On the Treewidth of Planar Minor Free Graphs

Y. DIENG¹ C. GAVOILLE²

¹Department of Computer Science Ll³, Assane Seck University of Ziguinchor

²Department of Computer Science LaBRI, University of Bordeaux

24 - 25 jun 2020 / CNRIA'20 (UADB - Bambey)

Y. DIENG, C. GAVOILLE On the Treewidth of Planar Minor Free Graphs

Introduction Preliminary definitions	
Preiminary deminions	
Tiesulis	
Proof	
Conclusion	
Outline	

・ロト・日本・モン・モン・モー・シスペ

Introduction	
Preliminary definitions	
Results	
Proof	
Conclusion	
Outline	

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ● ●

What is a Tree-Decomposition?

A tree-decomposition of a graph G is a tree \mathscr{T} whose nodes, called bags, are subsets of V(G), and such that:

$$\bigcirc \bigcup_{X \in V(T)} X = V(G);$$

② \forall {u, v} ∈ E(G), $\exists X \in V(\mathscr{T})$ such that $u, v \in X$; and

● $\forall u \in V(G)$, the set of bags containing *u* induces a subtree of \mathscr{T} .

Conclusior

- **1** The Width of a tree-decomposition \mathscr{T} is $\max_{X \in \mathscr{T}} |X| 1$.
- The Tree-Width of G is the minimum of the Width over all tree-decompositions of G.

[Arnborg *et al.* - 1987] The problem of determining whether the tree-width of a graph is k is NP-complete.

[But there are linear time algorithms for each fixed k.]

[Feige *et al.* - 2008] The best polynomial time approximation algorithm achieves $O(\sqrt{\log k})$ performance ratio.

[For tree-width *k* graphs.]

[Kloks and Bodlaender - 1992] For planar graphs, approximation algorithms with performance ratio 1.5 do exist.

[Arnborg *et al.* - 1987] The problem of determining whether the tree-width of a graph is k is NP-complete.

[But there are linear time algorithms for each fixed k.]

[Feige *et al.* - 2008] The best polynomial time approximation algorithm achieves $O(\sqrt{\log k})$ performance ratio.

[For tree-width *k* graphs.]

[Kloks and Bodlaender - 1992] For planar graphs, approximation algorithms with performance ratio 1.5 do exist.

[Arnborg *et al.* - 1987] The problem of determining whether the tree-width of a graph is k is NP-complete.

[But there are linear time algorithms for each fixed k.]

[Feige *et al.* - 2008] The best polynomial time approximation algorithm achieves $O(\sqrt{\log k})$ performance ratio.

[For tree-width *k* graphs.]

[Kloks and Bodlaender - 1992] For planar graphs, approximation algorithms with performance ratio 1.5 do exist.

Introduction Preliminary definitions Results Proof Conclusion Interest of studying tree-width

- One of the most general and effective technique for designing efficient graph algorithms.
- Many optimization problems on graphs, including NP-hard ones, can be solved for graphs of small treewidth.
 - See [Arnborg 1985, Arnborg et all. 1989, Bodlaender 1996,Courcelle 1990]
- So, identifying graphs of small treewidth is of great interests.

Introduction Preliminary definitions Results Proof Conclusion Interest of studying tree-width

- One of the most general and effective technique for designing efficient graph algorithms.
- Many optimization problems on graphs, including NP-hard ones, can be solved for graphs of small treewidth.
 - See [Arnborg 1985, Arnborg et all. 1989, Bodlaender 1996,Courcelle 1990]
- So, identifying graphs of small treewidth is of great interests.

Introduction Preliminary definitions	
Results	
Proof	
Conclusion	
Outline	

- A minor of *G* is a subgraph of a graph obtained from *G* by edge contraction.
- Exemple : By contracting edge { 5, 6 } in *G*, then we have a new graph who is a minor of *G*.

A graph *G* excludes a graph *H* as minor (*G* is *H*-minor free) if *H* is not a minor of *G*.

- A minor of G is a subgraph of a graph obtained from G by edge contraction.
- Exemple : By contracting edge { 5, 6 } in *G*, then we have a new graph who is a minor of *G*.

A graph G excludes a graph H as minor (G is H-minor free) if H is not a minor of G.

- A minor of *G* is a subgraph of a graph obtained from *G* by edge contraction.
- Exemple : By contracting edge { 5, 6 } in *G*, then we have a new graph who is a minor of *G*.

A graph G excludes a graph H as minor (G is H-minor free) if H is not a minor of G.

Maps each vertex to a point of the plane and each edge to a simple open Jordan curve between its endpoints.

• A $p \times q$ - grid-drawing of *G* is a drawing where vertices of the *G* have integer coordinates in the $p \times q$ grid.

Figure: (a) A planar graph *G*; (b) a 4×3 -grid straight-line drawing of G; and (c) a poly-line orthogonal 3×3 -grid drawing of *G*.

Introduction	
Preliminary definitions	
Results	
Proof	
Conclusion	
Outline	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem 1

The treewidth of every planar graph G excluding as minor a graph H having a poly-line $p \times q$ -grid drawing is $O(p\sqrt{q})$.

Corollary ⁻

Let $H \in \{ \mathscr{C}_{2,r}, \mathscr{C}^*_{2,r}, K_{2,r} \}$. The treewidth of every planar graph excluding H as minor is $O(\sqrt{r})$.

Because $\mathscr{C}_{2,r}$ and its dual $\mathscr{C}^*_{2,r}$ have $4 \times r$ -grid drawings, and that $K_{2,r}$ is a minor of $\mathscr{C}^*_{2,r}$.

Asymptotically optimal and significantly improves upon the r + 2 upper bound of [Thilikos - 1999].

Theorem 1

The treewidth of every planar graph G excluding as minor a graph H having a poly-line $p \times q$ -grid drawing is $O(p\sqrt{q})$.

Corollary 1

Let $H \in \{ \mathscr{C}_{2,r}, \mathscr{C}^*_{2,r}, K_{2,r} \}$. The treewidth of every planar graph excluding H as minor is $O(\sqrt{r})$.

Because $\mathscr{C}_{2,r}$ and its dual $\mathscr{C}^*_{2,r}$ have $4 \times r$ -grid drawings, and that $K_{2,r}$ is a minor of $\mathscr{C}^*_{2,r}$.

Asymptotically optimal and significantly improves upon the r + 2 upper bound of [Thilikos - 1999].

Theorem 1

The treewidth of every planar graph G excluding as minor a graph H having a poly-line $p \times q$ -grid drawing is $O(p\sqrt{q})$.

Corollary 1

Let $H \in \{ \mathscr{C}_{2,r}, \mathscr{C}^*_{2,r}, K_{2,r} \}$. The treewidth of every planar graph excluding H as minor is $O(\sqrt{r})$.

Because $\mathscr{C}_{2,r}$ and its dual $\mathscr{C}^*_{2,r}$ have $4 \times r$ -grid drawings, and that $K_{2,r}$ is a minor of $\mathscr{C}^*_{2,r}$.

Asymptotically optimal and significantly improves upon the r + 2 upper bound of [Thilikos - 1999].

By combining Theorem 1 and [Biedl - 2014, Theorem 9], it can easily be demonstrated that :

- The treewidth of every planar graph excluding as minor an *r*-vertex outerplanar graph of pathwidth *k* is $O(k\sqrt{r})$.
- This bound can be slightly improved as follows:

Proposition [·]

Every planar graph excluding as minor an r-vertex outerplanar graph of pathwidth k has treewidth at most $O(\sqrt{r \log r})$.

イロト イポト イヨト イヨト 三日

By combining Theorem 1 and [Biedl - 2014, Theorem 9], it can easily be demonstrated that :

- The treewidth of every planar graph excluding as minor an *r*-vertex outerplanar graph of pathwidth *k* is $O(k\sqrt{r})$.
- This bound can be slightly improved as follows:

Proposition 1

Every planar graph excluding as minor an *r*-vertex outerplanar graph of pathwidth *k* has treewidth at most $O(\sqrt{r \log r})$.

イロト イポト イヨト イヨト 三日

Introduction	
Preliminary definitions	
Results	
Proof	
Conclusion	
Outline	

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆目 ◆ ● ◆ ●

Introduction	
Preliminary definitions	
Results	
Proof	
Conclusion	
Proof of Theorem 1	

Recall the statement:

Theorem 1

The treewidth of every planar graph G excluding as minor a graph H having a poly-line $p \times q$ -grid drawing is $O(p\sqrt{q})$.

- First, we give the structure of the Proof.
- Second, we give the proof of one useful lemmas.

・ロト ・ 理 ト ・ ヨ ト ・

Conclusion

Structure of the Proof of Theorem 1

We start with a simple lemma:

Lemma 1

The $p \times q$ grid is a minor of the $\lfloor (2 + \sqrt{2})\sqrt{pq} \rfloor \times \lfloor (2 + \sqrt{2})\sqrt{pq} \rfloor$ grid.

>

-

8....*

6

М

э

(ロト (四) (モート (日))

Conclusion

Structure of the Proof of Theorem 1

We start with a simple lemma:

Lemma 1

The $p \times q$ grid is a minor of the $\lfloor (2 + \sqrt{2})\sqrt{pq} \rfloor \times \lfloor (2 + \sqrt{2})\sqrt{pq} \rfloor$ grid.

э

ヘロト ヘワト ヘビト ヘビト

Conclusion

Structure of the Proof of Theorem 1

The following lemma is useful :

Lemma 2

Every graph H having a poly-line $p \times q$ -grid drawing is minor of the $p \times (3pq)$ grid.

Thanks to Lemma 1, *H* is a minor of $H' = O(p\sqrt{q}) \times O(p\sqrt{q})$ grid.

So, if G exclude H then G exclude H' as well.

Conclusion

Structure of the Proof of Theorem 1

The following lemma is useful :

Lemma 2

Every graph H having a poly-line $p \times q$ -grid drawing is minor of the $p \times (3pq)$ grid.

Thanks to Lemma 1, *H* is a minor of $H' = O(p\sqrt{q}) \times O(p\sqrt{q})$ grid.

So, if G exclude H then G exclude H' as well.

Conclusion

Structure of the Proof of Theorem 1

Then by Lemma 3(i), the treewidth of G is O(p√q), which completes the proof of Theorem 1.

Lemma 3 (Gu et all 2012, Robertson et al. 1994)

Every planar graph excluding a planar graph \bar{H} as minor has treewidth at most:

- i. 9r/2 4, if \overline{H} is the $r \times r$ grid with $r \ge 2$; and
- ii. 9r 22, if \overline{H} has $r \ge 3$ vertices.

イロン 不良 とくほう 不良 とうほ

We establish a connection between the treewidth of a planar graph G excluding as minor a graph H and the ability of poly-line grid-drawing of H with small height.

One of the consequences of our main result is that :

- the treewidth of every planar excluding such graph *H* is $O(\sqrt{r})$ where r = |V(H)|, which is optimal.
- if *H* is outerplanar, then the bound slightly increases to $O(\sqrt{r \log r})$.
- We leave open
 - The question of the optimality of this bound.

イロン 不良 とくほう 不良 とうほ

We establish a connection between the treewidth of a planar graph G excluding as minor a graph H and the ability of poly-line grid-drawing of H with small height.

One of the consequences of our main result is that :

- the treewidth of every planar excluding such graph *H* is $O(\sqrt{r})$ where r = |V(H)|, which is optimal.
- if *H* is outerplanar, then the bound slightly increases to $O(\sqrt{r \log r})$.
- We leave open
 - The question of the optimality of this bound.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

We establish a connection between the treewidth of a planar graph G excluding as minor a graph H and the ability of poly-line grid-drawing of H with small height.

One of the consequences of our main result is that :

- the treewidth of every planar excluding such graph *H* is $O(\sqrt{r})$ where r = |V(H)|, which is optimal.
- if *H* is outerplanar, then the bound slightly increases to $O(\sqrt{r \log r})$.
- We leave open
 - The question of the optimality of this bound.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Figure: Cyril Gavoille

Figure: Youssou Dieng

イロト イロト イヨト イヨト 三日

Thank you!