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What is a Tree-Decomposition?

A tree-decomposition of a graph G is a tree T whose
nodes, called bags, are subsets of V (G), and such that:

1
⋃

X∈V (T ) X = V (G);
2 ∀ {u, v} ∈ E(G), ∃X ∈ V (T ) such that u, v ∈ X ; and
3 ∀u ∈ V (G), the set of bags containing u induces a subtree

of T .
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Tree-Width for a graph G

1 The Width of a tree-decomposition T is maxX∈T |X | − 1.

2 The Tree-Width of G is the minimum of the Width over
all tree-decompositions of G.
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Some Results

[Arnborg et al. - 1987] The problem of determining whether the
tree-width of a graph is k is NP-complete.

[ But there are linear time algorithms for each fixed k .]

[Feige et al. - 2008] The best polynomial time approximation
algorithm achieves O(

√
log k) performance ratio.

[For tree-width k graphs.]

[Kloks and Bodlaender - 1992] For planar graphs,
approximation algorithms with performance ratio 1.5 do exist.
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Interest of studying tree-width

One of the most general and effective technique for
designing efficient graph algorithms.

Many optimization problems on graphs, including NP-hard
ones, can be solved for graphs of small treewidth.

See [Arnborg - 1985, Arnborg et all. - 1989, Bodlaender -
1996,Courcelle - 1990]

So, identifying graphs of small treewidth is of great
interests.
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What is a minor?

A minor of G is a subgraph of a graph obtained from G by
edge contraction.
Exemple : By contracting edge {5,6 } in G, then we have a
new graph who is a minor of G.

A graph G excludes a graph H as minor (G is H-minor free) if
H is not a minor of G.
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A Drawing of a graph G

Maps each vertex to a point of the plane and each edge to a
simple open Jordan curve between its endpoints.

A p × q - grid-drawing of G is a drawing where vertices
of the G have integer coordinates in the p × q grid.
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Figure: (a) A planar graph G; (b) a 4× 3-grid straight-line drawing of
G; and (c) a poly-line orthogonal 3× 3-grid drawing of G. 10 / 20
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Theorem 1

The treewidth of every planar graph G excluding as minor a
graph H having a poly-line p × q-grid drawing is O(p

√
q ).

Corollary 1

Let H ∈ {C2,r ,C
∗
2,r ,K2,r }. The treewidth of every planar graph

excluding H as minor is O(
√

r ).

Because C2,r and its dual C ∗2,r have 4× r -grid drawings, and
that K2,r is a minor of C ∗2,r .

Asymptotically optimal and significantly improves upon the
r + 2 upper bound of [Thilikos - 1999]. 12 / 20
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By combining Theorem 1 and [Biedl - 2014, Theorem 9], it can
easily be demonstrated that :

The treewidth of every planar graph excluding as minor an
r -vertex outerplanar graph of pathwidth k is O(k

√
r ).

This bound can be slightly improved as follows:

Proposition 1
Every planar graph excluding as minor an r-vertex outerplanar
graph of pathwidth k has treewidth at most O(

√
r log r ).
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Proof of Theorem 1

Recall the statement:

Theorem 1
The treewidth of every planar graph G excluding as minor a
graph H having a poly-line p × q-grid drawing is O(p

√
q ).

1 First, we give the structure of the Proof.
2 Second, we give the proof of one useful lemmas.

15 / 20
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Structure of the Proof of Theorem 1

We start with a simple lemma:

Lemma 1

The p × q grid is a minor of the
b(2 +

√
2)
√

pqc × b(2 +
√

2)
√

pqc grid.
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Structure of the Proof of Theorem 1

The following lemma is useful :

Lemma 2

Every graph H having a poly-line p × q-grid drawing is minor of
the p × (3pq) grid.

Thanks to Lemma 1, H is a minor of H ′ = O(p
√

q )×O(p
√

q )
grid.

So, if G exclude H then G exclude H ′ as well.

17 / 20
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Structure of the Proof of Theorem 1

Then by Lemma 3(i), the treewidth of G is O(p
√

q ), which
completes the proof of Theorem 1.

Lemma 3 (Gu et all 2012,Robertson et al. 1994)

Every planar graph excluding a planar graph H̄ as minor has
treewidth at most:

i. 9r/2− 4, if H̄ is the r × r grid with r ≥ 2; and
ii. 9r − 22, if H̄ has r ≥ 3 vertices.

18 / 20
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Conclusion

We establish a connection between the treewidth of a planar
graph G excluding as minor a graph H and the ability of
poly-line grid-drawing of H with small height.

One of the consequences of our main result is that :

the treewidth of every planar excluding such graph H is
O(
√

r ) where r = |V (H)|, which is optimal.
if H is outerplanar, then the bound slightly increases to
O(
√

r log r ).

We leave open
The question of the optimality of this bound.

19 / 20
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Figure: Cyril Gavoille Figure: Youssou Dieng

Thank you!
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