

Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time

Bilel Derbel (LIFL - Univ. Lille 1, France), *Cyril Gavoille* (LaBRI - Univ. Bordeaux 1, France), *David Peleg* (The Weizmann Institute, Israel)

DISC'07 - Cyprus - Lemosos

24 September 2007

1

Problem and Goal

• An (α,β) -spanner of G is a subgraph S such that for every two nodes u and v:

 $d_S(u,v) \le \alpha \cdot d_G(u,v) + \beta.$

1

Problem and Goal

• An (α,β) -spanner of G is a subgraph S such that for every two nodes u and v:

 $d_S(u,v) \le \alpha \cdot d_G(u,v) + \beta.$

- Quality of a spanner
 - Size and stretch
 - [Extremal graph theory] Every graph G has a
 - (2k-1,0)-spanner with $O(n^{1+1/k})$ edges.
 - this stretch-size trade-off is believed to be tight (proved for k = 1, 2, 3, 5).

1

Problem and Goal

• An (α,β) -spanner of G is a subgraph S such that for every two nodes u and v:

 $d_S(u,v) \le \alpha \cdot d_G(u,v) + \beta.$

- Quality of a spanner
 - Size and stretch
 - [Extremal graph theory] Every graph G has a
 - (2k-1,0)-spanner with $O(n^{1+1/k})$ edges.
 - this stretch-size trade-off is believed to be tight (proved for k = 1, 2, 3, 5).

We want to **efficiently** compute a **high quality** spanner in a **distributed way**.

What kind of spanner can we construct assuming only some local knowledge?

- What kind of spanner can we construct assuming only some local knowledge?
- *LOCAL* model (Linial's model) : unlimited message size.

- What kind of spanner can we construct assuming only some local knowledge?
- *LOCAL* model (Linial's model) : unlimited message size.

	(lpha,eta)	size	time
[ABCP'96]	(4k - 3, 0)	$O(kn^{1+1/k})$	$n^{\epsilon+1/k}$
[DG'06]	$O(k^{\log 5})$	$O(\log k \cdot n^{1+1/k})$	n^{ϵ}

- What kind of spanner can we construct assuming only some local knowledge?
- *LOCAL* model (Linial's model) : unlimited message size.

	(lpha,eta)	size	time	expected time
[ABCP'96]	(4k - 3, 0)	$O(kn^{1+1/k})$	$n^{\epsilon+1/k}$	$n^{1/k} \cdot \log^2 n$
[DG'06]	$O(k^{\log 5})$	$O(\log k \cdot n^{1+1/k})$	n^{ϵ}	$\log n$

- What kind of spanner can we construct assuming only some local knowledge?
- *LOCAL* model (Linial's model) : unlimited message size.

	(lpha,eta)	size	time	expected time
[ABCP'96]	(4k-3,0)	$O(kn^{1+1/k})$	$n^{\epsilon+1/k}$	$n^{1/k} \cdot \log^2 n$
[DG'06]	$O(k^{\log 5})$	$O(\log k \cdot n^{1+1/k})$	n^{ϵ}	$\log n$

	(lpha,eta)	expected size	time
[BS'03]	(2k - 1, 0)	$O(k \cdot n^{1+1/k})$	$O(k^2)$
[DMPRS'03]	$(O(\log n), 0)$	$O(\log n)$	$O(\log^3 n)$

- What kind of spanner can we construct assuming only some local knowledge?
- *LOCAL* model (Linial's model) : unlimited message size.

	(lpha,eta)	size	time	expected time
[ABCP'96]	(4k-3,0)	$O(kn^{1+1/k})$	$n^{\epsilon+1/k}$	$n^{1/k} \cdot \log^2 n$
[DG'06]	$O(k^{\log 5})$	$O(\log k \cdot n^{1+1/k})$	n^{ϵ}	$\log n$

	(lpha,eta)	expected size	time
[BS'03]	(2k - 1, 0)	$O(k \cdot n^{1+1/k})$	$O(k^2)$
[DMPRS'03]	$(O(\log n), 0)$	$O(\log n)$	$O(\log^3 n)$

Is it possible to construct linear stretch spanners deterministically in polylogarithmic time?

Main Ideas

We add edges in parallel at different regions of the graph

Main Ideas

We add edges in parallel at different regions of the graph

We use an independent ρ -dominating set to break the symmetry efficiently

- $\forall u \in V, \exists v \in IDS(G, \rho) \text{ such that } d_G(u, v) \leq \rho.$
- $\forall u, v \in IDS(G, \rho), d_G(u, v) \ge 2.$

Main Ideas

We add edges in parallel at different regions of the graph

We use an independent ρ -dominating set to break the symmetry efficiently

We use the best sequential algorithm to span the interior of a region

We use a new sequential algorithm for bipartite graphs to span the border of a region

Sequential algorithms : k = 2

Lemma 1 [Folklore] : Every graph G = (V, E) has a 3-spanner with $O(|V|^{3/2})$ edges.

Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

T.

3-spanner for Bipartite Graphs

Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

 \bigcirc

Algorithm : Repeat

 \bigcirc

 \bigcirc

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

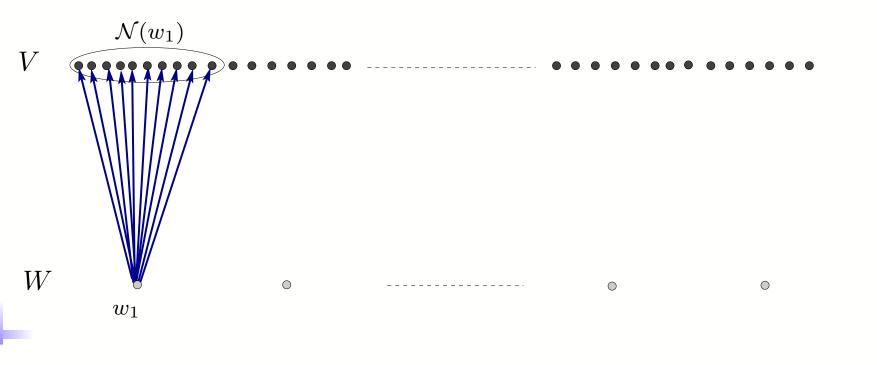
W

 \bigcirc

Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

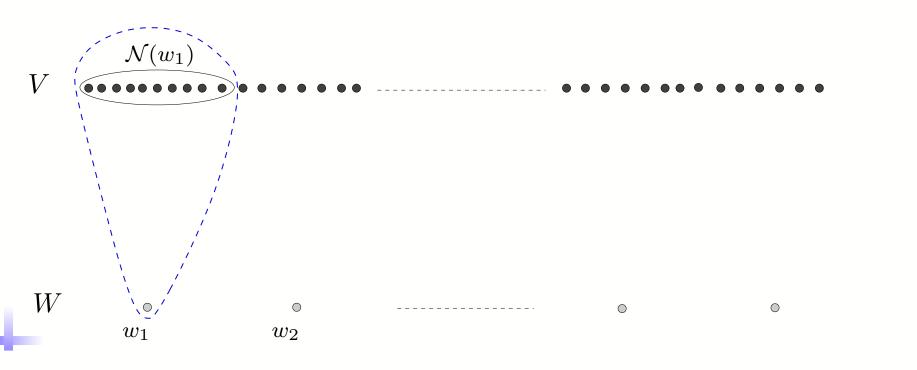
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

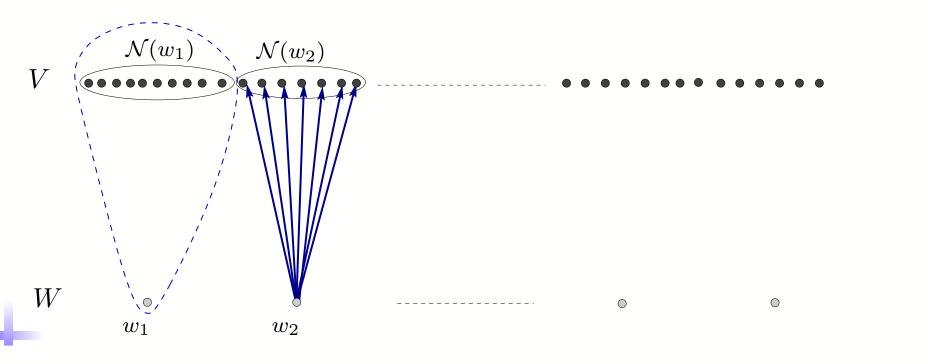
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

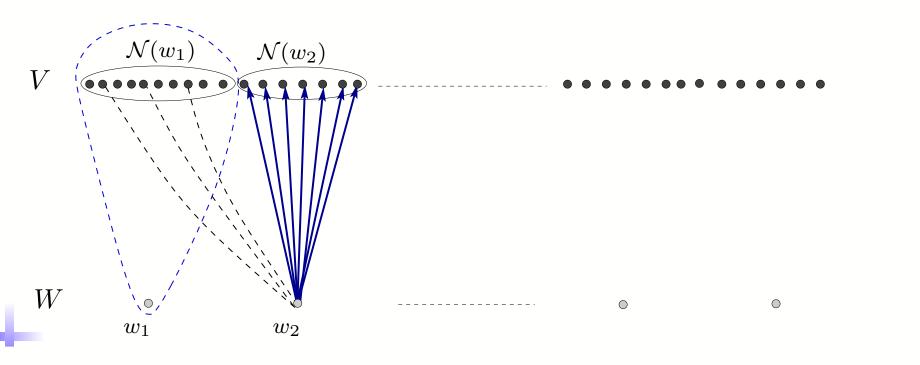
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

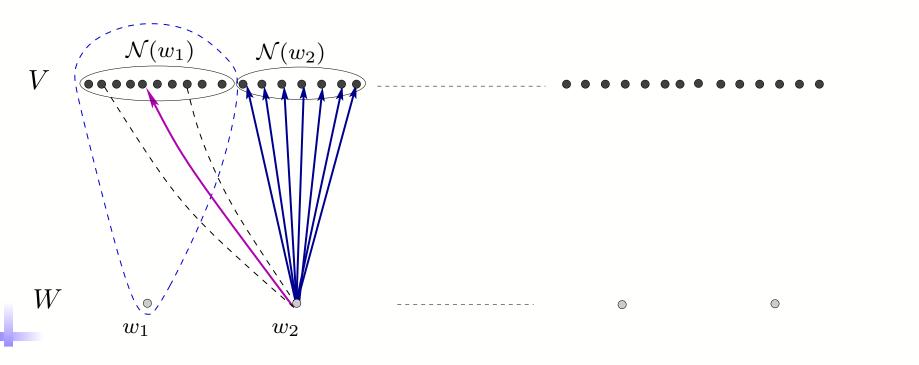
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

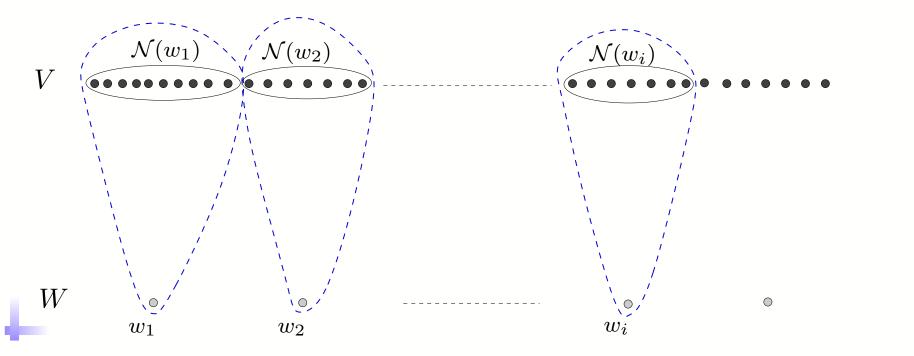
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

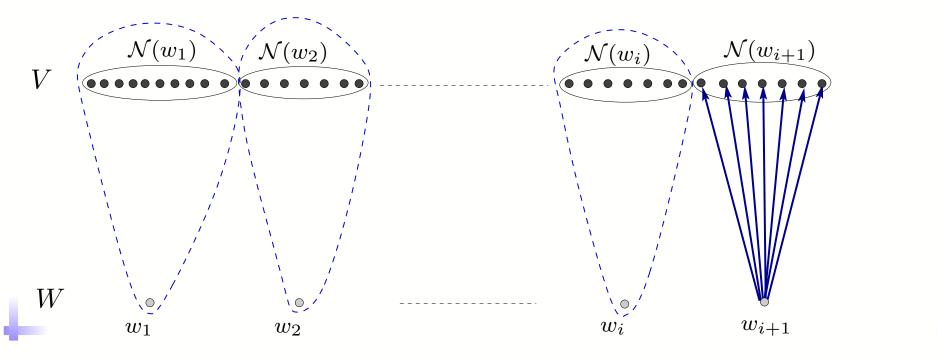
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

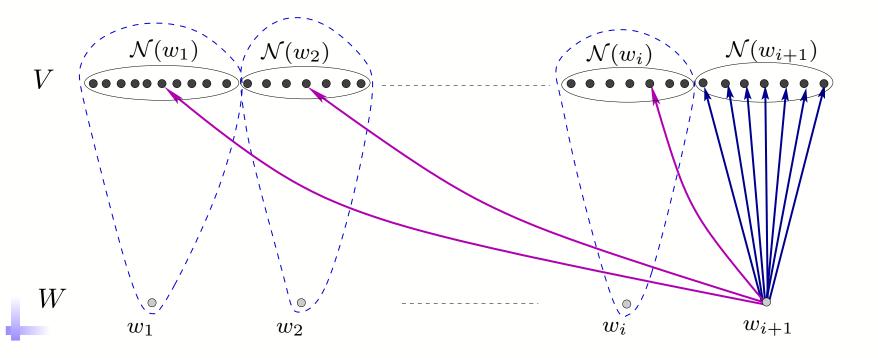
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

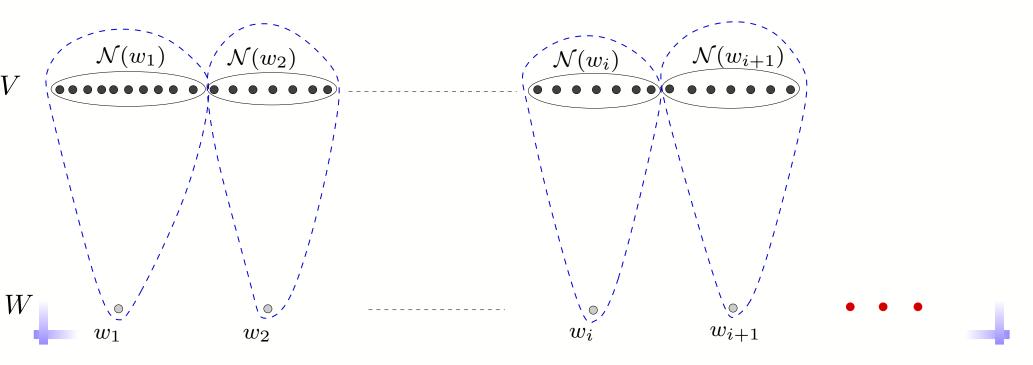
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

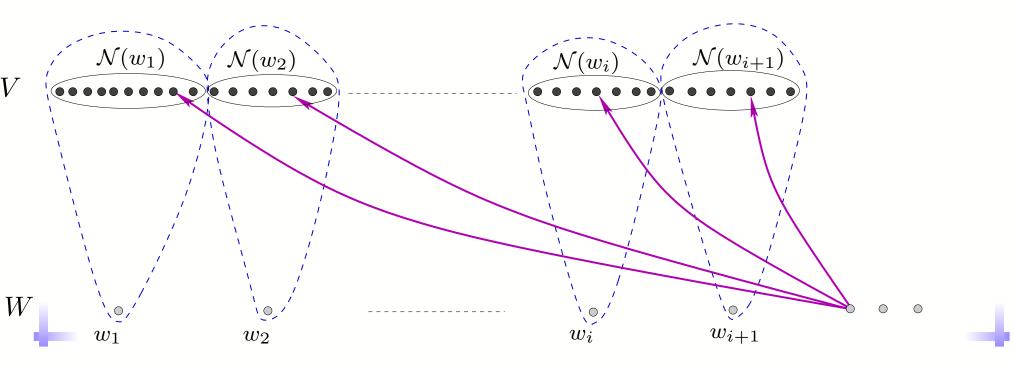
- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

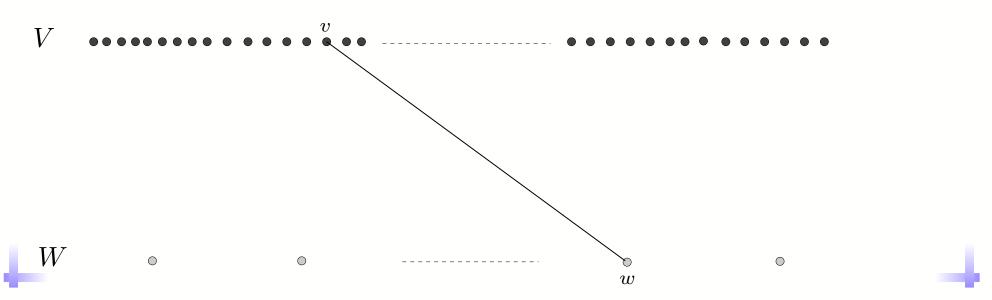


Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

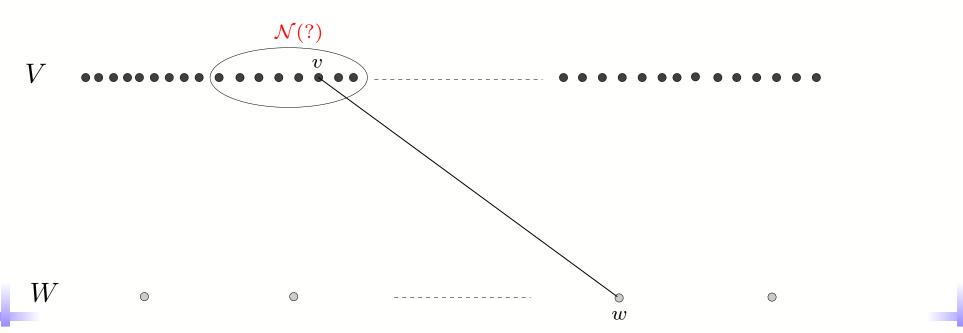


Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

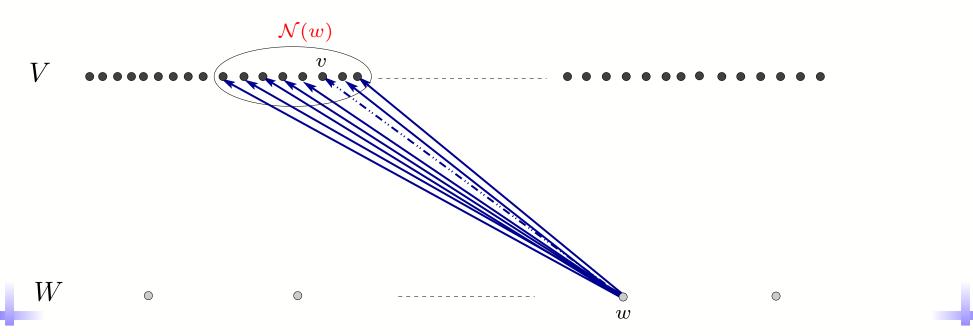


Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

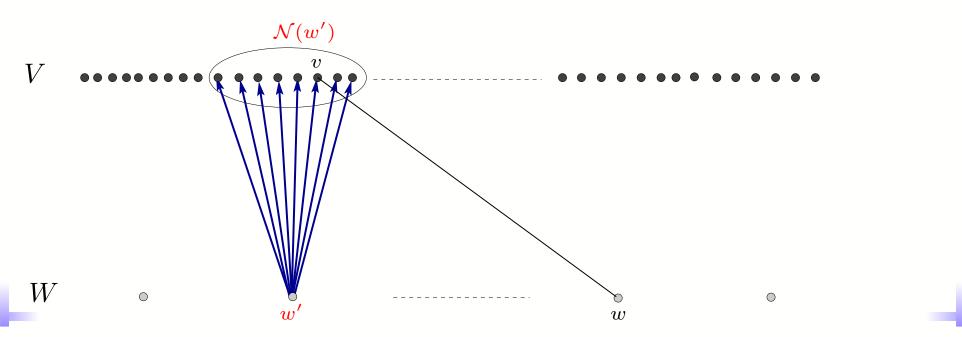


Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

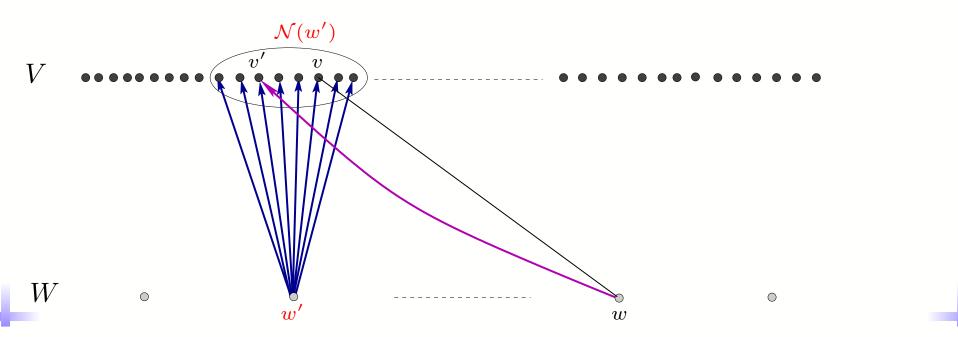


Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

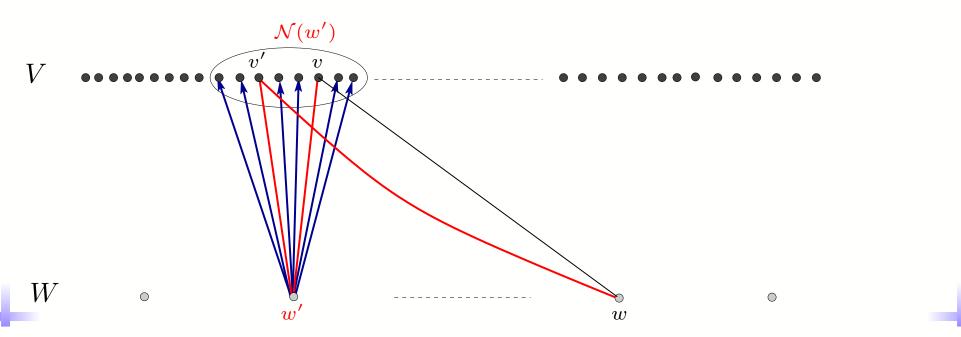


Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars



Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

Stretch Analysis

Stretch ≤ 3

$$\forall v, w \in V \cup W, \quad d_S(v, w) \leq \begin{cases} 2 \cdot d_B(v, w) + 1 & \text{ if } d_B(v, w) \text{ is odd} \\ 2 \cdot d_B(v, w) + 2 & \text{ otherwise.} \end{cases}$$

Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

Stretch Analysis

Stretch ≤ 3

Size Analysis

- \bullet at most |V| edges added by the stars
- Each node in $w \in W$ is connected to the previous stars by at most $2\sqrt{|V|}$ edges (proof by contradiction).

Lemma 2 : Every bipartite graph $B = (W \cup V, E)$ has a 3-spanner with $O(|V| + |W|\sqrt{|V|})$ edges.

1. chose the highest degree node w in W

Algorithm : Repeat

- 2. add the star $\mathcal{N}(w)$ to the spanner
- 3. connect w to other stars

Stretch Analysis

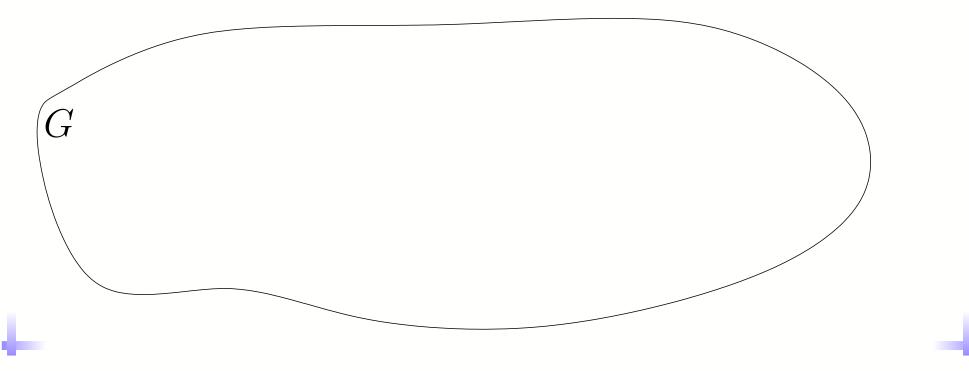
Stretch ≤ 3

Size Analysis

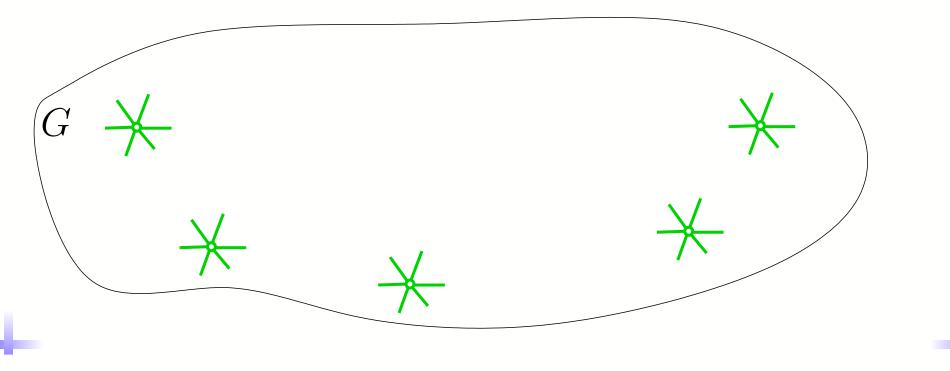
- \bullet at most |V| edges added by the stars
- Each node in $w \in W$ is connected to the previous stars by at most $2\sqrt{|V|}$ edges (proof by contradiction).

$$Size = O(|V| + |W| \cdot \sqrt{|V|})$$

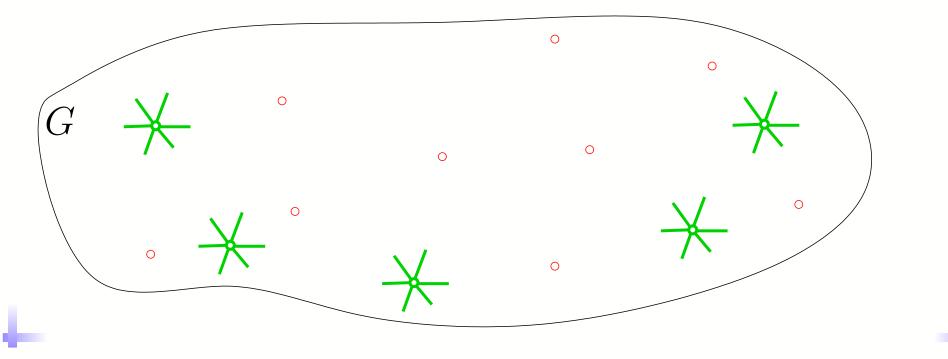
• If the degree of a node v is at most \sqrt{n} , then add the star $\mathcal{N}(v)$ to the spanner and delete v from G.



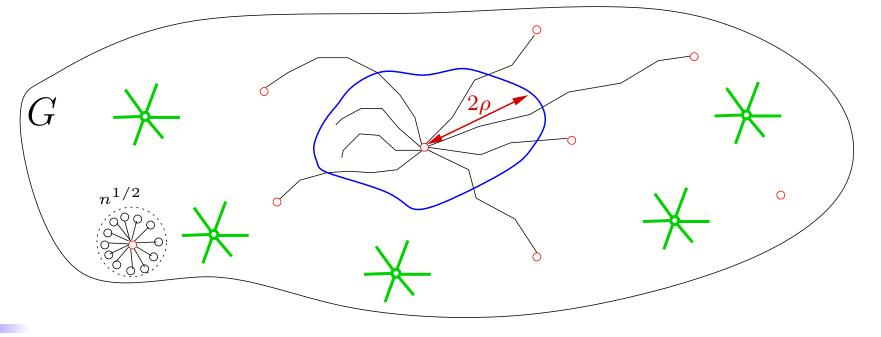
• If the degree of a node v is at most \sqrt{n} , then add the star $\mathcal{N}(v)$ to the spanner and delete v from G.



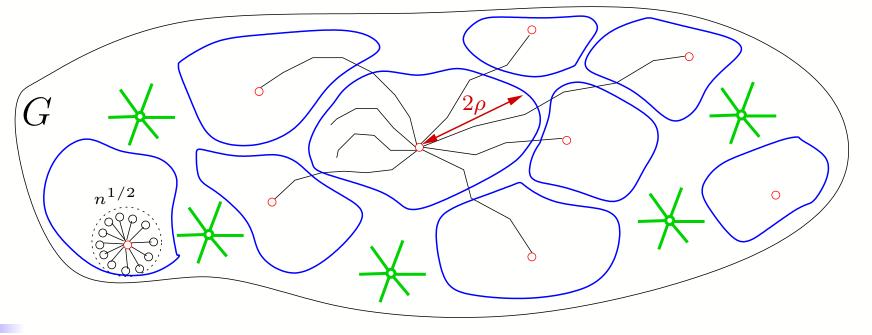
- If the degree of a node v is at most \sqrt{n} , then add the star $\mathcal{N}(v)$ to the spanner and delete v from G.
- Find an independent ρ -dominating set X of G^2 .



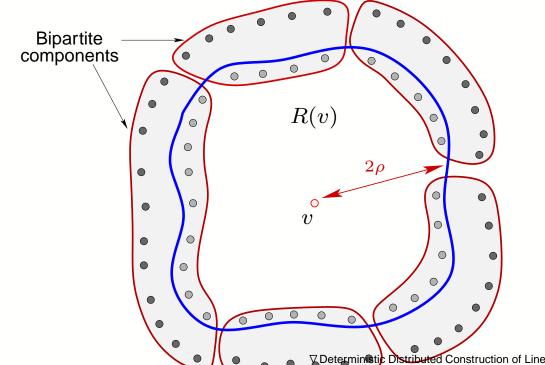
- If the degree of a node v is at most \sqrt{n} , then add the star $\mathcal{N}(v)$ to the spanner and delete v from G.
- Find an independent ρ -dominating set X of G^2 .
- Form a region R(v) around each node v of X.
 - There are at most \sqrt{n} disjoint regions
 - The radius of each region is at most $O(\rho)$



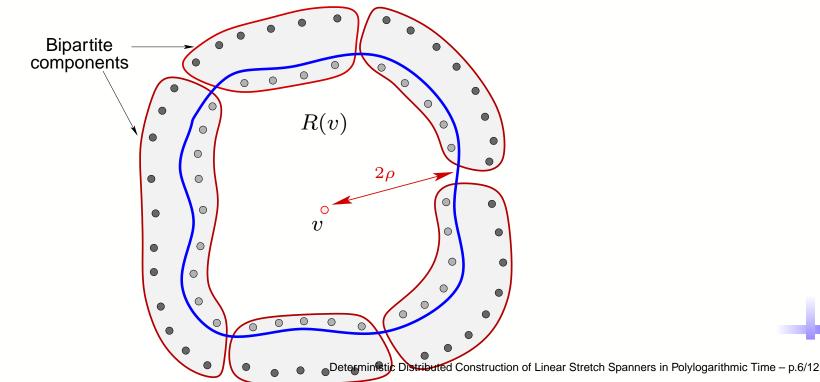
- If the degree of a node v is at most \sqrt{n} , then add the star $\mathcal{N}(v)$ to the spanner and delete v from G.
- Find an independent ρ -dominating set X of G^2 .
- Form a region R(v) around each node v of X.
 - There are at most \sqrt{n} disjoint regions
 - The radius of each region is at most $O(\rho)$



- If the degree of a node v is at most \sqrt{n} , then add the star $\mathcal{N}(v)$ to the spanner and delete v from G.
- Find an independent ρ -dominating set X of G^2 .
- Form a region R(v) around each node v of X.
 - There are at most \sqrt{n} disjoint regions
 - The radius of each region is at most $O(\rho)$



- If the degree of a node v is at most \sqrt{n} , then add the star $\mathcal{N}(v)$ to the spanner and delete v from G.
- Find an independent ρ -dominating set X of G^2 .
- Form a region R(v) around each node v of X.
- Span the interior of a region R(v) using Lemma 1.
- Span the border of a region R(v) using Lemma 2.



Size analysis :

Size analysis :

• Spanning the sparse stars : • number of edges $\leq n \cdot \sqrt{n}$

Size analysis :

- Spanning the sparse stars :
 - number of edges $\leq n \cdot \sqrt{n}$
- Spanning the interior of the regions (Lemma 1) :
 - number of edges added per region $\leq n_v \cdot \sqrt{n_v} \leq n_v \cdot \sqrt{n}$
 - \implies Sum over the (disjoint) regions $\leq n \cdot \sqrt{n}$

Size analysis :

- Spanning the sparse stars :
 - number of edges $\leq n \cdot \sqrt{n}$
- Spanning the interior of the regions (Lemma 1) :
 - number of edges added per region $\leq n_v \cdot \sqrt{n_v} \leq n_v \cdot \sqrt{n}$
 - \implies Sum over the (disjoint) regions $\leq n \cdot \sqrt{n}$
- Spanning the border of the regions (Lemma 2) :
 - number of edges added per region $\leq n + n_v \cdot \sqrt{n}$
 - \implies Sum over the (disjoint) \sqrt{n} regions $\leq \sqrt{n} \cdot n + n \cdot \sqrt{n}$

Size analysis :

- Spanning the sparse stars :
 - number of edges $\leq n \cdot \sqrt{n}$
- Spanning the interior of the regions (Lemma 1) :
 - number of edges added per region $\leq n_v \cdot \sqrt{n_v} \leq n_v \cdot \sqrt{n}$
 - \implies Sum over the (disjoint) regions $\leq n \cdot \sqrt{n}$
- Spanning the border of the regions (Lemma 2) :
 - number of edges added per region $\leq n + n_v \cdot \sqrt{n}$

 \implies Sum over the (disjoint) \sqrt{n} regions $\leq \sqrt{n} \cdot n + n \cdot \sqrt{n}$

at most $O(n^{3/2})$ edges

Stretch analysis :

- Every edge (u, v) is either :
 - incident to a sparse star
 - inside a region (Lemma 1)
 - in the border of a region (Lemma 2)

stretch ≤ 3

Stretch analysis :

- Every edge (u, v) is either :
 - incident to a sparse star
 - inside a region (Lemma 1)
 - in the border of a region (Lemma 2)

stretch ≤ 3

Time analysis :

- Independent ρ dominating set \Longrightarrow IDS (n, ρ) time
- spanning the interior and the border of regions $\Longrightarrow O(\rho)$ time.

$$\mathsf{Time} = O(\mathrm{IDS}(n, \rho) + \rho)$$

Stretch analysis :

- Every edge (u, v) is either :
 - incident to a sparse star
 - inside a region (Lemma 1)
 - in the border of a region (Lemma 2)

stretch ≤ 3

Time analysis :

- Independent ρ dominating set \Longrightarrow IDS (n, ρ) time
- spanning the interior and the border of regions $\implies O(\rho)$ time.

$$\mathsf{Time} = O(\mathrm{IDS}(n, \rho) + \rho)$$

There exists a deterministic distributed algorithm computing an independent $(\log n)$ -dominating set in $O(\log n)$ time.

 $= O(\log n)$

Theorem 1 : There exists a distributed algorithm that given an *n*-node graph constructs a 3-spanner with $O(n^{3/2})$ edges in $O(\log n)$ deterministic time.

Theorem 1 : There exists a distributed algorithm that given an *n*-node graph constructs a 3-spanner with $O(n^{3/2})$ edges in $O(\log n)$ deterministic time.

<u>Lemma 3</u>: Every bipartite graph $B = (W \cup V, E)$ has a (4k-5)-spanner with $O(|V+W| + |W|\sqrt{|V+W|})$ edges.

Theorem 2 : There exists a distributed algorithm that given an *n*-node graph constructs a (4k - 5)-spanner with $O(k \cdot n^{1+1/k})$ edges in $2^{O(k)} \log^{k-1} n$ deterministic time.

Existing results

	(lpha,eta)	size	time	expected time
[EP'04]	(1,2)	$n^{3/2}$?	?
[BKMP'05]	(1, 6)	$n^{4/3}$?	?
[EP'04,EZ'04]*	$(1+\epsilon,\beta)$	$n^{1+\delta}$	$O(n^{1+\delta})$?

$$^{*}:\beta=\beta(\delta^{-1},\epsilon^{-1})$$

Existing results

	(lpha,eta)	size	time	expected time
[EP'04]	(1,2)	$n^{3/2}$?	?
[BKMP'05]	(1, 6)	$n^{4/3}$?	?
[EP'04,EZ'04]*	$(1+\epsilon,\beta)$	$n^{1+\delta}$	$O(n^{1+\delta})$?

$$^{*}:\beta=\beta(\delta^{-1},\epsilon^{-1})$$

This paper

(α,β)	size	time	expected time
$(1+\epsilon,4)$	$n^{3/2}$	$n^{O(1/\sqrt{\log n})} + O(1/\epsilon)$	$O(\log n + 1/\epsilon)$
$(1+\epsilon, 8\log n)$	$n^{3/2}$	$O(\log n/\epsilon)$	

- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

Algorithm :

- compute X : an independent ρ -dominating set of G^2 .
- 2. $\forall v \in X$, add to *S* a BFS tree rooted at *v* up to distance $2\rho + \gamma$.

- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

Algorithm :

- compute X : an independent ρ -dominating set of G^2 .
- 2. $\forall v \in X$, add to *S* a BFS tree rooted at *v* up to distance $2\rho + \gamma$.

Size Analysis

$$O(n^{3/2}) + |X| \cdot n = O(n^{3/2})$$

- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

Algorithm :

- compute X : an independent ρ -dominating set of G^2 .
- 2. $\forall v \in X$, add to *S* a BFS tree rooted at *v* up to distance $2\rho + \gamma$.

Time Analysis

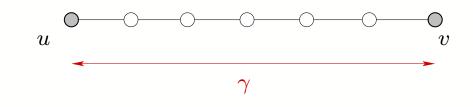
 $\mathrm{IDS}(n,\rho) + O(\rho + \gamma)$

- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

Algorithm :

- compute X : an independent ρ -dominating set of G^2 .
- 2. $\forall v \in X$, add to *S* a BFS tree rooted at *v* up to distance

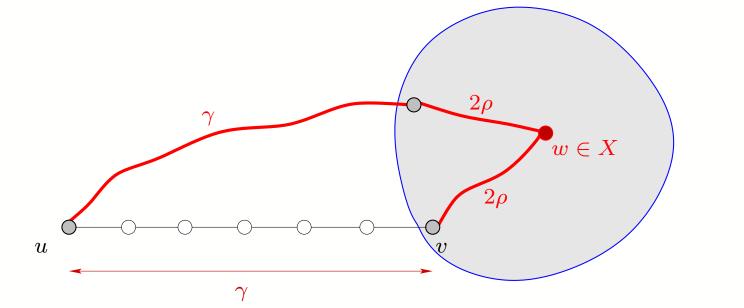
 $2\rho + \gamma$.



- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

Algorithm :

- compute X : an independent ρ -dominating set of G^2 .
- 2. $\forall v \in X$, add to *S* a BFS tree rooted at *v* up to distance $2\rho + \gamma$.



- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

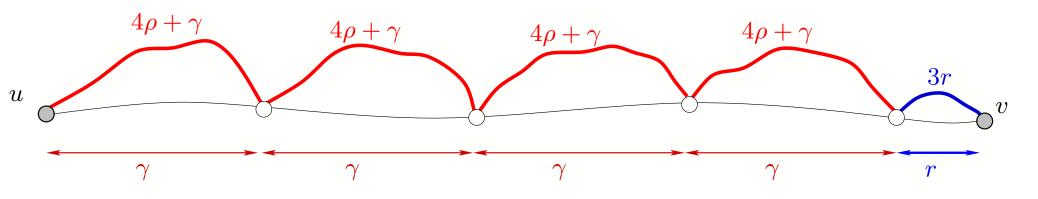
Algorithm :

- compute X : an independent ρ -dominating set of G^2 .
- 2. $\forall v \in X$, add to *S* a BFS tree rooted at *v* up to distance $2\rho + \gamma$.

- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

Algorithm :

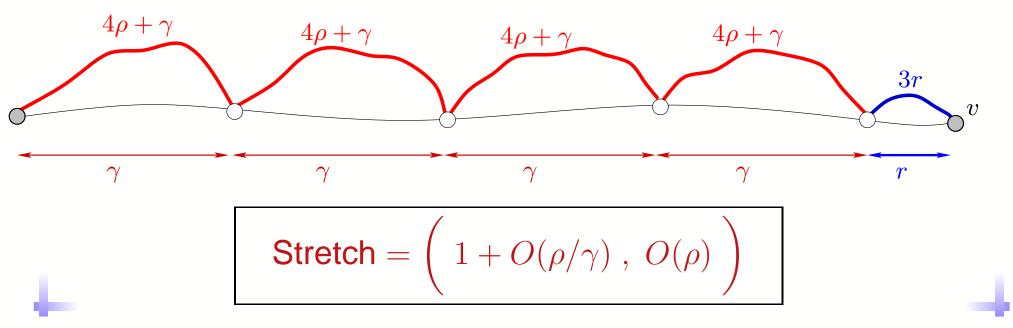
- compute X : an independent ρ -dominating set of G^2 .
- 2. $\forall v \in X$, add to *S* a BFS tree rooted at *v* up to distance $2\rho + \gamma$.



- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

Algorithm :

- compute X : an independent ρ -dominating set of G^2 .
- 2. $\forall v \in X$, add to *S* a BFS tree rooted at *v* up to distance $2\rho + \gamma$.



- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

 $IDS(n, \rho) + O(\rho + \gamma)$

Algorithm :

 $(1+O(\rho/\gamma)),$

• compute X : an independent ρ -dominating set of G^2 . 2. $\forall v \in X$, add to S a BFS tree rooted at v up to distance

Stretch Time

 $2\rho + \gamma$.

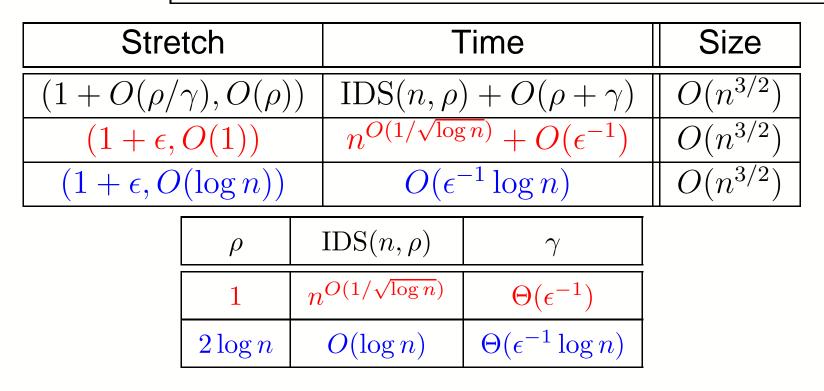
Size $O(n^{3/2})$

DISC'07 B.DERBEL

- 1. run our 3-spanner algorithm (parameter ρ) :
 - compute S : a 3-spanner with $O(n^{3/2})$ edges.

Algorithm :

compute X : an independent *ρ*-dominating set of G².
∀v ∈ X, add to S a BFS tree rooted at v up to distance 2ρ + γ.



Conclusion

The locality of constructing graph spanners

Some open questions :

- Can we improve the Stretch and/or the Time.
- Do there exist (1, f(k))-spanners with $O(n^{1+1/k})$ edges?

