
On the Locality of Distributed Sparse Spanner
Construction

Bilel Derbel
∗

University of Lille
France

Bilel.Derbel@lifl.fr

Cyril Gavoille
†

University of Bordeaux
France

gavoille@labri.fr

David Peleg
‡

The Weizmann Institute
Israel

peleg@weizmann.ac.il

Laurent Viennot
§

INRIA, University Paris 7
France

Laurent.Viennot@inria.fr

ABSTRACT
The paper presents a deterministic distributed algorithm
that, given k � 1, constructs in k rounds a (2k−1, 0)-spanner

of O(kn1+1/k) edges for every n-node unweighted graph. (If
n is not available to the nodes, then our algorithm executes
in 3k− 2 rounds, and still returns a (2k− 1, 0)-spanner with

O(kn1+1/k) edges.) Previous distributed solutions achiev-
ing such optimal stretch-size trade-off either make use of
randomization providing performance guarantees in expec-
tation only, or perform in logΩ(1) n rounds, and all require a
priori knowledge of n. Based on this algorithm, we propose
a second deterministic distributed algorithm that, for every
ε > 0, constructs a (1+ ε, 2)-spanner of O(ε−1n3/2) edges in
O(ε−1) rounds, without any prior knowledge on the graph.

Our algorithms are complemented with lower bounds,
which hold even under the assumption that n is known to
the nodes. It is shown that any (randomized) distributed
algorithm requires k rounds in expectation to compute a
(2k − 1, 0)-spanner of o(n1+1/(k−1)) edges for k ∈ {2, 3, 5}.
It is also shown that for every k > 1, any (randomized) dis-
tributed algorithm that constructs a spanner with fewer than
n1+1/k+ε edges in at most nε expected rounds must stretch
some distances by an additive factor of nΩ(ε). In other words,
while additive stretched spanners with O(n1+1/k) edges may
exist, e.g., for k = 2, 3, they cannot be computed distribu-
tively in a sub-polynomial number of rounds in expectation.

∗Supported by the équipe-projet INRIA “DOLPHIN”.
†Supported by the ANR-project “ALADDIN”, and the

équipe-projet INRIA “CÉPAGE”.
‡Supported in part by grants from the Israel Science Foun-
dation and the Minerva Foundation.§Supported by the ANR-project “ALADDIN”, and the
équipe-projet INRIA “GANG”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

Categories & Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign – Distributed networks; G.2.2 [Discrete Mathematics]:
Graph Theory – Graph algorithms, Network problems.
General Terms: Algorithms, Theory.
Keywords: distributed algorithms, graph spanners, time
complexity.

1. INTRODUCTION

1.1 Background
This paper concerns fast deterministic distributed con-

struction of graph spanners. Informally speaking, a graph
spanner is a skeleton structure that allows us to represent
the underlying network using few edges, in such a way that
for any two nodes of the network, the distance in the span-
ner is stretched by only a small factor. The quality of a
spanner is often given by the trade-off between the number
of edges it uses and its multiplicative/additive stretch fac-
tor, measuring distance preservation. More formally, given
a graph G, a subgraph H of G with V (H) = V (G) is
an (α, β)-spanner if for every pair of nodes u and v in G,
dH(u, v) � α ·dG(u, v)+β. The stretch of the spanner is de-
fined as (α, β) and its size as |E(H)|. Our interest in graph
spanners stems from the fact that spanners are used explic-
itly or implicitly as key ingredients of various distributed ap-
plications, e.g., synchronizers [2, 28], compact routing [1, 29,
31], covers [3], dominating sets [13], distance oracles [5, 32],
emulators and distance preservers [9, 11], broadcasting [21],
near-shortest path algorithms [14, 16, 17, 18]. Recent re-
views of the literature on spanners can be found in [30, 35].
Hence, understanding the properties of graph spanners and
providing efficient algorithms for constructing them appear
as a fundamental problem in distributed computing. How-
ever, sequential spanner construction algorithms, which aim
at finding new stretch-size trade-offs, often use greedy tech-
niques, whose adaptation to the distributed setting incurs
an unavoidably high cost. This is mainly due to the symme-
try breaking problems one has to deal with in a distributed
environment. To overcome this difficulty, randomization is
often used as an alternative tool, allowing one to obtain effi-
cient distributed constructions of spanners whose quality is
expected to be good. These randomized solutions have the
disadvantage of providing no definitive bounds on the prop-

273

erties of the constructed spanners: they can only provide
guarantees in expectation or with high probability. This
could be a problem for some applications. From a more the-
oretical point of view, it is not always well understood how
to break the symmetry in a deterministic and efficient way.

In this paper, we describe a new deterministic distributed
spanner construction algorithm, which is simultaneously op-
timal in size, stretch and construction time. Our algorithm
is neither a derandomization of some known randomized one,
nor an adaptation of some previous sequential techniques.
Moreover, our solution is local in nature, since it does not
require any global knowledge such as the size of the graph.

A particularly attractive feature of our algorithm is that,
as shown later, it is neighborhood optimal, in the following
sense. By the terminology of [24], given a problem Π, let
ρ(Π) be the radius (around each node) from which informa-
tion must be fetched in order to solve Π. An algorithm for
Π is neighborhood optimal if its time complexity is O(ρ(Π)).
Many efforts have been made to study the locality of many
basic distributed problems and to derive neighborhood opti-
mal solutions. For the well studied graph spanner problem,
no deterministic tight bounds are known. In this paper, we
provide a neighborhood optimal algorithm, thus making a
step towards a better understanding of the locality of graph
spanners.

1.2 Related Work
Given an n-node graph G and an integer parameter k � 1,

it is now folklore that G admits a (2k − 1, 0)-spanner with

O(n1+1/k) edges. The latter stretch-size trade-off is believed
to be optimal according to the Erdös-Simonovits Conjec-
ture proved for k ∈ {1, 2, 3, 5} (see Section 3.2 for more
details). The conjecture implies that (α, β)-spanners with

α + β < 2k + 1 require Ω(n1+1/k) edges in the worst-case.
Recently, is has been proved in [35] that (1, β)-spanners with

β < 2k requires indeed Ω(n1+1/k) edges in the worst-case,
thus overcoming the dependence on the Erdös-Simonovits
Conjecture.

There are mainly two classes of algorithms leading to the
construction of high quality spanners. The first class is based
on removing short cycles so that the graph is sufficiently
sparse and yet has the required stretch. The second class is
based on sparse partitions or (d, c)-decompositions (cf. [27]),
which are efficient representations of the graph by weakly
connected clusters (in terms of the number of inter-cluster
edges or the cluster overlap) having small radius. Thus,
using shortest path trees spanning the clusters, the nodes
can be spanned using few edges while keeping the stretch
low.

Most of the distributed algorithms providing high quality
spanners are based on such sparse partitions or decomposi-
tions [3, 4, 27]. At their best [4], these methods construct

(4k−3, 0)-spanners with O(n1+1/k) edges in Ω(n1/k+ε) time
where ε = Ω(1/

√
log n). Straightforward (Las Vegas) ran-

domized implementations lead to polylogarithmic expected
time within the same stretch-size trade-off. Recently [12], a
new sequential algorithm for constructing size constrained
spanners for bipartite graphs, together with a fast construc-
tion of a sparse decomposition using independent dominat-
ing sets, has enabled to break the sub-polynomial time bar-
rier, providing (4k − 3, 0)-spanners with O(kn1+1/k) edges

in 2O(k) logk−1 n time deterministically.
All of these (d, c)-decomposition based spanner algorithms

rely more or less on the following idea: (1) find a subset of
nodes X mutually at distance at least 2t + 1 � 3 of each
other; (2) in time t, build around each x ∈ X a cluster con-
sisting of its t-neighborhood; (3) in parallel, construct an
efficient sparse spanner for each cluster; (4) span the inter-
cluster edges. Each of these steps takes O(t) distributed time
except Step (1), which involves solving a symmetry breaking
problem and thus incurs a high time cost in the determinis-
tic setting. This difficulty can be solved by using a maximal
independent set (MIS) in some t power of the graph G, or
in time O(log n) if one is willing to increase t to O(log n)
(provided that Step (4) is efficiently doable within O(log n)
radii regions). Unfortunately, the distributed time complex-
ity of MIS is a challenging question. Currently, the lower
bound is Ω(

p
log n/ log log n) [23]. Thus, any algorithm

based on the previous technique will at least fail to break
the sub-polylogarithmic barrier even when using randomiza-
tion. However, other different techniques (using implicitly a
kind of (d, c)-decomposition) exist with faster running time
but at the price of providing no deterministic guarantees on
the size of the spanner. For instance, a (Monte Carlo) al-
gorithm that computes a (2k − 1, 0)-spanner with expected

size O(kn1+1/k) in k time is described in [7] (see also [16]).
The algorithm is based on sampling the nodes repeatedly
with a given probability, constructing clusters around the
sampled nodes, and then connecting the clusters. Let us
remark that all the previous (deterministic or randomized)
algorithms need to know the value of n or at least an upper
bound on it.

Concerning the girth based algorithms, the only dis-
tributed result we know of was described in [13], where it is
shown how to construct a (O(log n), 0)-spanner with O(n)
edges. Actually, we can generalize that algorithm for ev-
ery parameter k � 1, obtaining spanners with O(n1+1/k)

edges in nO(1/
√

log n) time deterministically or k logO(1) n us-
ing randomization. However the stretch is (2k+1, 0) which is
not optimal. The latter bound for the time complexity seems
to be hard to improve since the use of a (d, c)-decomposition
is a bottleneck to speeding up the construction.

Another kind of spanners are additive spanners, which
are particularly interesting for approximating long distances.
Only few constructions for pure additive spanners, i.e., for
which the stretch is of the form (1, β), are known, even in
the sequential setting. In particular, sequential algorithms
that construct a (1, 2)-spanner with O(n3/2) edges and a

(1, 6)-spanner with O(n4/3) edges were given respectively
in [17] and [6]. However, almost pure additive spanners
have been described in some recent works. In [17, 18, 14],
(1 + ε, β)-spanners with size O(βn1+δ) are constructed in
O(β) time1, where β = β(δ, ε) is independent of n but grows
super-polynomially in δ−1 and ε−1. A sequential algorithm
based on a randomized sampling technique was given in [33],

providing a spanner with O(kn1+1/k) edges such that the
distance d between any two nodes in the original graph is
bounded by d + o(d) in the spanner. Substantial improve-
ments and other randomized sequential variants have been
developed recently in [30]. Specific distributed algorithms
have been proposed in [12] for k = 2. They provide span-

ners of O(n3/2) edges with stretch (1+ε, 8 log n) and (1+ε, 4)

in deterministic O(ε−1 log n) time and nO(1/
√

log n) +O(ε−1)

1If short messages are used, then the time increases to
O(nδ).

274

time respectively. The (1 + ε, 4)-spanner algorithm is how-
ever shown to have a straightforward (Las Vegas) random-
ized implementation requiring O(ε−1 +log n) time in expec-
tation.

One should finally remark that some of the previous algo-
rithms work under the assumption that the size of messages
is small. Since this is the first time a deterministic neighbor-
hood optimal algorithm is described, we will abstract away
this issue.

1.3 Our contributions
In Section 2, we present two deterministic distributed al-

gorithms for constructing sparse low stretch spanners of ev-
ery unweighted n-node graph.

• Given every k � 1, the first algorithm constructs in
k rounds a (2k − 1, 0)-spanner of O(kn1+1/k) edges.
Thus, assuming the Erdös-Simonovits Conjecture is
true, we attain simultaneous optimality in stretch, size
and time. An important feature of our algorithm is
that if n is not available to the nodes (which may of-
ten happen in concrete applications), then it executes
in 3k−2 rounds, and still returns a (2k−1, 0)-spanner

with O(kn1+1/k) edges.

• Based on this algorithm, we propose a second one that,
for every ε > 0, constructs a (1 + ε, 2)-spanner of

O(ε−1n3/2) edges in O(ε−1) rounds, without any prior
knowledge on the graph.

As discussed earlier, best previous solutions achieving
such near optimal stretch-size trade-off either make use of
randomization and provide performance guarantees only in
expectation [7], or require logΩ(1) n rounds [12], and all re-
quire a priori knowledge of n. Note, though, that our algo-
rithms use unbounded size messages, whereas some of the al-
gorithms mentioned in our comparisons use small messages.

In section 3, we present two lower bounds.

• Any (randomized) distributed algorithm requires k
rounds in expectation to compute a (2k−1, 0)-spanner

of o(n1+1/(k−1)) edges for every k ∈ {2, 3, 5}. As-
suming to the Erdös-Simonovits Conjecture, the lower
bound holds for every k > 1. According to our up-
per bound, k is optimal. One should remark that a
slightly different lower bound appears independently
in [15, 16].

• It is also shown that for every k > 1, there is an
ε > 0 such that any (randomized) distributed al-
gorithm that constructs a spanner with fewer than
n1+1/k+ε edges in at most nε expected rounds must
stretch some distances by an additive factor of nΩ(ε).
This result is in fact a corollary of a stronger technical

result, saying that in t rounds distances in tnΘ(1/k2)

must be stretched by a multiplicative factor of at least

1+Ω(k/t) if the spanner has fewer than n1+1/k+Θ(1/k2)

edges.

We observe that both lower bounds hold even under the
assumption that n is known to the nodes. For concrete-
ness, consider the case k = 2. In this case, the first lower
bound claims that two rounds are required to compute a
(3, 0)-spanner with o(n2) edges. Our first algorithm returns

a (3, 0)-spanner of O(n3/2) edges in two rounds. Our sec-
ond lower bound claims that, whereas (1, 2)-spanners with

O(n3/2) edges exist for every graph, they cannot be com-

puted distributively in less than n1/4 time, or in other words,
if running in, say, polylogarithmic time, any (randomized)
distributed will stretch some distance by an additive factor
of nΩ(1). Actually, our lower bound shows that in t time the
multiplicative stretch must be larger than 1 + 1/(t + 1).

2. DETERMINISTIC ALGORITHMS

2.1 The model
We consider unweighted n-node graphs. We assume the

classical LOCAL model of computations (cf. [27]), a.k.a. the
free model [26]. In this model, the nodes operate in syn-
chronous discrete rounds (nodes are also assumed to wake
up simultaneously). At each round, a node can send and/or
receive messages of unbounded capacity to/from its neigh-
bors and can perform any amount of local computations.
Hence, each round costs one time unit. Also, nodes have
unique identifiers that can be used for breaking symmetry.
As long as we are concerned with running time and not with
the cost of communication, synchronous and asynchronous
message passing models are equivalent. Hereafter, unless
stated explicitly, it is assumed that n is not known to nodes.

2.2 A multiplicative spanner
Let us consider a graph G. For every node u and integer r,

BG(u, r) denotes the radius-r ball centered at u in G. When
G is clear from the context we remove the subscript G from
BG(u, r).

The algorithm, named Spank where k � 1 is an integral
parameter, is described in Algorithm 1. It is performed on
every node u in parallel and provide in k time a (2k − 1, 0)-

spanner with kn1+1/k edges.
Roughly speaking, each node u maintains a region, i.e., a

set R(u) of nodes around it, which grows after each round.
The current value of the next region for u is denoted by
C, and the set of remaining uncovered neighbors is denoted
by W . Initially, W contains all of u’s neighbors. During
the execution of the algorithm, some of these neighbors are
gradually moved to the set L maintained by u. Actually, the
set L contains the neighbors of u in the constructed spanner
H . At the same time, some neighbors of u are discarded
from W and will not be among u’s neighbors in H . The
strategy applied by the algorithm consists of covering those
neighbors of u by the regions of the neighbors of u contained
in the set L. At each round, L can grow by adding at most σ
new nodes, where σ is a threshold value that cannot exceed
n1/k.

The decision of including a neighbor in set L or to discard
it from W is made depending on the regions maintained by
the algorithm. Informally speaking, the region of a node
encodes the nodes reachable from it in a given phase. Thus,
a node u decides to include a neighbor in set L whenever
it does not know about any other region that intersects the
region of that neighbor. In opposite, u decides to discard
a neighbor whenever the region of that neighbor intersects
the region of another node which was already added to L
(see Fig. 1). Thus, since the regions are guaranteed to have
a small radius (at most k), whenever a node u discards a
neighbor, u is sure that there exists a short path connecting

275

v

u

Ri(w)

Ri(v)

wB(u, 1)

� i

� i

Figure 1: node w is added to set L and node v is
discarded from set W .

it to that neighbor. Thus, each edge is stretched by only a
small factor. On the other hand, adding at most σ neighbors
in L in each phase prevents adding too many edges and thus
the constructed spanner is guaranteed to be sparse. If n is
known, then σ is initialized to n1/k. Otherwise, every node
u initializes σ to |B(u, 2k − 1)|1/k (which requires requires
2k − 1 rounds). In fact, we will see that this choice of σ
guarantees to cover all the neighbors within k rounds.

L := C := R(u) := {u}, W := B(u, 1)

σ := |B(u, 2k − 1)|1/k

for i := 1 to k do

Node u sends R(u) to its neighbors, and receives
R(w) from all its neighbors w
while ∃w ∈ W such that R(u) ∩ R(w) �= ∅ do

W := W \ {w}
while ∃w ∈ W and |L| < iσ do

W := W \ {v ∈ W | R(v) ∩ R(w) �= ∅}
L := L ∪ {w}
C := C ∪ R(w)

R(u) := C

Algorithm 1: Algorithm Spank(u) for a node u. The
set L computed by u is the set of the neighbors of u in
the spanner.

2.3 Correctness of Algorithm Spank
Hereafter, unless stated explicitly, the stretch and size

analysis of our spanners is assumed to be done indepen-
dently in each connected components of the graph.

Let Li(u) (resp., Ri(u)) denote the set L (resp., R(u))
computed by u just after the ith round of algorithm
Spank(u), and let Hi(u) be the “star” subgraph of G com-
posed of the edges connecting u to the nodes of Li(u). Let
Hi =

S
u∈V (G) Hi(u).

The subgraph Hk is the spanner generated for G by algo-
rithm Spank. As we will see, Hk satisfies the desired prop-
erties. For that purpose we establish two key propositions.

Proposition 1. At the end of every round i, Ri(u) ⊆
BHi(u, i).

Proof. The proof is by induction. Let L0, R0(u) and
H0 denote the initial values of L, R(u) and H prior to

round 1, i.e., let H0(u) be an empty graph on u and its
neighbors and let R0(u) = {u}, which is obviously included
in BH0(u, 0) = {u}. Consider the ith round. At the be-
ginning of the round we have Ri−1(u) ⊆ BHi−1(u, i − 1).
Also, Hi−1 ⊆ Hi. Therefore, it suffices to show that every
node which joins R(u) during round i is also in BHi(u, i).
More precisely, for each Ri−1(w) added to C, we need to
show that the nodes of Ri−1(w) join also BHi(u, i). Ob-
serve that when the nodes of Ri−1(w) join C, w is added
to L. Thus, Hi contains the edge (u, w). It also includes
Hi−1. As Ri−1(w) ⊆ BHi−1(w, i − 1) by the induction hy-
pothesis, each node of Ri−1(w) is reachable in Hi from u in
at most i hops, so Ri−1(w) ⊆ BHi(u, i). In summary, we
get Ri(u) ⊆ BHi(u, i) after round i.

Corollary 1. If x ∈ Ri(u) at the end of round i then
dHk(u, x) � dHi(u, x) � i.

Proposition 2. At the end of every round i, one of the
following two properties holds:

(1) |Ri(u)| � |B(u, 2k − i)|i/k, or

(2) Ri(v) ∩ Ri(u) �= ∅ for all v ∈ B(u, 1).

Proof. We show the claim by induction on i. At the end
of round 0 (i.e., just before round 1), |R0(u)| = 1 for every
u. Now consider round i � 1. By the induction hypothesis,
at the beginning of round i, for each neighbor w of u in W ,
we have that either |Ri−1(w)| � |B(w, 2k − i + 1)|(i−1)/k or
Ri−1(v)∩Ri−1(w) �= ∅ for all v ∈ B(w, 1). When Ri−1(w)∩
Ri−1(u) �= ∅, the first while loop removes w from W . The
nodes added to L in the second while loop must thus satisfy
|Ri−1(w)| � |B(w, 2k − i +1)|(i−1)/k � |B(u, 2k − i)|(i−1)/k.
Suppose that W is not emptied by the second loop, i.e.,
σ � |B(u, 2k − i)|1/k such nodes are added to L. Whenever
such w is added, the second loop discards from W all nodes
w′ such that Ri−1(w

′) ∩ Ri−1(w) �= ∅, and moreover, these
sets do not intersect Ri−1(u). Hence, the size of C increases

by at least |B(u, 2k−i)|i/k. If the loops stop because W = ∅,
then we have Ri(v) ∩ Ri(u) �= ∅ for all v ∈ B(u, 1).

Notice that if property (2) of the proposition holds after
some round i, then the set W is empty at that stage, and
the set R(u) will not change any more, so property (2) will
continue to hold throughout the remainder of the execution.

We also remark that Proposition 2 and Proposition 1
imply that after the kth round, R(v) ∩ R(u) �= ∅ for all
adjacent nodes u, v (note that |R(u)| � |B(u, k)| implies
R(u) = B(u, k) and thus R(v) ∩ R(u) �= ∅ since v ∈ R(v)).
We are now ready to prove the following.

Theorem 1. Algorithm Spank is a deterministic dis-
tributed algorithm that for every n-node graph G computes
a (2k − 1, 0)-spanner of size at most kn1+1/k of G in time
k. Moreover, if n is unknown, then the algorithm requires
time 3k − 2.

Proof. Let H = Hk denote the subgraph obtained at the
end of the k rounds. The number of edges incident to u that
are selected to H after the k rounds of algorithm Spank(u)

is |Lk(u)| � kσ, which is at most kn1/k. Hence overall, H

has at most kn1+1/k edges.
Let us now analyze the stretch of H . Consider two neigh-

bors u and v in G. By the above two propositions, we have
R(u) ⊆ BH(u, k) and R(v) ⊆ BH(v, k) and there exists a

276

u v

wR(w)

r
R(v)

Figure 2: Nodes w and v are spanned by a path of
length r + 2.

node x ∈ R(u)∩R(v). We thus get dH(u, v) � 2k. To prove
the slightly better bound of 2k−1, we look more carefully at
the round i in which u has removed v from its set W of un-
covered neighbors. There are two cases to consider. In the
first case, v has been removed according to the first while
loop. In that case, we have dHi−1(u, v) � 2(i−1) � 2(k−1)
by Proposition 1. In the second case, v has been removed ac-
cording to the second while loop. Let w be the node added
to Li in that step. This node satisfies R(v) ∩ R(w) �= ∅.
Let x be any node in R(w) ∩ R(v) (possibly x = v = w or
x = v). Relying on the fact that dH(u, w) = 1, and that
dHi−1(w, x) � i − 1 and dHi−1(v, x) � i − 1 by Cor. 1, we
obtain that dH(u, v) � 1+2(k−1) = 2k−1. This completes
the stretch analysis.

Let us now analyze the time complexity. Clearly, once the
initializations are done, Spank performs in at most k rounds.
Let us first observe that the initialization of the sets W can
be done on the fly after the first communication round. We
observe also that Proposition 2 holds for every value of σ ∈
[|B(u, 2k−1)|1/k, n1/k]. So, if the value of n is known to the

node u, then σ can be set to n1/k without communication.
Otherwise, σ can be set to the value |B(u, 2k−1)|1/k , which
can be computed locally at u in 2k − 2 extra rounds (one
round can be saved by combining the ball size computation
with the first round).

2.4 Improving the stretch for k=2
In this section we show how to extend algorithm Span2 to

obtain almost pure additive stretch spanners with few edges.
The extended algorithm, denoted by Span2,ε, where ε > 0,
is described in a high level way in Algorithm 2.

Given a node u, the idea of algorithm Span2,ε is to cover
not only u’s neighbors but all nodes at distance at most
r =
2/ε� from u. Covering those nodes is done using essen-
tially the same technique than algorithm Spank for k = 2.
Roughly speaking, node u first forms it regions by choosing
arbitrarily at most σ neighbors. Then, node u exchanges its
region with nodes in its r-neighborhood. Finally, for each
node w in the r-neighborhood of u, if w is not yet covered
then u adds a shortest path connecting it to w, and it re-
moves all nodes whose regions intersect the region of w (see
Fig. 2). Thus, all nodes within distance r of u are spanned
by short paths of length r+2. Hence, for any two nodes, the
shortest path connecting them in the graph can be spanned
by some subpaths, each of length r + 2 in the spanner, in
such away the distance between the two nodes are stretched
by a multiplicative factor almost one.

Theorem 2. For every ε > 0, there exists a deterministic
distributed algorithm that for every n-node graph (where n
is unknown to the nodes) computes a (1+ ε, 2)-spanner with

O(ε−1n3/2) edges in O(ε−1) time.

R(u) := {u}, r :=
2/ε�, σ := |B(u, 2r + 1)|1/2

Node u sends R(u) to its neighbors, and receives R(w)
from all its neighbors w
Node u chooses min {|B(u, 1)|,
σ�} − 1 neighbors and
add them to set R(u)
Hu := {(u, v) | v ∈ R(u), v �= u}
if R(u) = B(u, 1) then R(u) := ∅

Node u sends R(u) to all nodes in B(u, r) and receives
R(w) from every w ∈ B(u, r)

W := {w ∈ B(u, r) | R(w) �= ∅, w �= u}
while ∃w ∈ W do

W := W \ {v | R(v) ∩ R(w) �= ∅ and dG(u, v) �
dG(u, w)}
Add to Hu a shortest path in G from u to w

Broadcast Hu to all nodes in B(u, r)

Algorithm 2: Algorithm Span2,ε(u) for a node u with
parameter ε. The spanner is the union of all subgraphs
Hu computed by all nodes u.

Proof. First we analyze the time complexity of algo-
rithm Span2,ε. The initialization steps required before the
for loop can be done on the fly in (2r + 1) + r rounds.
The final broadcast requires r rounds. In total it requires
O(r) = O(ε−1) rounds. We remark that if n is known then
we can save 2r rounds.

Let us now analyze the properties of the spanner H =S
u∈V (G) Hu. Consider a node u in G.
Before the while loop, Hu is composed of at most

|B(u, 2r + 1)|1/2 − 1 <
√

n edges. Let S be the set of nodes
selected from W in the while loop, and for which a shortest
path is added to Hu. Clearly, at the end of Span2,ε(u), Hu

contributes to at most
√

n + r|S| edges of the spanner H .
Let us show that |S| � 3

√
n, proving that Hu has at most

O(r
√

n) edges and that H has O(rn3/2) edges in total.
For every w ∈ S, R(w) �= ∅ and thus |R(w)| � σw =

|B(w, 2r + 1)|1/2 which is at least |B(u, r + 1)|1/2 because
B(u, r + 1) ⊆ B(w, 2r + 1). For every integer � ∈ [2, r],
let S� = {w ∈ S | dG(u, w) = �} and let C� = B(u, � + 1) \
B(u, �−2). Note that for each w ∈ S�, R(w) ⊆ C�, and thusS

w∈S�
⊆ C�. Moreover, in the while loop, w, w′ ∈ S� and

w �= w′ force R(w) ∩ R(w′) = ∅. So that

|S�| � |C�|
minw∈S� |R(w)| � |C�|

|B(u, r + 1)|1/2
.

Therefore,

|S| =
rX

�=2

|S�| � 1

|B(u, r + 1)|1/2

rX
�=2

|C�| .

We observe that in the sum
P |C�|, nodes at distances ex-

catly � from u are counted (at most) 3 times. It follows thatPr
�=2 |C�| � 3|B(u, r + 1)| and thus

|S| � 3|B(u, r + 1)|
|B(u, r + 1)|1/2

� 3
√

n .

In total H has at most O(rn3/2) = O(ε−1n3/2) edges.
Consider the stretch obtained for some v with dG(u, v) =

� � r. We show by induction on � that dH(u, v) � �+2. This

277

is clearly true for � = 0. Assume � > 0, and assume that v is
removed from u in the while loop. If v ∈ S, then a shortest
path from u to v was added to Hu and thus dH(u, v) =
�. If R(v) ∩ R(w) �= ∅ for some w ∈ S, then dH(u, v) �
dG(u, w) + 2 � dG(u, v) + 2 = � + 2 since w verifies that
dG(u, v) � dG(u, w). Finally, if v /∈ W because R(v) =
∅, then all neighbors of v are in H . Let v′ be a neighbor
such that dG(u, v′) = � − 1. We deduce by induction that
dH(u, v′) � � + 1 and thus dH(u, v) � � + 2. Hence we have
proved that dH(u, v) � � + 2 in all the cases.

Now, for a node v at any distance d = dG(u, v), we can
then prove by induction that dH(u, v) �

`
1 + 2

r

´
d + 2. We

already know it is true for d � r. For d > r, consider the
node v′ at distance r from u in a shortest path from u to v
in G. We get

dH(u, v) � dH(u, v′) + dH(v′, v)

� r + 2 +

„
1 +

2

r

«
dG(v′, v) + 2

� r + 2

r
r +

„
1 +

2

r

«
(d − r) + 2

�
„

1 +
2

r

«
d + 2 � (1 + ε)d + 2

as r =
2/ε�, completing the proof of Theorem 2.

3. LOWER BOUNDS
For convenience, let us say that a distributed algorithm

A computes a spanner H for G if after running A, for every
edge (u, v) of H , either u or v is aware of this edge being
in H . Clearly, at the cost of one additional communication
round, one can guarantee that both endpoints are aware of
the edge.

For proving our results we make use of (a variant of) a
classical lower bounding technique, used for instance in [23].
A brief description of this technique is presented in the next
section.

3.1 Equivalent views
Let G(V, E) be an n-node graph with distinct integer node

identities ID : V �→ {1, . . . , n}, and let t ∈ N. A decoration
is a node labeling ξ that associates with each node u of G
an integer sequence ξ(u) = (r1, r2, . . .) where r1 = ID(u).
Let us denote by ξ(u, t) = (r1, . . . , rt) the length-t prefix
of ξ(u). The view of u, denoted by View(u, t,G, ξ), is the
subgraph of G induced by BG(u, t) in which edges between
nodes at distance t from u are removed, and in which each
node v is labeled with the sequence ξ(v, t + 1 − dG(u, v)).
Informally, View(u, t, G, ξ) is the total information available
at u after t rounds, ID’s and random choices are captured
by the decoration ξ of the graph.

A round consists of two steps: a communication step be-
tween neighbors (send/receive statements) followed by a lo-
cal computation step, including a random choice considered
as an integer. Consider a run of a randomized algorithm
A on G. The state of node u after t rounds of A can be
expressed by a function ΦA depending on (1) the partial
topology of G received by u after t communication rounds,
and (2) all ID’s and random choices made by the nodes of
BG(u, t). More precisely, after t rounds u is aware of at most
t − dG(u, v) first2 random choices of v.

2In our model, after the first round u is aware of its own

In the following we identify a run of A by a decoration
of the graph, representing the ID’s and the list of random
choices made by all nodes running A. As a result, the state
of u after t rounds of a run ξ of A on G can be defined
as a function, denoted by ΦA, of View(u, t,G, ξ), which is
nothing else than a subgraph of G whose nodes are labeled
by some prefixes of ξ. Note that the mapping ΦA itself may
depends on a priori knowledge, like the number of nodes of
G, but is independent of ID’s and random choices which are
contained in the views.

Now, assume there are two graphs G1, G2 with two nodes
u1 ∈ V (G1), u2 ∈ V (G2) such that, in order to solve a
problem P on the family {G1, G2}, algorithm A has to
output a different state for u1 and for u2. For instance,
assume P is the problem of constructing a spanning tree
on a graph family including n-node paths and n-node cy-
cles. Let us fix t, and assume that for every run ξ of A,
View(u1, t, G1, ξ) = View(u2, t, G2, ξ). Note that in partic-
ular, ID(u1) = ID(u2). Then, applying ΦA on both sides,
we conclude that A does not solve P in time t, because the
state will be the same in u1 and in u2 whereas different out-
puts are required. If A solves P for all instances, then its
time complexity is thus strictly greater than t. Actually,
even the expected time of A is strictly greater than t, since
the property holds for every run of A, hence it holds for the
average as well. Coming back to our concrete example of
spanning tree problem P , we deduce3 that any randomized
distributed algorithm solving P has expected time at least
n/2.

3.2 Dense large girth graphs
Both our two lower bounds rely on the existence of dense

graphs with large girth, that is, with large minimum cy-
cle length. It is known that the complete bipartite graph
Kn/2,n/2 is a girth 4 graph with maximum edge density:

it has n2/4 edges. Actually, there are constructions of n-

node graphs with girth at least 2k +2 and Ω(n1+1/k) edges,
for k ∈ {1, 2, 3, 5} (see [8, 34]). According to the Erdös-
Simonovits [20] Conjecture (see also [19, 10, 22]), the result
must hold for every k. As constructed in [25], for every

k � 1, there are graphs of girth 2k+2 with Ω(n1+ 2
3k) edges.

Observe that if Gg is a girth g graph with maximum num-
ber of edges, then it is connected4.

We are particularly interested in bipartite dense graphs
of high girth. For every n and 1 � k � log n, consider the
class of connected bipartite n-node graphs with girth at least
2k + 2, and pick B(n, k) to be (some) graph of maximum
number of edges in this class.

We rely on the following well-known simple observation.

Observation 1. Every m-edge graph contains a bipartite
subgraph with at least m/2 edges.

random choice only, and of its neighbors ID’s. The result
of the first local computation of any u neighbor becomes
available to u only at the beginning of the second round.
3First argue that in the cycle, there must exists a node u1

whose state corresponds to the removal of an edge. Then
construct a decoration ξ on the path (including an ID as-
signment) such that, for u1 and for the node u2 of maximal
eccentricity in the path, both views are the same.
4Otherwise, if Gg is composed of c � 2 connected compo-
nents, one can add c−1 edges between them to yield a denser
(connected) girth g graph.

278

The following proposition is derived from the above dis-
cussion and observation. Let

Ψ(k) =

j
k, k ∈ {1, 2, 3, 5} ,
3k/2, otherwise.

Lemma 1. For all k, n such 1 � k � log n, the graph
B(n, k) has at least c0n

1+1/Ψ(k) edges for constant c0 >
0. Moreover, assuming the Erdös-Simonovits Conjecture,
Ψ(k) = k for every k.

3.3 A time lower bound
We prove that k rounds are necessary in expectation for

distributively constructing sparse (2k − 1, 0)-spanners. Al-
gorithm Spank shows that k rounds suffice.

A similar lower bound claimed in [16] appears in [15]5.
For completeness, and in order to illustrate the lower bound
technique, we present below a variant of the proof presented
in [15].

Note that in the following statement, the algorithm may
be dependent on n and k, hence the lower bound holds even
if nodes are aware of these values.

Proposition 3. Let n, k be integers such that 1 < k �
log n. Consider a randomized distributed algorithm A that
for every connected n-node graph computes a connected sub-
graph with fewer than c0n

1+1/Ψ(k−1) edges. Then A has ex-
pected time at least k.

Proof. Let tG be the minimum execution time of A on
the graph G, taken over all random choices made by A. Let
t be max{tG} over all connected n-node graphs G. Note
that t lower bounds the expected time of A.

Consider B(n, k−1), k > 1. Since its girth is 2(k−1)+2 =
2k, in every node u, the ball BB(n,k−1)(u, k−1) is isomorphic
to a tree of depth k − 1. Let T be the (infinite) set of all
decorated n-node trees, i.e., trees whose nodes u are labeled
by integer sequences ξ(u).

Assume that t � k − 1. For every node u and run ξ of
A, there exists a tree T ∈ T such that View(u, t,B(n, k −
1), ξ) = View(u, t, T, ξ), the number of nodes of both
B(n, k − 1) and T is n and it is known to u. Indeed, T can
be chosen as a shortest path tree rooted at u in B(n, k− 1),
and labeled by ξ. Thus, after t rounds, the state in u com-
puted by ΦA is the same in B(n, k − 1) and in T . If none
of the nodes decides to remove one of its incident edges,
then the number of edges of the spanner for B(n, k − 1) is

c0n
1+1/Ψ(k−1). This contradicts the sparsity guarantee of A.

Thus, there exists a run ξ0 and a node u0 in B(n, k−1) that
decides by ΦA to remove an edge. Selecting the tree T0 such
that View(u0, t, B(n, k − 1), ξ0) = View(u0, t, T0, ξ0) shows
that A does not provide a spanner for T0, since the spanner
must be connected: a contradiction. Therefore t > k−1.

3.4 A stretch lower bound

Theorem 3. Let k, ε be such that 1 < k � log n, and
1/ε > 3k2 − k. Consider any randomized distributed algo-
rithm A that for every connected n-node graph computes a

5The bound proved in [15][Theorem 10.2, page 70] is slightly
different, despite proof similarities. E.g., for k = 2, it gives
at least k − 1 = 1 round for computing a (3, 0)-spanner of

at most n3/2 logO(1) n edges, whereas our statement claims
a matching lower bound of k = 2 rounds for a (3, 0)-spanner
of o(n2) edges.

spanner with fewer than λ·n1+1/Ψ(k) edges in t expected time,
for k − 3 � t � nε and λ � nε. Then there exist a graph G
and two nodes u, v at distance dG(u, v) = Ω(tnε) such that
in the spanner H computed by A,

dH(u, v) >

„
1 +

k − 1

t + 1

«
· dG(u, v) + 2k − 3 .

Before presenting the proof, we note that Theorem 3 yields
an interesting corollary, which is independent of the Erdös-
Simonovits Conjecture.

Corollary 2. Every randomized distributed algorithm
that for every n-node graph computes an (α, β)-spanner with

fewer than n1+1/k+1/(3k2) edges in t � n1/(3k2) expected
time, for every k > 1, must verify α = 1 + Ω(k/t), or

β = Ω(kn1/(3k2)).

Proof. Theorem 3 with ε = 1/(3k2) and λ = nε implies
that there are distance dG(u, v) = Θ(tnε) such that:

dH(u, v) >

„
1 +

k − 1

t + 1

«
· dG(u, v) + Ω(k)

=

„
1 +

k − 1

2(t + 1)

«
· dG(u, v) +

k − 1

2(t + 1)
· dG(u, v) + Ω(k)

=

„
1 +

k − 1

2(t + 1)

«
· dG(u, v) + Ω(knε)

that implies α = 1 + Ω(k/t), or β = Ω(knε).

Proof of Theorem 3. Let B(X, Y, E) be a p-node bi-
partite graph, hereafter called the base-graph, whose parts
are X = {x1, x2, . . .} and Y = {y1, y2, . . .}. For every
sequence S of b edges of B (possibly with repetitions),
S = 〈(xj1 , yj1), . . . , (xjb , yjb)〉, we construct a graph P (S),
called a block-path, as follows (see Fig. 3 for an example):

1. P (S) is composed of b disjoint copies of B denoted by

B(i)(X(i), Y (i), E(i)) for i = 1, . . . , b, each referred to
as a block of P (S).

2. In each block B(i), we attach to each node x
(i)
� ∈ X(i)

(resp., y
(i)
� ∈ Y (i)) a (distinct) new length-t x-leg

(resp., y-leg) path whose other endpoint is named x̃
(i)
�

(resp., ỹ
(i)
� .

3. Every two consecutive blocks B(i) and B(i+1), for
i ∈ {1, . . . , b − 1}, are connected by a single inter-block

edge, between ỹ
(i)
ji

and x̃
(i+1)
ji+1

.

Note that any two consecutive blocks B(i), B(i+1) in the
block-path are connected by a unique path of length 2t + 1
via the single inter-block edge which connects the endpoints
of the ith and (i + 1)st edges of S. Note also that if B is
connected, then so is the block-path.

For every block-path P (S), and every β � b, there is a

(shortest) path from x
(1)
j1

to y
(β)
jβ

of the form

(x
(1)
j1

, y
(1)
j1

, ỹ
(1)
j1

, x̃
(2)
j2

, x
(2)
j2

, y
(2)
j2

, ỹ
(2)
j2

, x̃
(3)
j3

, . . . , x
(β)
jβ

, y
(β)
jβ

)

that alternates successively between an edge of B(i), a
length-t y-leg path, an inter-block edge and a length-t x-leg

279

x
(1)
2

ỹ
(2)
2

S = 〈(x2, y3),
(x1, y2),
(x3, y2)〉

B

x1

x2

x3

x4
y3

y2

y1

x̃
(2)
1

B(2) B(3)B(1)

y
(1)
3 ỹ

(1)
3

x
(2)
1

y
(2)
2

x̃
(3)
3 x

(3)
3

y
(3)
3

t

Figure 3: A block-path P (S) with base-graph B for b = 3, p = 7 and t = 2. Inter-block edges are dashed.

path. The total length of this path is

dP (S)(x
(1)
j1

, y
(β)
jβ

) = (2t + 2)(β − 1) + 1 . (1)

We now fix the base-graph B = B(p, k − 1), where k > 1.
For convenience, let h(k) = 1 + 1/Ψ(k). The number of
nodes of P (S) is bpt = n. Let b = nε.

The edge set of P (S) is composed of c0p
h(k−1) block edges

and pt path-edges for each of the b blocks, and b − 1 inter-
block edges. The total number of edges of P (S) is thus

m = b
“
c0p

h(k−1) + pt
”

+ b − 1 > c0bp
h(k−1) . (2)

Assume that A is a randomized distributed algorithm
computing, for every connected n-node graph, a spanner
with fewer than λ · nh(k) edges in t rounds in expectation.
Consider any run ξ of A on some block-path P (S). Observe
that in constructing the spanner, A can only remove edges
inside blocks, as all x/y-leg path edges and inter-block edges
are bridges. Let ri be the number of edges removed by A
in block B(i). In order to get the right sparsity, we must
have

Pb
i=1 ri � m−λnh(k). Since each ri is upper bounded

by the number of edges of a block, i.e., c0p
h(k−1), it follows

that the number of blocks B(i) for which ri � 1 is at least

β =
m − λnh(k)

c0ph(k−1)
.

One can verify that, for Ψ(k) = ck and sufficiently large n,

1/ε > 2ck2 − 2k(c − 1) ⇔ h(k) < (1 − 2ε)h(k − 1)

⇒ nh(k) <
1

2
c0n

(1−2ε)h(k−1) .(3)

In particular, for c = 3/2, the condition 1/ε > 3k2 − k
implies Eq. (3). Since λ � nε = b, and since p � n1−2ε (as
bt � n2ε), Eq. (3) yields

λ·nh(k) � 1

2
c0bn

(1−2ε)h(k−1) � 1

2
c0bp

h(k−1) .

By Eq. (2),

m − λnh(k) � 1

2
c0bp

h(k−1) .

If follows that

β =
1
2
c0bp

h(k−1)

c0ph(k−1)
=

b

2
.

Thus for every ξ there exist β blocks B(b1), . . . , B(bβ),

each with a node z
(i)
ji

∈ X(i) ∪ Y (i), such that

ΦA(View(z
(i)
ji

, t, P (S), ξ)) is a state of z
(i)
ji

corresponding to

the removal of at least one edge of B(bi) incident to z
(i)
ji

. Let

V
(i)
S,ξ = View(z

(i)
ji

, t, P (S), ξ).

Unfortunately, the views V
(i)
S,ξ (for different i and fixed

S, ξ) are pairwise different for at least two reasons: (1) the
base-graph B may be not vertex-transitive; and (2) nodes

z
(i)
ji

are taken from the same graph. Thus their ID’s differ,
and thus their views do.

Consider the set P of all decorated block-paths P (S), for
all the sequences S composed of b edges of the base-graph

B. Consider VS,ξ =
Sβ

i=1 V
(i)
S,ξ, composed of the β views

defined as above. Because no view of any z
(i)
ji

contains an
inter-block edge, VS,ξ is independent of S. In other words,
for every ξ, VS,ξ = VS′,ξ = Vξ for all S, S′.

From the above discussion, it follows that for all pairs
(S, ξ), there is a decorated graph Pξ ∈ P isomorphic to P (S)
such that bi = i for every i ∈ {1, . . . , β}, i.e., that such that
the blocks with at least one edge removed appear consecu-

tively. For i ∈ {1, . . . , β}, pick (x
(i)
ji

, y
(i)
ji

) to be one of the

edges removed in block B(i). We simply set Sξ as the fol-
lowing edge sequence of B: Sξ =

˙
(xj1 , yj1), . . . , (xjβ , yjβ)

¸
.

To summarize, for each run ξ of A, we have constructed
a block-path P (Sξ) where all the edges corresponding to Sξ

are removed by A (because the view Vξ is independent on

Sξ). As the girth of B(i) is at least 2k, the distance in the

spanner Hξ returned by A on run ξ between x
(i)
ji

and y
(i)
ji

is
at least 2k − 1. Because all the edges of P (Sξ), except the

280

edges of the blocks, are bridges, it follows that

dH = dHξ (x
(1)
j1

, y
(β)
jβ

) � (2t + 1 + 2k − 1)(β − 1) + 2k − 1

= (2t + 2)(β − 1) + 1 + (2k − 2)β .

By Eq. (1), we have that

dG = dP (Sξ)(x
(1)
j1

, y
(β)
jβ

) = (2t + 2)(β − 1) + 1 .

Hence β = (dG − 1)/(2t + 2) + 1. Therefore,

dH � dG + (2k − 2)β

=

„
1 +

k − 1

t + 1

«
dG + 2k − 2 − k − 1

t + 1

>

„
1 +

k − 1

t + 1

«
dG + 2k − 3

because for t > k − 2, (k − 1)/(t + 1) < 1. We have dG =
Θ(tb) = Ω(tnε). The above lower bound on the distance in
the spanner output by A after t rounds is for every ξ, thus
it holds for the expectation. This complete the proof.

4. REFERENCES
[1] I. Abraham, C. Gavoille, and D. Malkhi, On

space-stretch trade-offs: Upper bounds, in 18th Annual
ACM Symposium on Parallel Algorithms and
Architectures (SPAA), ACM Press, July 2006,
pp. 207–216.

[2] B. Awerbuch, Complexity of network
synchronization, Journal of the ACM, 32 (1985),
pp. 804–823.

[3] B. Awerbuch, B. Berger, L. J. Cowen, and

D. Peleg, Fast distributed network decompositions
and covers, Journal of Parallel and Distributed
Computing, 39 (1996), pp. 105–114.

[4] , Near-linear time construction of sparse
neighborhood covers, SIAM Journal on Computing, 28
(1998), pp. 263–277.

[5] S. Baswana and T. Kavitha, Faster algorithms for
approximate distance oracles and all-pairs small
stretch paths, in 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), IEEE
Computer Society Press, Oct. 2006, pp. 591–602.

[6] S. Baswana, T. Kavitha, K. Mehlhorn, and

S. Pettie, New constructions of (α, β)-spanners and
purely additive spanners, in 16th Symposium on
Discrete Algorithms (SODA), ACM-SIAM, Jan. 2005,
pp. 672–681.

[7] S. Baswana and S. Sen, A simple and linear time
randomized algorithm for computing sparse spanners
in weighted graphs, Random Structures and
Algorithms, 30 (2007), pp. 532–563.

[8] C. T. Benson, Minimal regular graphs of girth eight
and twelve, Canadian Journal of Mathematics, 18
(1966), pp. 1091–1094.

[9] B. Bollobás, D. Coppersmith, and M. Elkin,
Sparse distance preservers and additive spanners, in
14th Symposium on Discrete Algorithms (SODA),
ACM-SIAM, Jan. 2003, pp. 414–423.

[10] J. A. Bondy and M. Simonovits, Cycle of even
length in graphs, Journal of Combinatorial Theory,
Series B, 16 (1974), pp. 97–105.

[11] D. Coppersmith and M. Elkin, Sparse source-wise
and pair-wise distance preservers, in 16th Symposium
on Discrete Algorithms (SODA), ACM-SIAM, Jan.
2005, pp. 660–669.

[12] B. Derbel, C. Gavoille, and D. Peleg,
Deterministic distributed construction of linear stretch
spanners in polylogarithmic time, in 21st International
Symposium on Distributed Computing (DISC),
vol. 4731 of Lecture Notes in Computer Science,
Springer, Sept. 2007, pp. 179–192.

[13] D. Dubhashi, A. Mai, A. Panconesi,

J. Radhakrishnan, and A. Srinivasan, Fast
distributed algorithms for (weakly) connected
dominating sets and linear-size skeletons, Journal of
Computer and System Sciences, 71 (2005),
pp. 467–479.

[14] M. Elkin, Computing almost shortest paths, ACM
Transactions on Algorithms, 1 (2005), pp. 283–323.

[15] , A near-optimal fully dynamic distributed
algorithm for maintaining sparse spanners, tech. rep.,
arXiv:cs.DS/0611001v1, Nov. 2006.

[16] , A near-optimal fully dynamic distributed
algorithm for maintaining sparse spanners, in 26th

Annual ACM Symposium on Principles of Distributed
Computing (PODC), ACM Press, Aug. 2007,
pp. 195–204.

[17] M. Elkin and D. Peleg, (1 + ε, β)-spanner
constructions for general graphs, SIAM Journal on
Computing, 33 (2004), pp. 608–631.

[18] M. Elkin and J. Zhang, Efficient algorithms for
constructing (1 + ε, β)-spanners in the distributed and
streaming models, in 23rd Annual ACM Symposium
on Principles of Distributed Computing (PODC),
ACM Press, July 2004, pp. 160–168.

[19] P. Erdös, Extremal problems in graph theory, in
Publ. House Cszechoslovak Acad. Sci., Prague, 1964,
pp. 29–36.

[20] P. Erdös and M. Simonovits, Compactness results
in extremal graph theory, Combinatorica, 2 (1982),
pp. 275–288.

[21] A. M. Farley, A. Proskurowski, D. Zappala,

and K. Windisch, Spanners and message distribution
in networks, Discrete Applied Mathematics, 137
(2004), pp. 159–171.

[22] Y. Kohayakawa, B. Kreuter, and A. Steger, An
extremal problem for random graphs and the number
of graphs with large even-girth, Combinatorica, 18
(1998), pp. 101–120.

[23] F. Kuhn, T. Moscibroda, and R. Wattenhofer,
On the locality of bounded growth, in 24th Annual
ACM Symposium on Principles of Distributed
Computing (PODC), ACM Press, July 2005,
pp. 60–68.

[24] S. Kutten and D. Peleg, Fast distributed
construction of small k-dominating sets and
applications, Journal of Algorithms, 28 (1998),
pp. 40–66.

[25] F. Lazebnik, V. A. Ustimenko, and A. J.

Woldar, A new series of dense graphs of high girth,
Bulletin of the American Mathematical Society (New
Series), 32 (1995), pp. 73–79.

281

[26] N. Linial, Locality in distributed graphs algorithms,
SIAM Journal on Computing, 21 (1992), pp. 193–201.

[27] D. Peleg, Distributed Computing: A
Locality-Sensitive Approach, SIAM Monographs on
Discrete Mathematics and Applications, 2000.

[28] D. Peleg and J. D. Ullman, An optimal
synchornizer for the hypercube, SIAM Journal on
Computing, 18 (1989), pp. 740–747.

[29] D. Peleg and E. Upfal, A trade-off between space
and efficiency for routing tables, Journal of the ACM,
36 (1989), pp. 510–530.

[30] S. Pettie, Low distortion spanners, in 34th

International Colloquium on Automata, Languages
and Programming (ICALP), vol. 4596 of Lecture
Notes in Computer Science, Springer, July 2007,
pp. 78–89.

[31] M. Thorup and U. Zwick, Compact routing
schemes, in 13th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), ACM Press,
July 2001, pp. 1–10.

[32] , Approximate distance oracles, Journal of the
ACM, 52 (2005), pp. 1–24.

[33] , Spanners and emulators with sublinear distance
errors, in 17th Symposium on Discrete Algorithms
(SODA), ACM-SIAM, Jan. 2006, pp. 802–809.

[34] R. Wenger, Extremal graphs with no C4’s, C6’s, or
C10’s, Journal of Combinatorial Theory, Series B, 52
(1991), pp. 113–116.

[35] D. P. Woodruff, Lower bounds for additive
spanners, emulators, and more, in 47th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society Press, Oct. 2006,
pp. 389–398.

282

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

