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Université de Provence Aix-Marseille 1, France

derbel@cmi.univ-mrs.fr
2 Laboratoire Bordelais de Recherche en Informatique (LaBRI),
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Abstract. The paper presents a deterministic distributed algorithm
that given an n node unweighted graph constructs an O(n3/2) edge 3-
spanner for it in O(log n) time. This algorithm is then extended into a de-
terministic algorithm for computing an O(k n1+1/k) edge O(k)-spanner
in 2O(k) logk−1 n time for every integer parameter k � 1. This estab-
lishes that the problem of the deterministic construction of a linear (in
k) stretch spanner with few edges can be solved in the distributed setting
in polylogarithmic time.

The paper also investigates the distributed construction of sparse
spanners with almost pure additive stretch (1 + ε, β), i.e., such that the
distance in the spanner is at most 1 + ε times the original distance plus
β. It is shown, for every ε > 0, that in O(ε−1 log n) time one can de-
terministically construct a spanner with O(n3/2) edges that is both a
3-spanner and a (1+ ε, 8 log n)-spanner. Furthermore, it is shown that in

nO(1/
√

log n) +O(1/ε) time one can deterministically construct a spanner
with O(n3/2) edges which is both a 3-spanner and a (1 + ε, 4)-spanner.
This algorithm can be transformed into a Las Vegas randomized algo-
rithm with guarantees on the stretch and time, running in O(ε−1 +log n)
expected time.

Keywords: distributed algorithms, graph spanners, time complexity.

1 Introduction

Background: The purpose of this paper is to study the locality properties of
graph spanners, and particularly, of efficient deterministic distributed construc-
tion methods for spanners. Graph spanners are a fundamental graph structure
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which can be thought of intuitively as a generalization of the concept of spanning
trees. We say that H is an (α, β)-spanner of a graph G if H is a spanning sub-
graph of G and dH(u, v) � α ·dG(u, v)+β for all nodes u, v of G, where dX(u, v)
denotes the distance from u to v in the graph X . A pair (α, β) for which H is
an (α, β)-spanner is called stretch of H , and the size of H is the number of its
edges. An (α, 0)-spanner is also referred to as an α-spanner. The quality of a
spanner is measured by the trade-off between its stretch and size.

The locality level of constructing a graph spanner can be measured by the
time needed to construct such a spanner. In the distributed setting, the best a
node can do in t time units is to collect information from its t neighborhood.
Hence the time complexity of a distributed algorithm for a given problem can be
related to the amount of information needed to solve the problem. Many funda-
mental problems such as maximal independent set (MIS), coloring, and sparse
covers and decompositions, have been studied from the locality point of view in
the past. In general, such problems appear to have time efficient distributed al-
gorithms in the randomized setting or for some restricted families of graphs. By
“efficient” we mean algorithms breaking the polylogarithmic time barrier. How-
ever, no deterministic distributed algorithms having a polylogarithmic running
time for every graph are known for any of these problems. The main difficulty
in solving such problems is to break the symmetry in a distributed and efficient
way when making decisions. While randomization helps to achieve the goal of
symmetry breaking, trying to do it by a deterministic method leads to nontrivial
combinatorial and algorithmic problems, essentially due to the local nature of
distributed computations. Deterministic construction of graph spanners is also a
typical problem where breaking the symmetry appears as the major problem for
finding fast algorithms. In this paper we overcome this difficulty, showing that
near-optimal high quality graph spanners can be constructed in polylogarithmic
time. Our algorithm is based on breaking the symmetry using independent dom-
inating sets and on a new sequential construction of spanners exploiting some
particular stretch-size properties for bipartite graphs.

Constructing spanners efficiently is also of interest from a practical point
of view, since such structures are often used in many applications. In fact,
graph spanners are in the basis of various applications in distributed systems
(cf. [23]). For instance, the relationship between the quality of spanners and the
time and message complexity of network synchronizers is established in [24] (see
also [1,21]). Spanners are also implicitly used for the design of low stretch rout-
ing schemes with compact tables [11,16,25,27,29], and appear in many parallel
and distributed algorithms for computing approximate shortest paths and for
the design of compact data-structures, a.k.a. distance oracles [8,20,28,30,10].

Related Work: We consider unweighted connected graphs with n nodes. Sparse
and low stretch spanners can be constructed from the sparse partitions and
covers of [6] or the (d, c)-decompositions of [5], which give a partition of the
graph into clusters of diameter at most d such that the graph obtained by
contracting each cluster can be properly c-colored. There are several determin-
istic algorithms for constructing (d, c)-decompositions [2,3,4,22]. The resulting
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distributed algorithms provide O(k)-spanners of size O(n1+1/k), for any inte-
gral parameter k � 1. However, these algorithms run in Ω(n1/k+ε) time, where
ε = Ω(1/

√
log n ), and provide a stretch at least 4k−3. Better stretch-size trade-

offs exist but with an increasing time complexity. More recently, a deterministic
distributed algorithm has been proposed for constructing a (2k − 1)-spanner of
size O(n1+1/k) in O(n1−1/k) time [13]. The latter stretch-size trade-off is opti-
mal since, according to an Erdös Conjecture verified for k = 1, 2, 3, 5 [32], there
are graphs with Ω(n1+1/k) edges and girth 2k + 2 (the length of the smallest
induced cycle), thus for which every (α, β)-spanner requires Ω(n1+1/k) edges if
α + β < 2k + 1.

More time efficient algorithms were given in [12] at the price of slightly increas-
ing the stretch. The algorithm runs in nO(1/

√
log n) times and provides (αk, βk)-

spanners with O(log k · n1+1/k) edges where αk and βk depend on the positions
of the two leading 1’s in the binary representation of k and are essentially in
order of klog2 5. In particular, for k = 2, the stretch is (3, 2).

Randomized distributed algorithms achieving better performances exist. There
is a straightforward (Las Vegas1) randomized implementation of the algorithms
of [12] that provides O(klog2 5)-spanners of O(log k · n1+1/k) edges in O(log n) ex-
pected time. An algorithm for sparsifying a graphwas used in [15] at the bottleneck
of constructing small connected dominating sets. This (Monte-Carlo2) algorithm
constructs, with high probability, a O(log n)-spanner with O(n) edges in O(log3 n)
time. A (Monte Carlo) algorithm that computes a (2k − 1)-spanner with expected
size O(k n1+1/k) in O(k2) time was given in [9].

However, as mentioned in [3], a randomized solution (in particular those com-
ing from Monte Carlo algorithms) might not be acceptable in some cases, es-
pecially for distributed computing applications. In the case of graph spanners,
deterministic algorithms that guarantee a high quality spanner are of more than
a theoretical interest. Indeed, one cannot just run a randomized distributed al-
gorithm several times to guarantee a good decomposition, since checking the
global quality of the spanner in the distributed model is time consuming.

Sequential and distributed algorithms for constructing (1 + ε, β)-spanners
were developed in [17,19,18]. The resulting spanner size is O(βn1+δ) and the
construction time is O(nδ), where β = β(δ, ε) is independent of n but grows
super-polynomially in δ−1 and ε−1. Recently, a sequential algorithm based on
a randomized sampling technique was given in [31], providing a spanner with
O(k n1+1/k) edges such that the distance d between any two nodes in the orig-
inal graph is bounded by d + o(d) in the spanner. Pure additive spanners, i.e.,
spanners whose stretch is on the form (1, β), are known only for k = 2 and
k = 3. Sequential algorithms that construct a (1, 2)-spanner with O(n3/2) edges
and a (1, 6)-spanner with O(n4/3) edges were given respectively in [18] and in [7].
See [26] for further discussions.

Main results: In this paper, we construct in O(log n) time and for every graph
a 3-spanner with O(n3/2) edges. This result is generalized to construct in 2O(k)

1 The bounds on the stretch and the size are always guaranteed.
2 There are no deterministic guarantees for the size and the stretch.



182 B. Derbel, C. Gavoille, and D. Peleg

logk−1 n time and for every graph a (4k−3)-spanner with O(k n1+1/k) edges for
every k � 1. Our construction improves all previous deterministic constructions
of low stretch spanners with few edges.

Our algorithms are based on two main ideas. The first idea enables us to
achieve the polylogarithmic time complexity. It is based on clustering the graph
using any known time-efficient algorithm for constructing an independent ρ-
dominating set, namely, a set X of pairwise non-adjacent nodes such that every
node of the graph is at distance at most ρ from X . The second idea enables us
achieve the linear stretch bound with the desired size. It is based on spanning
independently in parallel (i) the intra-cluster edges using any known sequential
algorithm, and (ii) the inter-cluster edges in the border of each cluster using a
new size-constrained spanner for bipartite graphs. Known algorithms for con-
structing independent ρ-dominating sets are more time consuming when ρ is
small (typically when ρ is a constant). The key point of our fast construction is
to use our spanner algorithm for bipartite graphs in order to keep the stretch
low and to choose ρ to be any parameter possibly depending on n. In particu-
lar, we show that the parameter ρ does not affect the stretch but only the time
construction. The construction time of low stretch spanner is then dominated
by the construction of an independent ρ-dominating set. Since the fastest known
deterministic algorithm for constructing an independent ρ-dominating set is ob-
tained for ρ = O(log n) and has running time O(log n), we are able to construct
the desired low stretch spanner in polylogarithmic time.

A generic scheme called Generic Spanner that utilizes these ideas is first
described and analyzed in Section 2. Our generic scheme assumes the existence
of a sequential algorithm Z Spannerk for bipartite graphs that constructs a
spanner with some desired constraints on the size and the stretch. For the case
k = 2, such an algorithm is described and analyzed in detail in Section 3, yielding
our first main result: the deterministic construction of an optimal 3-spanner with
O(n3/2) edges in O(log n) time (Theorem 1). This result is generalized for any k
in Section 4, giving Algorithm Z Spannerk which yields our second main result:
the deterministic construction of a (4k − 3)-spanner with O(k n1+1/k) edges in
2O(k) logk−1 n time (Theorem 2).

We also investigate the construction of almost pure additive spanners for
k = 2. In Section 5, we construct an almost pure additive (1 + ε, β)-spanner
with O(n3/2) edges for any ε > 0. This is obtained by simply adding breadth-
first searching (BFS) trees up to some fixed parameter around the dense clusters
constructed by Generic Spanner for k = 2. This allows us to reduce the stretch
while preserving the size bound and increasing the time complexity by only a
small factor. Several bounds on the stretch and the time complexity are then
obtained by using either an independent O(log n)-dominating set algorithm or
a MIS algorithm. More precisely, we refine our 3-spanner construction to obtain
two fast distributed algorithms. The first one runs in O(ε−1 log n) time and
provides additive stretch β = 8 logn. The second algorithm runs in nO(1/

√
log n)+

O(ε−1) time and provides additive stretch β = 4. The latter algorithm can also
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be implemented in O(ε−1 + log n) expected time (using O(log n) expected time
algorithm for MIS) with deterministic stretch and size.

Model and definitions: We assume the classical LOCAL distributed model of
computation (cf. [23], Chapter 2). More precisely, the network is modeled by a
connected graph G, whose nodes represent the autonomous computation enti-
ties of the network and whose edges represent direct communication links. For
simplicity, we assume that communication is synchronous, i.e., there exists a
common global clock that generates pulses. At each pulse, nodes can send and
receive messages of unlimited size. We assume that a message which is sent at
a given pulse arrives before the beginning of the next pulse. The local com-
putations done by a node are assumed to take negligible time. Define the time
complexity of a distributed algorithm to be the worst-case number of pulses from
the beginning of the algorithm execution to its termination.

Given an integer t � 1, the t-th power of G, denoted by Gt, is the graph
obtained from G by adding an edge between any two nodes at distance at most
t in G. For a set of nodes H , G[H ] denotes the subgraph of G induced by H .
For X, Y ⊆ V , let dG(X, Y ) = min {dG(x, y) : x ∈ X and y ∈ Y }.

We associate with each v ∈ V a region, denoted by R(v), which is a set
of nodes containing v and inducing a connected subgraph of G. We denote by
R+(v) = {u ∈ V : dG(u, R(v)) � 1}. Given a set U ⊆ V , we denote by ΓG(U)
the neighborhood of the set U , i.e., ΓG(U) = {u ∈ V : dG(u, U) = 1}. Note that
ΓG(R(v)) = R+(v) \ R(v).

Given a region R(v), the surrounding graph of R(v) is the graph Bv induced
by the edges {x, y} ∈ E(G) such that x ∈ R(v) and y ∈ ΓG(R(v)). Informally
speaking, Bv is the collection of the outgoing edges of R(v), namely, the edges
having one of their end-points in R(v) and the other one outside R(v). One can
easily see that Bv is a collection of connected bipartite subgraphs of G lying at
the frontier of R(v).

The eccentricity of a node v in G is defined as maxu∈V dG(u, v). For a node
v ∈ X , we denote by BFS(v, X) a breadth-first search tree rooted at v and
spanning X . We denote by IDS(G, ρ) (respectively, MIS(G)) any independent ρ-
dominating set (resp., maximal independent set) of G. One can check that a set
is an MIS(G) if and only if it is an IDS(G, 1). We denote by IDS(n, ρ) the time
complexity needed to construct an independent ρ-dominating set on a graph of
n nodes. We note that MIS(n) = IDS(n, 1).

Due to lack of space, the proofs of our lemmas and theorems are omitted and
will appear in the full version of the paper.

2 A General Scheme

In this section we give a high level description of Algorithm Generic Spanner
(see Fig 1). It uses two sub-routines:

• Seq Spannerk: can be any algorithm that given an n-node graph and a
parameter k > 0 constructs a s(k)-spanner with O(k n1+1/k) edges.
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• Z Spannerk: can be any algorithm that given a bipartite graph B = (W ∪
V, E) and a parameter k > 0 constructs a z(k)-spanner with O(|V ∪ W | +
|W | · |V ∪ W |1/k) edges.

These two algorithms are executed by only some nodes locally and in a non-
interfering manner. Thus, we can use any two possibly sequential algorithm
without affecting the distributed time complexity of the overall algorithm.

Many algorithms are known for the first of the latter tasks, namely, providing
spanners with O(k n1+1/k) edges and stretch s(k) = 2k − 1 for any graph. In
contrast, no trivial constructions are known for the second task, of providing
spanners with both a low stretch z(k) and the constrained size O(|V ∪ W | +
|W | · |V ∪ W |1/k) for bipartite graphs. Solving this latter task will be the aim
of sections 3 and 4. In the rest of this section, we simply assume the existence
of such a construction and focus on the properties of the general scheme defined
by Generic Spanner.

2.1 Description of the Generic Scheme

Algorithm Generic Spanner (Fig. 1) is based on clustering the dense regions of
the graph and spanning the edges of these regions efficiently. The algorithm works
in at most k iterations, each of six steps. Step 1 computes the set L of light nodes,
that is, the nodes whose corresponding regions have a sparse neighborhood.
Step 2 considers (in parallel) each light region R(v) and its surrounding graph
Bv. Fig. 2 gives an idea of how a region R(v) and the graph Bv may look like.Each
connected component of Bv is a bipartite subgraph having one set of nodes on
the border of R(v) and the other set outside R(v). The intra-region edges are

Input: a graph G = (V, E) with n = |V |, and integers ρ, k � 1.
Output: a spanner S of G with stretch max {z(k), s(k)} and size O(k n1+1/k).

Set U := V ; r = 0; S := ∅; ∀v ∈ V , R(v) := {v} and c(v) := v;
For i := 1 to k do:

Span light regions
1. L := {v ∈ U : |R+(v)| � ni/k};
2. For all v ∈ L do (in parallel):

(a) Let Bv be the surrounding graph R(v);
(b) S := S ∪ Seq Spannerk(G[R(v)]) ∪ Z Spannerk(Bv);

Form new dense regions
3. X := IDS(G2(r+1)[U \ L], ρ);
4. ∀z ∈ U , if dG(z, X) � (2ρ+1)r+2ρ, then set c(z) to be the closest

node of X, breaking ties with identities;
5. ∀v ∈ X, R(v) := {z ∈ V : c(z) = v};
6. U := X and r := (2ρ + 1)r + 2ρ;

Fig. 1. Algorithm Generic Spanner
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using Algorithm Seq Spannerk whereas the inter-region edges (those, of the
surrounding graph Bv) are spanned using Algorithm Z Spannerk. This step
can be performed efficiently by collecting a copy of R+(v) in v that computes
the result and then broadcasts this information.

Algorithm Z Spannerk spans inter-region edges using paths zigzagging from
the border to the outside of a region, thus avoiding to use long paths going from
the border to the center v. The intra-region edges are spanned using any dis-
tributed or sequential algorithm in order to guarantee the best possible stretch-
size trade-offs inside a region. The radius of constructed regions (which depends
only on parameter ρ) will affect only the time complexity but not the stretch of
the obtained spanner. This observation will enable us to use a fast IDS algorithm
without constraining ρ to be too small (typically, by taking ρ order of log n).

B3

v

B1

B2

B4

B5

R+(v)

R(v)Seq Spanner(R(v))

Z Spanner(B5)

Fig. 2. A region R(v) and its surrounding graph Bv =
⋃

j∈[1,5]

Bj .

After Step 2, only the neighborhood of sparse regions are spanned. In the
other steps, the remaining dense regions are processed the in order to merge
them together. The goal here is to grow the dense regions until they become
sparse. Thus, we would be able to span them without adding too many edges.

In fact, in Steps 3, 4, and 5, we construct new dense regions centered around
some well chosen dense nodes. First, we construct an independent ρ-dominating
set X of the graph G2(r+1)[U \ L] where r is an upper bound of the radius of
any region and U is the set of remaining dense nodes. Then, using a classical
consistent coloring mechanism (cf. [23], Chapter 22, Lemma 22.1.2), all dense
regions are merged into new regions having the nodes of the IDS as their centers
(note that a light region might get merged with a dense one). The merging
process guarantees that the new regions are disjoint and connected, and their
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radius grows up by at most a multiplicative factor O(ρ). In addition, one should
remark that by considering the 2(r + 1) power of G, it is guaranteed that the
neighborhood of the regions induced by the set X are disjoint. Thus, each new
formed region contains at least its neighborhood. This observation is essential
to obtain the desired size for our spanner.

In Step 6, the set of dense regions is updated for the next iteration. On
iteration k the sparsity condition of Step 1 is always true, hence all the regions
are light, which guarantees that all nodes are spanned.

2.2 Analysis of the Algorithm

For every phase i, denote by Li (resp. Xi) the set L (resp. X) computed during
phase i, i.e., after Steps 1 and 3 of phase i. Similarly, denote by ci(z) the color
of z assigned during phase i, i.e., after Step 4 of phase i. Denote by Ui the set U
at the beginning of phase i, and let ri denote the value of r at the beginning of
phase i. Observe that Ui = Xi−1 for every i > 1. For a node v ∈ Ui, denote by
Ri(v) the region of v at the beginning of phase i. The following lemma is easily
proved by induction relying on the description of the algorithm.

Lemma 1. For every phase i > 0, and for every v ∈ Ui, |Ri(v)| � n(i−1)/k, and
if v ∈ Xi, then R+

i (v) ⊆ Ri+1(v).

Inspired by the proofs of lemmas 1 to 4 in [12], one can prove the following:

Lemma 2. in Algorithm Generic Spanner, the following holds:

– For every phase i and for every v ∈ Ui, ri is the eccentricity of v in G[Ri(v)].
– For every phase i and for all nodes u �= v ∈ Ui, Ri(u) ∩ Ri(v) = ∅.
– For every node u ∈ V , there exists a phase i and a node v such that u ∈ Ri(v)

and v ∈ Li ∩ Ui.

The following two main lemmas are used in our construction.

Lemma 3. The output S of Algorithm Generic Spanner is a max {z(k), s(k)}-
spanner of G with at most O(k n1+1/k) edges.

Lemma 4. Algorithm Generic Spanner can be implemented in the distributed
LOCAL model in O((2ρ + 1)k−2 · IDS(n, ρ) + (2ρ + 1)k−1) time.

3 3-Spanner Construction

In order to apply Lemma 3, it is necessary to provide an algorithm that given
a surrounding graph Bv of some region R(v) constructs a spanner with the
desired constraints on the stretch and the size. Since any surrounding graph Bv

is a collection of connected bipartite components, it is clear that the desired
stretch and size spanner can be obtained by providing an algorithm with these
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properties for bipartite graphs and then applying that algorithm in parallel for
each connected component.

In this section we describe in detail a Z Spanner algorithm providing the
desired properties for a bipartite graph. More precisely, we prove the following
more powerful result.

Lemma 5. Every connected bipartite graph B = (W ∪ V, E) has a spanner S
with at most O(|V |+ |W | ·√|V |) edges satisfying the following stretch properties:

∀v, w ∈ V ∪ W, dS(v, w) �
{

2 · dB(v, w) + 1 if dB(v, w) is odd
2 · dB(v, w) + 2 otherwise.

Let us remark that for k = 2 in Generic Spanner, Lemma 5 leads to the con-
struction of a 3-spanner. In [23], it is shown how to construct a (2 log n, 3)-ruling
set in O(log n) deterministic time. A (ρ, s)-ruling set with s > 1 is in particu-
lar an independent ρ-dominating set. Thus, one can construct an independent
2 logn-dominating set deterministically in O(log n) time. Hence, for k = 2 and
ρ = 2 log n in Generic Spanner, we obtain:

Theorem 1. There exists a distributed algorithm that given an n-node graph
constructs a 3-spanner with O(n3/2) edges in O(log n) deterministic time.

In the rest of this section, we give a Z Spanner2 algorithm providing the prop-
erties claimed in Lemma 5.

3.1 Description of Z Spanner2

Algorithm Z Spanner2 with input a bipartite graph B is based on a sequential
greedy technique (see Fig. 3):

Input: a connected bipartite graph B = (W ∪ V, E).
Output: a 3-spanner S of B with O(|V | + |W | · √|V |) edges.

Set V1 := V ; W1 := W ; B1 := B; S := ∅; i := 1;
While Wi �= ∅ do:

1. Let wi ∈ Wi with the highest degree in Bi, breaking ties arbitrary.
2. Ni := ΓBi({wi}).
3. S := S ∪ Bi[Ni].
4. For every j < i such that wi ∈ ΓB(Nj) do:

(a) Let ej,wi be an edge in E connecting Nj to wi.
(b) S := S ∪ {ej,wi}.

5. Construct the new graph Bi+1:
(a) Vi+1 := Vi \ Ni and Wi+1 := Wi \ {wi}.
(b) Bi+1 := Bi[Vi+1 ∪ Wi+1].

6. i := i + 1;

Fig. 3. Algorithm Z Spanner2
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In each iteration i ∈ {1, . . . , |W |}, a new graph Bi = (Wi∪Vi, Ei) is considered
on the basis of the graph Bi−1 corresponding to the previous iteration (B1 := B).
Some edges of B are added to the spanner S as follows: Select a node wi ∈ Wi

with the highest degree in Bi, and add to S its neighborhood Ni in Bi (with
its incident edges). Then, if wi is connected in the original graph B to Nj with
j < i, a set computed at some previous step, an edge ei,wj connecting wi to Nj

is added to S. (See Fig. 4).

N1 N2 Ni−1 Ni

w2w1 wi−1

e2,wi

wi

Vi

Wi+1

Wi

Vi+1

Fig. 4. The i-th iteration Algorithm Z Spanner2

3.2 Analysis of Z Spanner2

Lemma 6. Let u, v, w be three nodes of a bipartite graph B = (W ∪ V, E) such
that u ∈ V , {u, v} ∈ E and {u, w} ∈ E. The output spanner S of Algorithm
Z Spanner2(B) satisfies dS(u, v) � 3 and dS(v, w) � 4.

Lemma 7. For any bipartite graph B = (W ∪ V, E), the output spanner of
Z Spanner2(B) has O(|V | + |W | · √|V |) edges.

Using the previous lemmas, we are able to prove the stretch and size bounds as
stated in Lemma 5.

4 O(k)-Spanner Construction

Algorithm Z Spanner2 can be extended for k > 2. The extended algorithm,
Z Spannerk, is given in Fig. 5. Given a bipartite graph B = (W ∪ V, E), we
carefully construct a partial partition of B containing clusters of small radius.
More precisely, at each iteration, a cluster is grown in a layered fashion around
some node w ∈ W until the cluster becomes sparse. Once a cluster is constructed,
the neighborhood of the cluster is spanned by a BFS tree and the cluster is
removed from the graph B. The algorithm terminates when all the nodes of W
are clustered. We remark that at the end of our algorithm, some nodes in V
may remain uncovered by the clustering, however each node in W belongs to a
cluster.

The originality of our algorithm comparing with classical sparse partition (or
covers) algorithms is to compute the sparsity of a layer depending on the range of
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the layer. Let C be a cluster being constructed in the while loop of Z Spannerk.
Suppose that C contains i successive layers L0, . . . ,Li−1. Then, consider the new
layer Li to be processed. Since B is bipartite, then either Li ⊆ V (if i is odd)
or Li ⊆ W (if i is even). In the first case, we add Li to the cluster C if it is
dense enough comparing with layer Li−1. In the second case, we add Li to the
cluster C if it is dense enough comparing with layer Li−2. The main observation
that will guarantee the desired size is that in the two cases layers Li−1 or Li−2

belong to W .

Input: a connected bipartite graph B = (W ∪ V, E) and an integer k > 0.

Output: a (4k − 3)-spanner S of B with O(|V ∪ W | + |W | · |V ∪ W |1/k) edges.

S := ∅;
while W �= ∅ do

pick a node v ∈ W ;
C := {v}, L0 := {v} and i := 1;
dense := True;
while dense do

Li := ΓB(C);
j := i − 2 + (i mod 2);

if |Li| > |V ∪ W |1/k · |Lj | then
C := C ∪ Li;
i := i + 1;

else
dense := False;

S := S ∪ BFS(v, C ∪ Li);
W := W \ C and V := V \ C;

Fig. 5. Algorithm Z Spannerk

By analyzing Algorithm Z Spannerk, we can show that:

Lemma 8. Let k � 1. Every connected bipartite graph B = (V ∪ W, E), has a
(4k − 3)-spanner with O(|V ∪ W | + |W | · |V ∪ W |1/k) edges.

Combining Lemma 3 and 4 for ρ = 2 logn, we obtain:

Theorem 2. There exists a distributed algorithm that given an n-node graph
and an integer k � 1, constructs a (4k − 3)-spanner for it with O(k n1+1/k)
edges in 2O(k) logk−1 n deterministic time.

5 Improving the Stretch for k = 2

It is shown in [14,18] that every graph has a (1, 2)-spanner with O(n3/2) edges.
Nevertheless, no fast distributed construction of such a spanner is known. In
this section, we give fast distributed constructions that enable us to obtain 3-
spanners of size O(n3/2) which are also almost pure additive spanners. More
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precisely, the multiplicative component on the stretch is (1+ ε) and the additive
component is independent of ε but depends on the time complexity.

Our construction works in two stages. In the first stage, we run Algorithm
Generic Spanner with parameter k = 2 and we obtain a spanner S1 and a
set of dense nodes X . The set X here denotes the set of nodes computed by the
first iteration of Generic Spanner, i.e., X = X1. In the second stage, we add
to S1 a BFS tree up to a depth 2ρ + β rooted at each node v ∈ X (β is a given
parameter).

By setting ρ = 2 logn and β = Θ(ε−1 log n) with ε > 0, and using the O(log n)
time deterministic algorithm for independent (2 log n)-dominating sets, one can
prove:

Lemma 9. There exists a distributed algorithm that given an n-node graph G
and a parameter ε > 0, constructs in O(ε−1 log n) deterministic time a 3-spanner
S with O(n3/2) edges and satisfying the following stretch properties:

∀u, v ∈ V, dS(u, v) �
{

dG(u, v) + 8 logn if dG(u, v) � 8ε−1 log n
(1 + ε) dG(u, v) + 8 logn otherwise.

Note that if the distance to be approximated is d = ω(log n), then the distance
in the spanner is at most (1 + ε) · d + o(d). Also, by choosing ε = o(1), Lemma 9
implies the construction in log1+o(1) n time of a 3-spanner with O(n3/2) edges
which is also a (1 + o(1), 8 logn)-spanner.

In order to obtain a better additive stretch, we use an MIS algorithm at
the price of increasing the time complexity. In fact, it is also well-known that
a MIS can be constructed by a deterministic (resp. randomized) algorithm in
nO(1/

√
log n) (resp. O(log n) expected) time. Thus by taking ρ = 1 and β =

Θ(MIS(n)), one can prove:

Lemma 10. There exists a distributed algorithm that given an n-node graph G,
constructs in nO(1/

√
log n) deterministic time a spanner S with O(n3/2) edges and

stretch (α, β) as given by Table 1.

Table 1. Stretches (α, β) for distances d

dG(u, v) dS(u, v) (α, β)

1 3 (2, 1)

2 6 (2, 2)

3 7 (2, 1)

4 8 (2, 0)

5 9 (1.8, 0)

d > nO(1/
√

log n) (1 + o(1)) d (1 + o(1), 0)

d � nO(1/
√

log n) d + 4 (1, 4)
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We observe that the spanner constructed in Lemma 10 has stretch at most (2, 1)
except for nodes at distance 2.

Combining previous lemmas we obtain:

Theorem 3. There exists a distributed algorithm that given an n-node graph G
and a parameter ε > 0 constructs in nO(1/

√
log n) + O(ε−1) (resp. O(ε−1 log n))

deterministic time a 3-spanner with O(n3/2) edges which is also a (1 + ε, 4)-
spanner (resp. a (1 + ε, 8 logn)-spanner).

6 Open Problems

While it is well-known that every graph has a (1, 2)-spanner with O(n3/2) edges,
we leave open the problem to find (distributively or not), for each k > 2, a
(1, f(k))-spanner of size O(n1+1/k) where f is a polynomial (or even an expo-
nential) function.
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