU{w}
0 W =W\{veW|R,NR, # I}

© Select edges from u to R, UC

Size: Yw € W after has degree >
|B(w,3)|"2. Thus, deg(w) > |B(u,2)|"/?
since B(u,2) C B(w,3). Ry, taken ¢/
in C are disjoint. #loops is |C| <
|B(u,2)|/|B(u,2)|"? < /n. Size: nx2/n.

The New Algorithm (for k = 2)

For every node u do:
Q R, := {u} U { any selection of |B(u, 3)|"/* neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|jue R,}\R,and C := @
Q while Jw € W:

0 C:=CU{w}
0 W =W\{veW|R,NR, # I}

© Select edges from u to R, UC

Conclusion:
@ Stretch: 3
@ Size: 2n3/? w’ W

@ Time: 3 (or 2 if n known)

Arcachon (Bordeaux, France)

DISC 2008

22nd International Symposium on Distributed Computing
September 22-24, 2008, Arcachon, France.

Early registration: August 25!!!

Thank You
for your attention

