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Abstract. We study in this article, the treewidth of planar graphs
excluding as minor a fixed planar graph. We prove that the treewidth of
every planar graph excluding a graph having a poly-line p× q-grid draw-
ing is O(p

√
q). As consequences, the treewidth of planar graphs excluding

as minor the cylinder C2,r or its dual C ∗
2,r is O(

√
r), where C2,r denotes

the cylinder of height 2 and circumference r. This bound is asymptoti-
cally optimal. The treewidth is O(

√
r log r) if the excluded graph is any

outerplanar graph with r vertices.

Keywords: Planar graph · Graph Minor · Treewidth · Graph drawing

1 Introduction

Tree-decomposition is one of the most general and effective technique for design-
ing efficient graph algorithms. Roughly speaking a tree-decomposition of an input
graph G is a collection of subgraphs of G, called bags, that cover G in a tree-like
manner (see Fig. 1 and Sect. 2 for precise definitions). Treewidth-k graphs are
graphs having a tree-decomposition of width k, i.e., into bags of at most k + 1
vertices. It has been shown (see for instance [Arn85,AP89,Bod96,Cou90]) that
many optimization problems on graphs, including NP-hard ones, can be solved
by the use of dynamic programming techniques based on tree-decompositions
and whose efficiency is directly related to the size of the bags. So, identifying
graphs of small treewidth is of great interests.

The problem to decide whether the treewidth of a graph is k is NP-
complete [ACP87], but there are linear time algorithms for each fixed k. The
best polynomial time approximation algorithm achieves O(

√
log k) performance

ratio where k is the treewidth [FHL08]. For planar graphs, approximation algo-
rithms with performance ratio 1.5 do exist [ST94,GT05].
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Fig. 1. (a) A graph G; (b) a tree-like representation of G; and (c) a tree-decomposition
T of G of width 3.

A seminal work about tree-decompositions is the one of Robertson and Sey-
mour and their Graph Minor Theorem that has been proved in a more than
twenty paper serie spanning over 20 years, from [RS83,RS86,RS03,RS04]. Along
their proof, they gave a decomposition theorem [RS03] capturing the structure
of graphs excluding a fixed minor (see Sect. 2 for precise definitions). Informally,
the theorem says that every graph excluding some fixed graph H as minor has
a tree-decomposition into bags that can “almost” be embedded on a surface on
which H cannot be embedded.

A keystone in the proof of the Graph Minor Theorem is the grid-minor theo-
rem [RS86] which says that every graph of treewidth large enough is guaranteed
to have a large grid as minor. In other words, if a graph G excludes a r × r
grid as minor, then the treewidth of G is at most g(r) for some function g.
The current best upper bound is g(r) ≤ r9+o(1) [CT19], whereas the best lower
bound is g(r) ≥ r2+o(1) as proved in [RST94]. In this latter paper, it has been
conjectured that the best possible bound is in fact r2+o(1), whereas [DHK09]
have conjectured Θ(r3).
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This grid-minor theorem played also a key role for the important Disjoint
Paths Problem [KW10], in several other deep meta-theorems and applications
as mentioned in [Gro07]. For some applications, efficient solutions can be still
computed for graphs having specific tree-decompositions, and not only those
of small width. For instance, [DG03,DG07] have studied graphs having a tree-
decomposition whose bags contain vertices, possibly many, that are close to each
other. Graphs of bounded tree-length, i.e., having a tree-decomposition into bags
of bounded diameter, admit additive spanners, compact routing schemes, and
distance labeling schemes with short labels [BvLTT97,GKK+01,DG04,Dou05,
DDGY07,CDE+12], that are important applications for Distributed Comput-
ing. Note that many graphs with unbounded treewidth have bounded tree-
length. Chordal graphs, interval graphs, split graphs, AT-free graphs, permu-
tation graphs, and many others, are such examples. Further developments on
tree-length can be founded in [CDE+08,UY09,Lok10].

In this paper, we study the question about the treewidth of graphs excluding
as minor a planar graph. The paper is organized as follows. We start in Sect. 2
with a formal description of minors, tree-decompositions and graph drawings.
Section 3 presents our contribution with an overview of the main ingredients for
our results. Section 4 gives the proof of the main theorem.

2 Minor, Tree-Decomposition and Drawing

Let G be a simple connected undirected graph with vertex-set V (G) and edge-
set E(G). An edge between two vertices u and v of G is denoted by {u, v}.
The contraction of {u, v} in G is the result of identifying the vertices u and v
and removing from G all resulting loops and multiple edges. A minor H of G
is a subgraph of a graph that can be obtained from G by a sequence of edge
contractions (see Fig. 2).
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Fig. 2. (a) A graph G; and (b) a minor of G obtained by contracting edge {5, 6}.

We say that G excludes H if H is not a minor of G. By transitivity of the
minor relation, if G excludes H, then G excludes every graph having H as minor.

We now present the basic notions of tree-decomposition and treewidth. See
Fig. 1 for an illustration.
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Definition 1. A tree-decomposition of a graph G is a tree T whose nodes, called
bags, are subsets of V (G), and such that:

1.
⋃

X∈V (T ) X = V (G);
2. ∀ {u, v} ∈ E(G), ∃X ∈ V (T ) such that u, v ∈ X; and
3. ∀u ∈ V (G), the set of bags containing u induces a subtree of T .

The width of a tree-decomposition T is maxX∈V (T ){|X| − 1}. The treewidth of
a graph G is the minimum width over all possible tree-decompositions of G.

The notions of path-decomposition and pathwidth are defined similarly, except
that in Definition 1, T must be a path. It is not difficult to see that if H is a
minor of G, then the treewidth (resp. pathwidth) of H is no more than the
treewidth (reps. pathwidth) of G.

Our results rely on plane embeddings of graphs. More precisely, a drawing
of a graph G maps each vertex of G to a point of the plane and each edge to
a simple open Jordan curve between its endpoints. A drawing divides the plane
into topologically connected regions, called faces; the infinite region is called the
outerface. A planar graph is a graph that can be drawn in the plane without
crossing edges. The dual of a graph drawn G is the graph denoted by G∗ whose
the vertices are faces of G, and the edges connect faces having a common edge
of G on their borders.

In this paper, we consider grid-drawings where vertices of the graph have inte-
ger coordinates and edges between adjacent vertices are poly-line whose bends
have integer coordinates too. Such drawings were developed by de Fraysseix et
al. in [dFPP88,dFPP90] and Schnyder in [Sch90].

More precisely, a graph has a poly-line p × q-grid drawing if it has a drawing
such that vertices are plotted at the vertices of the p × q grid, and edges are
contiguous sequences of segments, each segment being a straight-line between
two vertices of the p × q grid. The grid-drawing is orthogonal if edges can
be drawn as path of the grid, i.e., represented as sequences of horizontal or
vertical segments only. The drawing is flat if every vertex is represented by
a horizontal line segment. Finally, the drawing is straight-line if each edge
consists of one segment only. The p × q grid is the graph whose vertex-set
{(i, j) : i ∈ [0, p), j ∈ [0, q)} and for which two vertices (i, j) and (i′, j′) are adja-
cent if and only if |i − i′| + |j − j′| = 1. The p × q-cylinder, denoted by Cp,q, is
the graph with same vertex-set of the p × q-grid and such that (i, j) and (i′, j′)
are adjacent if and only if there are adjacent in the p × q-grid or i = i′ and
|j − j′| = q − 1. In other words, Cp,q is the Cartesian product of a path of p
vertices by a cycle with q vertices. We refer to [dBETT99] for a wide overview
of grid-drawings, and Fig. 3 for illustrations.
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Fig. 3. (a) A planar graph G; (b) a 4 × 3-grid straight-line drawing of G; and (c) a
poly-line orthogonal 3 × 3-grid drawing of G.

3 Our Contributions

Bounding the treewidth of a graph by a function of a minor it excludes is one
of the most surprising property of the Graph Minor Theory. As previously dis-
cussed, if a graph G excludes some planar graph H, then the treewidth of G is
at most some constant depending on H. The best current upper bound on the
treewidth is r9+o(1) where r = |V (H)|. In fact, the bound holds even if H is the
r × r grid. The treewidth bound can be reduced to O(r) if the excluded minor
is a K2,r [BvLTT97], a forest [BRST91] or a cycle [FL89] of r vertices. It is also
known that the treewidth of graphs excluding a 3 × 3 grid (resp. a 4 × 4 grid) is
at most respectively 7 [BBR09] (resp. 7 262 [BBR07]).

We investigate the question of the treewidth of a graph G that excludes
a planar graph H whenever G is itself planar. It is known [RST94] that the
treewidth of a planar graph excluding an r-vertex planar graph, or an r × r
grid, is only O(r). The most accurate bound on the term O(r) can be derived
from [GT12] and [RST94], as explained later in the Lemma4.

Our main result is (see Sect. 4 for the proof):

Theorem 1. The treewidth of every planar graph excluding as minor a graph
having a poly-line p × q-grid drawing is O(p

√
q).

Because C2,r and its dual C ∗
2,r have 4× r-grid drawings (see Fig. 4), and that

K2,r is a minor of C ∗
2,r, we derive directly from Theorem 1 that:

Corollary 1. Let H ∈ {C2,r,C ∗
2,r,K2,r}. The treewidth of every planar graph

excluding H as minor is O(
√

r).

This bound significantly improves upon the r+2 upper bound of [Thi99]. As
we will see later, the bound of O(

√
r) is actually asymptotically optimal.
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Fig. 4. A straight-line 4 × r-grid drawing of the 2 × r-cylinder C2,r and a poly-line
drawing of its dual C ∗

2,r, here for r = 7.

We now derive a similar bound if the excluded graph is outerplanar. Theo-
rem 1 allows us the plug results from literature of Graph Drawing Theory. For
instance, using the result of [Bie14][Th. 9], every outerplanar graph H with r
vertices and pathwidth k has straight-line O(k)×O(r)-grid drawing. From The-
orem 1, the treewidth of every planar graph excluding H is O(k

√
r).

However, this latter bound can be slightly improved as follows:

Proposition 1. Every planar graph excluding as minor an outerplanar graph
with r vertices and pathwidth k has treewidth O(

√
kr), which is at most

O(
√

r log r).

Proof. Let H be the excluded minor. We observe that the straight-line O(k) ×
O(r)-grid drawing of the minor H as built in [Bie14][Th. 9] is actually based on
a flat orthogonal drawing due to [Bie12][Th. 1]. The property of this drawing is
that, if H is 2-connected, then it has a flat orthogonal (4k−3)×�3(r − 2)/2	-grid
drawing.

The connectivity condition on H can be overcome, because as proved
in [BBCR14], any outerplanar graph can be made 2-connected while increas-
ing its pathwidth by a constant factor. We also remark that if H has a flat
orthogonal p × q-grid drawing, then H is a minor of the p × q-grid (simply con-
tract the horizontal segments representing the vertices). By Lemma 1 H is also
a minor of the O(

√
pq) × O(

√
pq)-grid. And, by Lemma4(ii), the treewidth of a

planar graph excluding such a grid, and thus H, is O(
√

pq). Overall, plugging
p = O(k) and q = O(r), we get that the treewidth of a planar graph excluding
H as minor is O(

√
kr).

We concluding by noting that k = O(log r), because the treewidth of H is at
most two, and the pathwidth of any graph with r vertices is at most its treewidth
plus one times O(log r) [KS93][Theorem 6]. 
�

The end of this section is devoted to a discussion about the optimality of the
treewidth bounds we have obtained.

If H is a general planar graph, then the O(r) bound of [RST94] is optimal
(asymptotically). This is because there are planar graphs H with O(r) vertices
that are not minor of the r × r grid. In other words, if G is the r × r grid, then
G is planar and has treewidth1 r, whereas it excludes H, an O(r)-vertex planar

1 It is well-known the p × q grid has treewidth min{p, q}.



244 Y. Dieng and C. Gavoille

graph. For concreteness, consider H = C3,r+2, the 3× (r +2)-cylinder. It is easy
to show that: (1) any drawing of H contains at least δ ≥ r/2 + 1 disjoint nested
cycles2; and (2) H cannot be a minor of a graph having a drawing with less
than δ disjoint nested cycles, since edge contraction and taking subgraph cannot
increase the number of disjoint nested cycles. Unfortunately, the r × r grid has
only r/2 < δ disjoint nested cycles. So, H that has 3r + 6 = O(r) vertices is not
a minor of a planar graph G of treewidth r (the r × r grid).

However, as demonstrated by Corollary 1, the O(r) bound can be reduced if
we restrict furthermore the family of excluded minors. To formalize this idea,
let us consider an infinite graph family H closed under taking subgraphs. And,
let θH (r) be the function defined as the smallest t such that every planar graph
excluding any graph H ∈ H with at most r vertices has treewidth at most t.
The main question we have addressed in this paper is to find a large family H
of planar graphs such that θH (r) = o(r).

Observe that Lemma 4(ii) implies that θH (r) ≤ 9r for each family H of
planar graphs. Function θH must be linear in general, since from the discussion
above, if C3,r+2 ∈ H , then there are planar graphs excluding C3,r+2 and of
treewidth at least r. Thus θH (|V (C3,r+2)|) = θH (3r + 6) ≥ r.

On the other hand, it is easy to see that θH (r) = Ω(
√

r) for every graph
family H . Indeed, for any H ∈ H , by denoting r = |V (H)|, the �√r − 1	 ×
�√r − 1	 grid has < r vertices, so it excludes H. However, this grid has treewidth
�√r − 1	.

From the above discussions, we have therefore:

Proposition 2. For every family H of planar graphs,
√

r − 1 ≤ θH (r) ≤ 9r.
Furthermore, if C3,�r/3� ∈ H , then θH (r) ≥ r/3.

So, from Proposition 2, the O(
√

r) bound of Corollary 1 is optimal. And more
generally, the family Hp composed of all r-vertex graphs having a poly-line
p × O(r/p2)-grid drawing have θHp

(r) = O(
√

r) which is optimal.

4 Proof of the Main Theorem

The goal of the section is to prove Theorem 1 that we recall the statement:

Theorem 1. The treewidth of every planar graph excluding as minor a graph
having a poly-line p × q-grid drawing is O(p

√
q).

We start with a simple lemma:

Lemma 1. The p × q grid is a minor of the
⌊
(2 +

√
2)

√
pq

⌋ × ⌊
(2 +

√
2)

√
pq

⌋

grid.

2 Note that if a triangle is chosen as outerface of C3,r+2, then the resulting drawing
has r + 2 nested triangles. However, a drawing with the minimal number of nested
disjoint cycles can be obtained by choosing a quadrangle of C3,r+2 as outerface.
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Proof. W.l.o.g., assume that p ≤ q. The construction is illustrated on Fig. 5. The
p × q grid H is first split into squares, each one being a p × p grid. There are
s = �q/p	 such squares, the last one may be completed by some columns if p
does not divide q.

Let k =
⌈√

s + 1
⌉

+ 1. Observe that k is the smallest integer such that
k · (k − 2) ≥ s, since k · (k − 2) ≥ (

√
s + 1 + 1) · (

√
s + 1 − 1) = s. In the

illustration on Fig. 5, s = 8 and k = 4.
Now, the s squares are organized into k strips, each containing k−2 squares.

Extra squares may be added to complete the last strip. Then, each such strip is
surrounded by two extra squares: one at the beginning and one at the end (cf.
the red squares on Fig. 5). The final grid M is composed of the k strips each of
k squares. Therefore M is a pk × pk grid.

M

H

Fig. 5. From a 3 × 24 grid H to a 12 × 12 grid M . (Color figure online)

Grid M contains H as a minor, since the edges between two adjacent squares
in H exist also in M either horizontally, if the squares belong to the same strip,
or vertically and then horizontally to make the turn between consecutive strips.

We have pk = p · (
⌈√

s + 1
⌉

+ 1). Using the fact that �√�x		 = �√x 	, we
have

⌈√
s + 1

⌉
= �√�q/p	 + 1 	 = �√�q/p + 1	 	 = �√q/p + 1 	. It follows that

pk = p · �√q/p + 1 	 + p < p
√

q/p + 1 + 2p =
√

pq + p2 + 2p. Since p ≤ q,
p =

√
p2 ≤ √

pq, and it follows that pk <
√

pq + pq + 2
√

pq = (
√

2 + 2)
√

pq.
Thus, M is a

⌊
(2 +

√
2)

√
pq

⌋ × ⌊
(2 +

√
2)

√
pq

⌋
grid. This completes the proof.


�
The proof of our second lemma, relies on a special drawing transformation

preserving height due to [Bie14].

Lemma 2. ([Bie14], Theorem 5). Any poly-line p × q-grid drawing can be
transformed into a flat orthogonal p × w-grid drawing with w ≤ max{n,m} + b,
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where n and m are respectively the number of vertices and edges of the graph,
and b is the maximum number of local minima and maxima of polygonal curves
in the poly-line drawing.

We are now ready to prove:

Lemma 3. Every graph having a poly-line p × q-grid drawing is minor of the
p × (3pq) grid.

Proof. Let G be a graph having a poly-line p × q-grid drawing Γ . Transform
Γ into a flat orthogonal p × w-grid drawing Γ ′ thanks to Lemma 2, where w ≤
max{n,m} + b with n = |V (G)| and m = |E(G)|. The number b can be upper
bounded by the number of bends of any edge drawn as poly-line in Γ . Each
bend occupies a point of the grid in Γ . Therefore, the number of vertices of G
is n ≤ pq − b. From the planarity of G, m < 3n = 3(pq − b). It follows that
w ≤ max{n,m} + b ≤ 3(pq − b) + b ≤ 3pq, and thus Γ ′ is a flat orthogonal
p × (3pq)-grid drawing of G.

We conclude the proof by observing that the grid supporting Γ ′, say the
graph M , contains G as minor. Indeed, in M , original vertices and edges of G
are represented has sequences of horizontal or vertical segments. These sequences
of segments are connected subgraphs of M , and actually internally disjoint paths
as they can meet only at vertices of G. Thus, contracting in M vertices of G into
single vertices, and edges of G into single edges, provides a graph G′ containing
G as subgraph. Therefore, G is a minor of M minor, completing the proof. 
�

To conclude the proof of Theorem1, we will use an accurate bound of the
excluded grid-minor theorem of [RST94].

Lemma 4. ([GT12,RST94]). Every planar graph G excluding a planar graph
H as minor has treewidth at most:

i. 9r/2 − 4, if H is the r × r grid with r ≥ 2; and
ii. 9r − 22, if H has r ≥ 3 vertices.

Proof. It has been proved in [GT12, Theorem 1.4, pp. 419] that every planar
graph either contains a h×k-cylinder Ch,k as minor or has branchwidth at most
k + 2h − 2 (for k ≥ 3 and h ≥ 1). In particular, if a planar graph G excludes a
r × r grid as minor, then its branchwidth is at most r + 2r − 2 = 3r − 2 (since,
if G excludes an r × r grid, then it excludes an r × r-cylinder as well). It is also
well known that the treewidth of G is at most max{3b/2 − 1, 1}, where b is the
branchwidth of G. It follows that the treewidth of G is at most 3(3r−2)/2−1 =
9r/2 − 4 if G is planar and excludes an r × r grid as minor, for r ≥ 3. Observe
that if H is a 2 × 2 grid (i.e., a cycle C4) then G must be an outerplanar graph
(since it cannot contains neither a K4 nor a K2,3 as minor that both contains a
C4). Thus G has treewidth 2 ≤ 9 · 2/2 − 4 = 5. Therefore, the bound holds also
for r = 2, proving the first point.

It is known that every Hamiltonian planar graph with r vertices is contained
as minor in a r×r grid [RST94, Theorem (1.3)]. Moreover, every r-vertex planar
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graph is contained as minor in a Hamiltonian planar graph with 2r − 4 vertices
for r ≥ 4. The graph is obtained by replacing one edge per separating triangle
by a degree-4 vertex (cf. [RST94, Theorem (1.4)]). It follows that every planar
graph H with r vertices is contained as minor in a (2r − 4) × (2r − 4) grid.

Therefore, if a planar graph G excludes an r-vertex planar graph H as minor
with r ≥ 4, then G excludes an (2r − 4) × (2r − 4) grid as minor, and thus has
treewidth at most 9 · (2r − 4)/2 − 4 = 9r − 22. Observe that if H has r = 3
vertices, then G must be a forest and thus has treewidth 1 ≤ 9 · 3 − 22 = 5.
Therefore, the bound holds also for r = 3, proving the second point. 
�

By combining Lemma 3 and Lemma 1, we get that a graph H having a poly-
line p×q-grid drawing is the minor of the O(p

√
q)×O(p

√
q) grid. By Lemma 4(i),

the treewidth of a planar graph excluding such a square grid, and thus H, has
treewidth O(p

√
q), which completes the proof of Theorem 1.

Using the constants in Lemma 3, 1, and 4(i), we can obtained a
more accurate upper bound on the treewidth for Theorem1, namely of
9
⌊
(2 +

√
2)

√
p · 3pq

⌋
/2 − 4 ≈ 27p

√
q.

5 Conclusion

In this paper, we establish a connection between the treewidth of a planar graph
G excluding as minor a graph H and the ability of poly-line grid-drawing of
H with small height. One of the consequences of our main result is that the
treewidth of every planar excluding such graph H is O(

√
r) where r = |V (H)|,

which is optimal. We also show that if H is outerplanar, then the bound slightly
increases to O(

√
r log r), leaving open the question of the optimality of this

bound.
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