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Problem and Goal
An (α,β)-spanner of G is a subgraph S such that for
every two nodes u and v :

dS(u, v) ≤ α · dG(u, v) + β.
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Problem and Goal
An (α,β)-spanner of G is a subgraph S such that for
every two nodes u and v :

dS(u, v) ≤ α · dG(u, v) + β.

Quality of a spanner
Size and stretch
[Extremal graph theory] Every graph G has a
(2k − 1, 0)-spanner with O(n1+1/k) edges.

this stretch-size trade-off is believed to be tight
(proved for k = 1, 2, 3, 5).
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Problem and Goal
An (α,β)-spanner of G is a subgraph S such that for
every two nodes u and v :

dS(u, v) ≤ α · dG(u, v) + β.

Quality of a spanner
Size and stretch
[Extremal graph theory] Every graph G has a
(2k − 1, 0)-spanner with O(n1+1/k) edges.

this stretch-size trade-off is believed to be tight
(proved for k = 1, 2, 3, 5).

We want to efficiently compute a high quality
spanner in a distributed way .
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Motivation
What kind of spanner can we construct assuming only
some local knowledge ?
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Motivation
What kind of spanner can we construct assuming only
some local knowledge ?
LOCAL model (Linial’s model) : unlimited message size.
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Motivation
What kind of spanner can we construct assuming only
some local knowledge ?
LOCAL model (Linial’s model) : unlimited message size.

(α, β) size time

[ABCP’96] (4k − 3, 0) O(kn1+1/k) nǫ+1/k

[DG’06] O(klog 5) O(log k · n1+1/k) nǫ
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Motivation
What kind of spanner can we construct assuming only
some local knowledge ?
LOCAL model (Linial’s model) : unlimited message size.

(α, β) size time expected time

[ABCP’96] (4k − 3, 0) O(kn1+1/k) nǫ+1/k n1/k · log2 n

[DG’06] O(klog 5) O(log k · n1+1/k) nǫ log n
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Motivation
What kind of spanner can we construct assuming only
some local knowledge ?
LOCAL model (Linial’s model) : unlimited message size.

(α, β) size time expected time

[ABCP’96] (4k − 3, 0) O(kn1+1/k) nǫ+1/k n1/k · log2 n

[DG’06] O(klog 5) O(log k · n1+1/k) nǫ log n

(α, β) expected size time

[BS’03] (2k − 1, 0) O(k · n1+1/k) O(k2)

[DMPRS’03] (O(log n), 0) O(log n) O(log3 n)
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Motivation
What kind of spanner can we construct assuming only
some local knowledge ?
LOCAL model (Linial’s model) : unlimited message size.

(α, β) size time expected time

[ABCP’96] (4k − 3, 0) O(kn1+1/k) nǫ+1/k n1/k · log2 n

[DG’06] O(klog 5) O(log k · n1+1/k) nǫ log n

(α, β) expected size time

[BS’03] (2k − 1, 0) O(k · n1+1/k) O(k2)

[DMPRS’03] (O(log n), 0) O(log n) O(log3 n)

Is it possible to construct linear stretch spanners
deterministically in polylogarithmic time ?
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Main Ideas

We add edges in parallel at different regions of the
graph
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Main Ideas

We add edges in parallel at different regions of the
graph

We use an independent ρ-dominating set to break the
symmetry efficiently

∀u ∈ V , ∃v ∈ IDS(G, ρ) such that dG(u, v) ≤ ρ.

∀u, v ∈ IDS(G, ρ), dG(u, v) ≥ 2.
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Main Ideas

We add edges in parallel at different regions of the
graph

We use an independent ρ-dominating set to break the
symmetry efficiently

We use the best sequential algorithm to span the inter-
ior of a region

We use a new sequential algorithm for bipartite graphs
to span the border of a region
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Sequential algorithms : k = 2

Lemma 1 [Folklore] :
Every graph G = (V,E) has a 3-spanner with

O(|V |3/2) edges.

Lemma 2 :
Every bipartite graph B = (W∪V,E) has a 3-spanner

with O(|V | + |W |
√

|V |) edges.
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W

DISC’07 B.DERBEL ▽Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time – p.5/12



3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1

N (w1)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1 w2

N (w1)

DISC’07 B.DERBEL ▽Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time – p.5/12



3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1 w2

N (w2)N (w1)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1

N (w1)

w2

N (w2)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1 w2

N (w2)N (w1)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1 w2

N (w2)N (w1)

wi

N (wi)

DISC’07 B.DERBEL ▽Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time – p.5/12



3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1 w2

N (w2)N (w1)

wi

N (wi)

wi+1

N (wi+1)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1 w2

N (w2)N (w1)

wi

N (wi)

wi+1

N (wi+1)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1 w2

N (w2)N (w1)

wi

N (wi)

wi+1

N (wi+1)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

V

W
w1 w2

N (w2)N (w1)

wi

N (wi)

wi+1

N (wi+1)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

V

W

v

w
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

V

W

v

w

N (?)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

V

W

v

w

N (w)
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

V

W

v

w

N (w′)

w′
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

V

W

v

w

N (w′)

w′

v′
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

V

W

v

w

N (w′)

w′

v′
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

Stretch ≤ 3

∀v, w ∈ V ∪ W, dS(v, w) ≤







2 · dB(v, w) + 1 if dB(v, w) is odd

2 · dB(v, w) + 2 otherwise.
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

Stretch ≤ 3

Size Analysis

at most |V | edges added by the stars
Each node in w ∈ W is connected to the previous stars by at most
2
√

|V | edges (proof by contradiction).
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3-spanner for Bipartite Graphs
Lemma 2 : Every bipartite graph B = (W ∪ V, E) has a 3-spanner
with O(|V | + |W |

√

|V |) edges.

Algorithm : Repeat
1. chose the highest degree node w in W

2. add the star N (w) to the spanner
3. connect w to other stars

Stretch Analysis

Stretch ≤ 3

Size Analysis

at most |V | edges added by the stars
Each node in w ∈ W is connected to the previous stars by at most
2
√

|V | edges (proof by contradiction).

Size = O(|V | + |W | ·
√

|V |)
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The algorithm : k = 2

If the degree of a node v is at most
√

n, then add the
star N (v) to the spanner and delete v from G.

G
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The algorithm : k = 2

If the degree of a node v is at most
√

n, then add the
star N (v) to the spanner and delete v from G.

G
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The algorithm : k = 2

If the degree of a node v is at most
√

n, then add the
star N (v) to the spanner and delete v from G.
Find an independent ρ-dominating set X of G2.

G
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The algorithm : k = 2

If the degree of a node v is at most
√

n, then add the
star N (v) to the spanner and delete v from G.
Find an independent ρ-dominating set X of G2.
Form a region R(v) around each node v of X.

There are at most
√

n disjoint regions
The radius of each region is at most O(ρ)

G

n1/2

2ρ
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The algorithm : k = 2

If the degree of a node v is at most
√

n, then add the
star N (v) to the spanner and delete v from G.
Find an independent ρ-dominating set X of G2.
Form a region R(v) around each node v of X.

There are at most
√

n disjoint regions
The radius of each region is at most O(ρ)

G

n1/2

2ρ
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The algorithm : k = 2

If the degree of a node v is at most
√

n, then add the
star N (v) to the spanner and delete v from G.
Find an independent ρ-dominating set X of G2.
Form a region R(v) around each node v of X.

There are at most
√

n disjoint regions
The radius of each region is at most O(ρ)

R(v)

v

2ρ

Bipartite
components
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The algorithm : k = 2

If the degree of a node v is at most
√

n, then add the
star N (v) to the spanner and delete v from G.
Find an independent ρ-dominating set X of G2.
Form a region R(v) around each node v of X.
Span the interior of a region R(v) using Lemma 1.
Span the border of a region R(v) using Lemma 2.

R(v)

v

2ρ

Bipartite
components
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Analysis : k = 2

Size analysis :
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Analysis : k = 2

Size analysis :

Spanning the sparse stars :
number of edges ≤ n · √n
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Analysis : k = 2

Size analysis :

Spanning the sparse stars :
number of edges ≤ n · √n

Spanning the interior of the regions (Lemma 1) :
number of edges added per region ≤ nv ·

√
nv ≤ nv ·

√
n

=⇒ Sum over the (disjoint) regions ≤ n · √n
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Analysis : k = 2

Size analysis :

Spanning the sparse stars :
number of edges ≤ n · √n

Spanning the interior of the regions (Lemma 1) :
number of edges added per region ≤ nv ·

√
nv ≤ nv ·

√
n

=⇒ Sum over the (disjoint) regions ≤ n · √n
Spanning the border of the regions (Lemma 2) :

number of edges added per region ≤ n + nv ·
√

n
=⇒ Sum over the (disjoint)

√
n regions ≤ √

n · n + n · √n
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Analysis : k = 2

Size analysis :

Spanning the sparse stars :
number of edges ≤ n · √n

Spanning the interior of the regions (Lemma 1) :
number of edges added per region ≤ nv ·

√
nv ≤ nv ·

√
n

=⇒ Sum over the (disjoint) regions ≤ n · √n
Spanning the border of the regions (Lemma 2) :

number of edges added per region ≤ n + nv ·
√

n
=⇒ Sum over the (disjoint)

√
n regions ≤ √

n · n + n · √n

at most O(n3/2) edges

DISC’07 B.DERBEL ▽Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time – p.7/12



Analysis : k = 2

Stretch analysis :
Every edge (u, v) is either :

incident to a sparse star
inside a region (Lemma 1)
in the border of a region (Lemma 2)

stretch ≤ 3
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Analysis : k = 2

Stretch analysis :
Every edge (u, v) is either :

incident to a sparse star
inside a region (Lemma 1)
in the border of a region (Lemma 2)

stretch ≤ 3

Time analysis :

Independent ρ dominating set =⇒ IDS(n, ρ) time
spanning the interior and the border of regions =⇒ O(ρ) time.

Time = O(IDS(n, ρ) + ρ)
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Analysis : k = 2

Stretch analysis :
Every edge (u, v) is either :

incident to a sparse star
inside a region (Lemma 1)
in the border of a region (Lemma 2)

stretch ≤ 3

Time analysis :

Independent ρ dominating set =⇒ IDS(n, ρ) time
spanning the interior and the border of regions =⇒ O(ρ) time.

Time = O(IDS(n, ρ) + ρ)

ρ = O(log n) −→ There exists a deterministic distributed algorithm compu-
ting an independent (log n)-dominating set in O(log n) time.
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Results

Theorem 1 : There exists a distributed algorithm that gi-
ven an n-node graph constructs a 3-spanner with O(n3/2)
edges in O(log n) deterministic time.
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Results

Theorem 1 : There exists a distributed algorithm that gi-
ven an n-node graph constructs a 3-spanner with O(n3/2)
edges in O(log n) deterministic time.

Lemma 3 : Every bipartite graph B = (W ∪ V,E) has a
(4k − 5)-spanner with O(|V + W | + |W |

√

|V + W |) edges.

Theorem 2 : There exists a distributed algorithm that given
an n-node graph constructs a (4k − 5)-spanner with O(k ·
n1+1/k) edges in 2O(k) logk−1 n deterministic time.
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Almost pure additive spanners
Existing results

(α, β) size time expected time

[EP’04] (1, 2) n3/2 ? ?

[BKMP’05] (1, 6) n4/3 ? ?

[EP’04,EZ’04]∗ (1 + ǫ, β) n1+δ O(n1+δ) ?

∗ : β = β(δ−1, ǫ−1)
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Almost pure additive spanners
Existing results

(α, β) size time expected time

[EP’04] (1, 2) n3/2 ? ?

[BKMP’05] (1, 6) n4/3 ? ?

[EP’04,EZ’04]∗ (1 + ǫ, β) n1+δ O(n1+δ) ?

∗ : β = β(δ−1, ǫ−1)

This paper

(α, β) size time expected time

(1 + ǫ, 4) n3/2 nO(1/
√

log n) + O(1/ǫ) O(log n + 1/ǫ)

(1 + ǫ, 8 log n) n3/2 O(log n/ǫ) −−
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Size Analysis
O(n3/2) + |X| · n = O(n3/2)
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Time Analysis
IDS(n, ρ) + O(ρ + γ)
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Stretch Analysis

u v

γ

DISC’07 B.DERBEL ▽Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time – p.10/12



Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Stretch Analysis

u v

γ

w ∈ X

γ

2ρ

2ρ
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Stretch Analysis

u
v
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Stretch Analysis

γγγ r

4ρ + γ4ρ + γ
4ρ + γ

u
3r

v

4ρ + γ

γ
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Stretch Analysis

γγγ r

4ρ + γ4ρ + γ
4ρ + γ

u
3r

v

4ρ + γ

γ

Stretch =

(

1 + O(ρ/γ) , O(ρ)

)
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Stretch Time Size

(1 + O(ρ/γ), O(ρ)) IDS(n, ρ) + O(ρ + γ) O(n3/2)
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Almost pure additive spanners

Algorithm :

1. run our 3-spanner algorithm (parameter ρ) :
compute S : a 3-spanner with O(n3/2) edges.
compute X : an independent ρ-dominating set of G2.

2. ∀v ∈ X , add to S a BFS tree rooted at v up to distance
2ρ + γ.

Stretch Time Size

(1 + O(ρ/γ), O(ρ)) IDS(n, ρ) + O(ρ + γ) O(n3/2)

(1 + ǫ, O(1)) nO(1/
√

log n) + O(ǫ−1) O(n3/2)

(1 + ǫ, O(log n)) O(ǫ−1 log n) O(n3/2)

ρ IDS(n, ρ) γ

1 nO(1/
√

log n) Θ(ǫ−1)

2 log n O(log n) Θ(ǫ−1 log n)

DISC’07 B.DERBEL Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time – p.10/12



Conclusion

The locality of constructing graph spanners

Some open questions :

Can we improve the Stretch and/or the Time.

Do there exist (1, f(k))-spanners with O(n1+1/k) edges ?
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THANK YOU
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