On the Treewidth of Planar Minor Free Graphs

Y. DIENG ${ }^{1} \quad$ C. GAVOILLE ${ }^{2}$

${ }^{1}$ Department of Computer Science
LI ${ }^{3}$, Assane Seck University of Ziguinchor
${ }^{2}$ Department of Computer Science
LaBRI, University of Bordeaux
24-25 jun 2020 / CNRIA'20 (UADB - Bambey)

Preliminary definitions

Outline

(9) Introduction
(2) Preliminary definitions
(3) Results
(4) Proof

Preliminary definitions

Outline

(2) Preliminary definitions
(3) Results
(4) Proof

What is a Tree-Decomposition?

A tree-decomposition of a graph G is a tree \mathscr{T} whose nodes, called bags, are subsets of $V(G)$, and such that:
(1) $\cup_{X \in V(T)} X=V(G)$;
(2) $\forall\{u, v\} \in E(G), \exists X \in V(\mathscr{T})$ such that $u, v \in X$; and
(3) $\forall u \in V(G)$, the set of bags containing u induces a subtree of \mathscr{T}.

Preliminary definitions
Results
Proof
Conclusion

Example

Preliminary definitions
Results
Proof
Conclusion

Example

(b)

Preliminary definitions

> Results
> Proof

Conclusion

Example

(b)

Tree-Width for a graph G

(1) The Width of a tree-decomposition \mathscr{T} is $\max _{X \in \mathscr{T}}|X|-1$.
(2) The Tree-Width of G is the minimum of the Width over all tree-decompositions of G.

Some Results

[Arnborg et al. - 1987] The problem of determining whether the tree-width of a graph is k is NP-complete.
[But there are linear time algorithms for each fixed k.]
[Feige et al. - 2008] The best polynomial time approximation algorithm achieves $O(\sqrt{\log k})$ performance ratio.
[Kloks and Bodlaender - 1992] For planar graphs, approximation algorithms with performance ratio 1.5 do exist.

Some Results

[Arnborg et al. - 1987] The problem of determining whether the tree-width of a graph is k is NP-complete.
[But there are linear time algorithms for each fixed k.]
[Feige et al. - 2008] The best polynomial time approximation algorithm achieves $O(\sqrt{\log k})$ performance ratio.
[For tree-width k graphs.]
[Kloks and Bodlaender - 1992] For planar graphs,
approximation algorithms with performance ratio 1.5 do exist.

Some Results

[Arnborg et al. - 1987] The problem of determining whether the tree-width of a graph is k is NP-complete.
[But there are linear time algorithms for each fixed k.]
[Feige et al. - 2008] The best polynomial time approximation algorithm achieves $O(\sqrt{\log k})$ performance ratio.
[For tree-width k graphs.]
[Kloks and Bodlaender - 1992] For planar graphs, approximation algorithms with performance ratio 1.5 do exist.

Interest of studying tree-width

- One of the most general and effective technique for designing efficient graph algorithms.
- Many optimization problems on graphs, including NP-hard ones, can be solved for graphs of small treewidth.
- See [Arnborg - 1985, Arnborg et all. - 1989, Bodlaender 1996,Courcelle - 1990]
- So, identifying graphs of small treewidth is of great interests.

Interest of studying tree-width

- One of the most general and effective technique for designing efficient graph algorithms.
- Many optimization problems on graphs, including NP-hard ones, can be solved for graphs of small treewidth.
- See [Arnborg - 1985, Arnborg et all. - 1989, Bodlaender 1996,Courcelle - 1990]
- So, identifying graphs of small treewidth is of great interests.

Preliminary definitions
Results

Conclusion

Outline

(1) Introduction

(2) Preliminary definitions
(3) Results
(4) Proof

Preliminary definitions
Results

What is a minor?

- A minor of G is a subgraph of a graph obtained from G by edge contraction.
- Exemple : By contracting edge $\{5,6\}$ in G, then we have a new graph who is a minor of G.

What is a minor?

- A minor of G is a subgraph of a graph obtained from G by edge contraction.
- Exemple : By contracting edge $\{5,6\}$ in G, then we have a new graph who is a minor of G.

A graph G excludes
a graph H as minor (G is H-minor free) if
H is not a minor of G.

What is a minor?

- A minor of G is a subgraph of a graph obtained from G by edge contraction.
- Exemple : By contracting edge $\{5,6\}$ in G, then we have a new graph who is a minor of G.

A graph G excludes a graph H as minor (G is H-minor free) if H is not a minor of G.

A Drawing of a graph G

Maps each vertex to a point of the plane and each edge to a simple open Jordan curve between its endpoints.

- A $p \times q$-grid-drawing of G is a drawing where vertices of the G have integer coordinates in the $p \times q$ grid.

Figure: (a) A planar graph G; (b) a 4×3-grid straight-line drawing of G; and (c) a poly-line orthogonal 3×3-grid drawing of G.

Outline

(1) Introduction

(2) Preliminary definitions

(3) Results
(4) Proof

Theorem 1

The treewidth of every planar graph G excluding as minor a graph H having a poly-line $p \times q$-grid drawing is $O(p \sqrt{q})$.

Corolary 1
Let $H \in\left\{\mathscr{C}_{2, r}, \mathscr{C}_{2, r}^{*}, K_{2, r}\right\}$. The treewidth of every planar graph excluding H as minor is $O(\sqrt{r})$.

Because $\mathscr{C}_{2, r}$ and its dual $\mathscr{C}_{2, r}^{*}$ have $4 \times r$-grid drawings, and that $K_{2, r}$ is a minor of $\mathscr{C}_{2, r}^{*}$.
Asymptotically optimal and significantly improves upon the , $r+2$ upper bound of [Thilikos - 1999]

Theorem 1

The treewidth of every planar graph G excluding as minor a graph H having a poly-line $p \times q$-grid drawing is $O(p \sqrt{q})$.

Corollary 1

Let $H \in\left\{\mathscr{C}_{2, r}, \mathscr{C}_{2, r}^{*}, K_{2, r}\right\}$. The treewidth of every planar graph excluding H as minor is $\mathrm{O}(\sqrt{r})$.

Because $\mathscr{C}_{2, r}$ and its dual $\mathscr{C}_{2, r}^{*}$, have $4 \times r$-grid drawings, and that $K_{2, r}$ is a minor of $\mathscr{C}_{2, r}^{*}$.
Asymptotically optimal and significantly improvesupon the $r+2$ upper bound of [Thilikos - 1999].

Theorem 1

The treewidth of every planar graph G excluding as minor a graph H having a poly-line $p \times q$-grid drawing is $O(p \sqrt{q})$.

Corollary 1

Let $H \in\left\{\mathscr{C}_{2, r}, \mathscr{C}_{2, r}^{*}, K_{2, r}\right\}$. The treewidth of every planar graph excluding H as minor is $O(\sqrt{r})$.

Because $\mathscr{C}_{2, r}$ and its dual $\mathscr{C}_{2, r}^{*}$, have $4 \times r$-grid drawings, and that $K_{2, r}$ is a minor of $\mathscr{C}_{2, r}^{*}$.
Asymptotically optimal and significantly improves upon the $r+2$ upper bound of [Thilikos - 1999].

By combining Theorem 1 and [Biedl - 2014, Theorem 9], it can easily be demonstrated that :

- The treewidth of every planar graph excluding as minor an r-vertex outerplanar graph of pathwidth k is $O(k \sqrt{r})$.

> Proposition 1
> Every planar graph excluding as minor an r-vertex outerplanar graph of pathwidth k has treewidth at most $O(\sqrt{r \log r})$.

By combining Theorem 1 and [Biedl - 2014, Theorem 9], it can easily be demonstrated that :

- The treewidth of every planar graph excluding as minor an r-vertex outerplanar graph of pathwidth k is $O(k \sqrt{r})$.
- This bound can be slightly improved as follows:

Proposition 1

Every planar graph excluding as minor an r-vertex outerplanar graph of pathwidth k has treewidth at most $O(\sqrt{r \log r})$.

Preliminary definitions
Results

Outline

(1)
 Introduction

(2) Preliminary definitions
(3) Results
(4) Proof

Proof of Theorem 1

Recall the statement:

Theorem 1

The treewidth of every planar graph G excluding as minor a graph H having a poly-line $p \times q$-grid drawing is $O(p \sqrt{q})$.
(1) First, we give the structure of the Proof.
(2) Second, we give the proof of one useful lemmas.

Structure of the Proof of Theorem 1

We start with a simple lemma:

Lemma 1

The $p \times q$ grid is a minor of the
$\lfloor(2+\sqrt{2}) \sqrt{p q}\rfloor \times\lfloor(2+\sqrt{2}) \sqrt{p q}\rfloor$ grid.

$$
\begin{aligned}
& \begin{array}{r|r|}
\hline 1 & -2 \\
\hline
\end{array} \\
& M \quad \begin{array}{|l|l|l|l|}
\hline 4 & \prec & \vdots \\
\hline & & & 3 \\
\hline
\end{array} \\
& \begin{array}{|r|r|r|}
\hline 5 & -6 \\
\hdashline & -6 \\
\hline
\end{array} \\
& \begin{array}{|c|c|c|c|}
\hline 8 & < & \vdots \\
\hdashline & < & \vdots \\
\hline
\end{array}
\end{aligned}
$$

Structure of the Proof of Theorem 1

We start with a simple lemma:

Lemma 1

The $p \times q$ grid is a minor of the
$\lfloor(2+\sqrt{2}) \sqrt{p q}\rfloor \times\lfloor(2+\sqrt{2}) \sqrt{p q}\rfloor$ grid.

Structure of the Proof of Theorem 1

The following lemma is useful :
Lemma 2
Every graph H having a poly-line $p \times q$-grid drawing is minor of the $p \times(3 p q)$ grid.

Thanks to Lemma 1, H is a minor of $H^{\prime}=O(p \sqrt{q}) \times O(p \sqrt{q})$ grid.
So, if G exclude H then G exclude H^{\prime} as well.

Structure of the Proof of Theorem 1

The following lemma is useful :
Lemma 2
Every graph H having a poly-line $p \times q$-grid drawing is minor of the $p \times(3 p q)$ grid.

Thanks to Lemma 1, H is a minor of $H^{\prime}=O(p \sqrt{q}) \times O(p \sqrt{q})$ grid.
So, if G exclude H then G exclude H^{\prime} as well.

Structure of the Proof of Theorem 1

- Then by Lemma 3(i), the treewidth of G is $O(p \sqrt{q})$, which completes the proof of Theorem 1.

Lemma 3 (Gu et all 2012,Robertson et al. 1994)

Every planar graph excluding a planar graph \bar{H} as minor has treewidth at most:
i. $9 r / 2-4$, if \bar{H} is the $r \times r$ grid with $r \geq 2$; and
ii. $9 r-22$, if \bar{H} has $r \geq 3$ vertices.

Conclusion

We establish a connection between the treewidth of a planar graph G excluding as minor a graph H and the ability of poly-line grid-drawing of H with small height.

One of the consequences of our main result is that

- the treewidth of every planar excluding such graph H is $O(\sqrt{r})$ where $r=|V(H)|$, which is optimal.
- if H is outerplanar, then the bound slightly increases to $O(\sqrt{r \log r})$
- We leave open
- The question of the optimality of this bound.

Conclusion

We establish a connection between the treewidth of a planar graph G excluding as minor a graph H and the ability of poly-line grid-drawing of H with small height.

One of the consequences of our main result is that:

- the treewidth of every planar excluding such graph H is $O(\sqrt{r})$ where $r=|V(H)|$, which is optimal.
- if H is outerplanar, then the bound slightly increases to $O(\sqrt{r \log r})$.
- We leave open
- The question of the optimality of this bound.

Conclusion

We establish a connection between the treewidth of a planar graph G excluding as minor a graph H and the ability of poly-line grid-drawing of H with small height.

One of the consequences of our main result is that :

- the treewidth of every planar excluding such graph H is $O(\sqrt{r})$ where $r=|V(H)|$, which is optimal.
- if H is outerplanar, then the bound slightly increases to $O(\sqrt{r \log r})$.
- We leave open
- The question of the optimality of this bound.

Figure: Cyril Gavoille

Figure: Youssou Dieng

Thank you!

