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Abstract

It is known that every weighted planar graph with n vertices contains three shortest
paths whose removal halves the graph into connected components of at most n/2
vertices. Whether this property remains true with the use of two shortest paths
only is an open problem.

We show that two shortest paths are enough for a large family of planar graphs,
called face-separable, composed of graphs for which every induced subgraph can be
halved by removing the border of a face in some suitable embedding of the subgraph.
We also show that this non-trivial family of graphs includes unbounded treewidth
graphs.
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1 Motivation and Background

To solve a problem we often use data decompositions to simplify. The problem
is solved on the different parts. Then, we merge the different results to obtain
the desired result on the whole data. In Graph Theory, we try to divide graphs
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into connected components by the use of suitable separators, e.g., of small size.
In this study we are interested to separators composed of shortest paths in
the graph, and that halves its number of vertices. This leads to the notion of
k-path separability, introduced in [1].

Definition 1.1 A weighted graph G with n vertices is k-path separable if
there exists a subgraph S, called k-path separator, such that:

• S = P0 ∪ P1 ∪ . . ., where each subgraph Pi is the union of ki minimum cost
paths in G \ ⋃

j<i Pj where
∑

i ki ≤ k; and

• every connected component of G \S (if any) is k-path separable and has at
most n/2 vertices.

It has been shown in [1,4] that k-path separators can be efficiently used
to solve many “Object Location Problems” including small-worldization, dis-
tance and reachability oracles, compact routing.

Interestingly, treewidth-k graphs are �(k + 1)/2�-path separable. However,
the class of bounded path separability graphs is strictly larger than the one
of bounded treewidth, since planar graphs, that have unbounded treewidth,
are 3-path separable. This comes from the well-known fact that every planar
graph having a depth-h rooted tree has a tree-decomposition where each bag
consists of 3 paths of the tree starting from to the root (see [2][pp. 305] and [4]
for instance), and so is of treewidth at most 3h. More generally, H-minor free
graphs are k-path separable for some constant k = f(H) [1]. The proof is
based on the deep Robserton-Seymour’s decomposition [3].

The 2-path separability of planar graphs is an open question. In this paper
we show that a large class of planar graphs, called face-separable, is indeed 2-
path separable. We also show that the family of face-separable graphs contains
unbounded treewidth graphs.

2 Face-Separable Graphs

A subset S of vertices of a graph G is a face-separator, if each connected
component of G \ S has at most |V (G)|/2 vertices, and if there exists a plane
embedding of G such that S is the border of a face.

Definition 2.1 A graph is face-separable if every induced subgraph has a
face-separator.

By definition, outerplanar graphs are face-separable, since the outerface
contains all vertices of the graph, thus is a face-separator. We will see that
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the family of face-separable graphs includes less specific graphs, like the sub-
divisions of any outerplanar graph (Proposition 2.3), the subdivisions of K4,
and even includes some unbounded treewidth planar graphs (Theorem 2.4).

A k-path separator S is strong if S consists of one set of shortest paths, i.e.,
S = P0 in Definition 1.1. The graph is then called strongly k-path separable.
Obviously, every strongly k-path separable graph is k-path separable. From
the above discussion, planar graphs are strongly 3-path separable. However,
as shown in [1], there are K6-minor free graphs with n vertices that are 2-path
separable, but without any strong k-path separator with k < 1

3

√
n.

Theorem 2.2 Every face-separable weighted graph is strongly 2-path separa-
ble.

Roughly speaking, we root a shortest-path spanning tree at a vertex of
the face-separator. Then, we show that there must exist two vertices of the
face-separator whose paths in the tree leading to the root form a strong 2-path
separator S. Note that these two paths are not necessarily part of the face-
separator. The connected components of G \ S, where G is the input graph,
are also face-separable (by definition), so we can recurse on them, and show
that G is strongly 2-path separable.

Proposition 2.3 Every subdivision of any outerplanar graph is face-separable.

This can be proved by showing that every subdivision G of any outerplanar
graph has a tree-decomposition where each bag consists of the vertices of the
border of a face. And, it is well-known that any tree-decomposition has a bag
whose removal leaves in G only connected components of at most |V (G)|/2
vertices.

Subdivisions of outerplanar graph have treewidth at most two. Never-
theless, the family of face-separable graphs is a much wider. It contains un-
bounded treewidth graphs, as shown in Theorem 2.4.

Theorem 2.4 For every n, there is a face-separable graph with at most n
vertices whose treewidth is Ω(log log n).

The proof is based on the construction of a graph called Gp, for integral
p ≥ 1. It has treewidth k = p−O(log log p) because we can show it contains a
minor k× k grid, and the number of vertices of Gp is n < 22p

. In other words,

the treewidth of Gp is at least log log n − O(log(4) n).

Graph Gp is composed of a spanning tree Tp of depth p where each vertex
of depth i < p has exactly d(i) children, for some function d defined later.
Furthermore, for each depth i, a path linking all depth-i vertices is added

E. Diot, C. Gavoille / Electronic Notes in Discrete Mathematics 34 (2009) 549–552 551



to Tp to form Gp. Let us denote by L(i) the number of depth-i vertices in
Tp. The values L(i) and d(i) obey to the following induction: L(0) = 1 and
L(i) = L(i − 1) · d(i − 1), where d(i) =

∑i
j=0 L(j). The first values of L(i)

and d(i) are given in the table hereafter, and G4 is depicted on Fig. 1.

i 0 1 2 3 4 5 ...

L 1 1 2 8 96 10368 ...

d 1 2 4 12 108 10464 ...

Fig. 1. The graph G4 with 108 vertices.

To prove Theorem 2.4, we show that every subgraph H of Gp contains a
face-separator. One property we use is that in Gp, the number d(i) of children
for a vertex of depth i is at least the vertex number of the graph induced by
Ti−1. The key point is that H is either outerplanar, or there must exist a
vertex v of depth i in Tp such that all its children belongs to the border of the
outerface of H. In the first case, H is trivially face-separable. In the second
one, using the property on d(i), we derive that at least half the vertices of H
lie on the outerface.
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