
Theoretical Computer Science 399 (2008) 83–100
www.elsevier.com/locate/tcs

Fast deterministic distributed algorithms for sparse spanners

Bilel Derbel∗, Cyril Gavoille

Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France

Abstract

This paper concerns the efficient construction of sparse and low stretch spanners for unweighted arbitrary graphs with n nodes.
All previous deterministic distributed algorithms, for constant stretch spanners of o(n2) edges, have a running time Ω(nε) for
some constant ε > 0 depending on the stretch. Our deterministic distributed algorithms construct constant stretch spanners of
o(n2) edges in o(nε) time for any constant ε > 0.

More precisely, in Linial’s free model a.k.aLOCALmodel, we construct in nO(1/
√

log n) time, for every graph, a (3, 2)-spanner
of O(n3/2) edges, i.e., a spanning subgraph in which the distance is at most 3 times the distance of the original graph plus 2. The
result is extended to (αk , βk)-spanners with O(n1+1/k log k) edges for every integer parameter k ≥ 1, where αk +βk = O(klog2 5).
If the minimum degree of the graph is Ω(

√
n), then, in the same time complexity, a (5, 4)-spanner with O(n) edges can be

constructed.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Distributed algorithms; Graph spanners; Time complexity; Linial’s free model

1. Introduction

1.1. Motivations

This paper deals with deterministic distributed construction of sparse and low stretch graph spanners. Intuitively,
spanners can be thought of as a generalization of the concept of spanning trees. In fact, we look for a spanning
subgraph such that the distance between any two nodes in the subgraph is bounded by some constant times the
distance in the whole graph. More formally, H is an (α, β)-spanner of a graph G if H is a spanning subgraph of G,
and if dH (u, v) 6 α · dG(u, v) + β for all nodes u, v of G, where dX (u, v) denotes the distance from u to v in the
graph X . A pair (α, β) for which H is an (α, β)-spanner is called stretch of H , and the size of H is the number of its
edges. An α-spanner is short for an (α, 0)-spanner. The quality of a spanner refers to the trade-off between the stretch
and the size of the spanner.

The distributed model of computation we will be concerned with is Linial’s free model [27], a.k.a. LOCAL model
in [35]. In this model, communication is completely synchronous and reliable. At every time unit, each node may send
or receive a message of unlimited size to or from all its neighbors, and can locally compute any function. The model
also assumes that each node is equipped with a unique identifier. Much as PRAM algorithms in parallel computing
give a good indication of parallelism, the free model gives a good indication of the locality and distributed time.

∗ Corresponding address: LIFL, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France.
E-mail addresses: bilel.derbel@lifl.fr (B. Derbel), gavoille@labri.fr (C. Gavoille).

0304-3975/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.02.019

http://www.elsevier.com/locate/tcs
mailto:bilel.derbel@lifl.fr
mailto:gavoille@labri.fr
http://dx.doi.org/10.1016/j.tcs.2008.02.019

84 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

From a theoretical point of view, we are interested in the locality nature of constructing graph spanners, i.e.,
what spanners can we compute assuming only some local knowledge? The locality of a distributed problem is often
expressed in term of the time needed to resolve it. In fact, in the distributed setting, the best a node can do in O(t)
time units is to collect its t neighborhood. For instance, Θ(log∗ n) time are necessary and sufficient to compute a
maximal independent set for trees, bounded degree graphs, or bounded growth graphs with n nodes [11,22,28,23].
Results are known for other fundamental problems such as non-uniform coloring [2,34], minimum spanning tree
[17,18,30,29,36], small dominating set [26,39], and maximal matching [24,28].

Graph spanners are the basis of various applications in distributed systems. For instance, Peleg and Ullman [37]
establish the relationship between the quality of spanners, and the time and message complexity of network
synchronizers (see also [1,33]). Spanners are also implicitly used for the design of low stretch routing schemes with
compact tables [12,15,38,40,42], and appear in many parallel and distributed algorithms for computing approximate
shortest paths and for the design of compact data structures, a.k.a. distance oracles [9,21,41,43,10].

1.2. Related works

Sparse and low stretch spanners can be constructed from (d, c)-decomposition of Awerbuch and Peleg [6], that
is a partition of the graph into clusters of diameter at most d such that the graph obtained by contracting each
cluster can be properly c-colored. There are several deterministic algorithms for constructing (d, c)-decompositions
[3–5,34]. The resulting distributed algorithms provide O(k)-spanners of size O(n1+1/k), for any integral parameter
k > 1. However, these algorithms run in Ω(n1/k+ε) time, where ε = Ω(1/

√
log n), and provide a stretch at least

4k − 3.
Better stretch-size trade-offs exist but with an increasing time complexity. Recently, a deterministic distributed

algorithm has been proposed for constructing a (2k − 1)-spanner of size O(n1+1/k) in O(n1−1/k) time [14]. In
particular, 3-spanners of size O(n3/2) can be deterministically constructed in O(

√
n) time.

Elkin et al. [16,20,19] develop a distributed algorithm for (1 + ε, β)-spanners. The size is O(βn1+δ) whereas the
time is O(nδ), where β = β(δ, ε) is independent of n but grows super-polynomially in δ−1 and ε−1.

Randomized algorithms achieving better performances exist. Baswana et al. [8,7] gave a randomized algorithm
which computes respectively a (2k − 1)-spanner and a (k, k − 1)-spanner with expected size O(n1+1/k) in O(k) time.
The latter stretch-size trade-off is optimal since, according to an Erdös Conjecture verified for k = 1, 2, 3, 5 [44],
there are graphs with Ω(n1+1/k) edges and girth 2k + 2 (the length of the smallest induced cycle), thus for which
every (α, β)-spanner requires Ω(n1+1/k) edges if α + β < 2k + 1. However, as mentioned in [4], a randomized
solution might not be acceptable in some cases, especially for distributed computing applications. In the case of graph
spanners, deterministic algorithms that guarantee a high quality spanner are more than of a theoretical interest. Indeed,
one cannot just run a randomized distributed algorithm several times to guarantee a good decomposition, since it is
impossible to efficiently check the global quality of the spanner in the distributed model.

1.3. Main results

We consider unweighted undirected connected graphs with n nodes. All previous deterministic distributed
algorithms for O(1)-spanners of size o(n2) have a running time Ω(nε) for some constant ε > 0 depending on the
stretch. In this paper, we construct constant stretch spanners of size o(n2) in o(nε) time for any constant ε > 0.

More precisely, in the LOCAL model we construct in nO(1/
√

log n) time and for every graph a (3, 2)-spanner
of O(n3/2) edges. The result is extended to larger stretch spanners of size O(n1+1/k log k) for every k > 1. More
precisely, we obtain stretches (α(k), β(k)) which surprisingly depend on the positions of the first two leading 1’s in
the binary representation of k. A detailed analysis is made for any parameter k and we show that α(k) + β(k) is
essentially bounded by klog2 5. Furthermore, for all nodes u and v, the stretch bound on dG(u, v) depends on whether
dG(u, v) is even or odd. (See the table below. A wider table is available in Section 4.1).

k 1 2 3 4 5
dG(u, v) = 1 (1, 0) (3, 2) (7, 2) (13, 12) (25, 8)

dG(u, v) > 1 is even (1, 0) (3, 0) (7, 0) (13, 0) (25, 0)

dG(u, v) > 1 is odd (1, 0) (3, 2) (7, −2) (13, 12) (25, −8)

B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100 85

We also show that if the minimum degree of the graph is Ω(
√

n), then, in the same time complexity, a (5, 4)-
spanner with O(n) edges can be constructed.

Our deterministic algorithms have simple randomized versions with improved performances, i.e., O(log n) time
complexity. In particular, we can compute a (3, 2)-spanner of size O(n log2 n) in O(log n) time if the minimum degree
is Ω(

√
n).

1.4. Outline of the paper

The main idea to break the O(n1/k+ε) time barrier is to abandon the optimality on the stretch-size trade-off. We
show that constant stretch spanners can be constructed on the basis of a maximal independent set, i.e., a set of pairwise

non-adjacent nodes, maximal for inclusion. This can be deterministically computed in nO(1/
√

log n) time [4,34]. The
time complexity to construct low stretch spanners is improved by a factor of n1/k .

The generic algorithm is described in Section 2 and analyzed in Section 3, where a distributed implementation is
presented.

We reduce the problem to the computation of an independent ρ-dominating set, that is a set X of pairwise non-
adjacent nodes such that every node of the graph is at distance at most ρ from X . Using the terminology of [35], an
independent ρ-dominating set if nothing else than a (ρ, s)-ruling set1 for some s > 1. Actually, in order to optimize
the stretch, our algorithm combines two strategies in a way depending on the binary representation of k.

In Section 4, we present the main results about constant stretch spanners for general graphs. Observing that for
ρ = 1 an independent ρ-dominating set is a maximal independent set, we conclude that our generic algorithm can be

implemented to run in nO(1/
√

log n) time for ρ = 1. Several optimizations are then proposed including randomization
and graphs of large minimum degree.

2. A generic algorithm

In this section, we will describe a generic algorithm for constructing a spanner providing a good stretch-size trade-
off to be announced later in Section 3.

2.1. Definitions

Let us consider an unweighted undirected connected graph G = (V, E). Given an integer t > 1, the t th
power of G, denoted by G t , is the graph obtained from G by adding an edge between any two nodes at distance
at most t in G. For a set of nodes X , G[X] denotes the subgraph of G induced by X . For X, Y ⊆ V , let
dG(X, Y) = min {dG(x, y) | x ∈ X and y ∈ Y }.

We will associate with each node v ∈ V a region, denoted by R(v), that is a set of nodes containing v and
inducing a connected subgraph of G. Given U ⊆ V , GU denotes the graph whose node set is U , and there is an
edge between u and v in U if dG(R(u), R(v)) = 1. We denote by R+(v) = {u ∈ V | dG(u, R(v)) 6 1} and by
R+

U (v) = {u ∈ U | dG(R(u), R(v)) 6 1}.
With a node v, we will associate a color denoted by c(v). Roughly speaking, the color of a node determines the

region that the node belongs to.
The eccentricity of a node v in G is defined as maxu∈V {dG(u, v)}. For a node v ∈ X , we denote by BFS(v, X) an

arbitrary Breadth First Search spanning tree of G[X] rooted at v. We denote by IDS(G, ρ) an arbitrary independent
ρ-dominating set of G. Finally, we define the integer `(x) as follows:

`(x) =

{
−1 if x 6 0,⌊

log2 x
⌋

otherwise.

In the remainder of this paper we assume the LOCAL model of computation as defined in the introduction. We
define the time complexity of a distributed algorithm to be the worst-case number of time units from the beginning of
the algorithm to its termination.

1 That is a ρ-dominating set X such that dG (u, v) > s for all u 6= v ∈ X .

86 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

SPANNER

Input: a graph G = (V, E) with n = |V |, and integers ρ, k > 1
Output: a spanner S of G with O(n1+1/k log k) edges

1. i0 := `(k) − `(k − 2`(k)); U := V ; r = 0; ∀v ∈ V , R(v) := {v}, and c(v) := v

2. for i := 1 to `(k) + 1 do: if i = i0 then STRATEGY1 else STRATEGY2

Fig. 1. Algorithm SPANNER.

STRATEGY1

1. L :=
{
v ∈ U, |R+(v)| 6 n1/k

· |R(v)|
}

2. ∀(u, v) ∈ L × V such that ∃ edge e
between R(u) and v, S := S ∪ {e}

3. X := IDS(G2(r+1)
[U \ L], ρ)

4. ∀z ∈ V , if dG(z, X) 6 (2ρ + 1)r + 2ρ,
then set c(z) to be its closest node of X ,
breaking ties with identities

5. ∀v ∈ X , R(v) := {z ∈ V | c(z) = v}

6. ∀v ∈ X , S := S ∪ BFS(v, R(v))

7. U := X and r := (2ρ + 1)r + 2ρ

STRATEGY2

1. L :=
{
v ∈ U, |R+

U (v)| 6 n1/k
· |R(v)|

}
2. ∀(u, v) ∈ L × U such that ∃ edge e between

R(u) and R(v), S := S ∪ {e}
3. X := IDS(GU

2
[U \ L], ρ)

4. ∀u ∈ U , if dGU (u, X) 6 2ρ, then set c(u) to
be its closest node of X in GU , breaking ties
with identities

5. ∀v ∈ X , R(v) := {R(u) | u ∈ U, c(u) = v}

6. ∀v ∈ X , S := S ∪ BFS(v, R(v))

7. U := X and r := (4ρ + 1)r + 2ρ

Fig. 2. The two strategies.

2.2. Description of the algorithm

The algorithm constructs an efficient clustering of dense regions in the graph. A high level description of the
algorithm, named SPANNER, is given in Fig. 1. Intuitively, i0 represents the distance between the first two leading 1’s
in the binary representation of k. Typically i0 = |p − q| if k = 2p

+ 2q .
At each iteration of the main loop, one of the two strategies depicted applies (see Fig. 2). The two strategies are

very similar. The idea behind the two strategies is the same: choose some well-selected dense regions and merge them
with the other ones in order to form new larger regions. The difference is that the density of a region is computed in
a different way. The stretch of the output spanner depends on the way the radius of the regions increases and on the
total number of phases of the algorithm, depending on the volume of the regions. And, radius and volume increase
very differently.

Both strategies create or delete regions each one represented by a center. At the beginning of each phase, the set
of the region centers is U . There are two types of regions: the sparse regions and the dense regions. At a given phase,
some of the dense regions are selected and enlarged by including nodes from other neighboring regions. One important
observation is that each such enlarged region is connected and mutually disjoint.

On the one hand, in STRATEGY1, a region is dense if its neighborhood is n1/k times greater than its size. Applying
only STRATEGY1 allows us to obtain small stretch for small values of k. However, asymptotically, the stretch is
exponential in k. On the other hand, in STRATEGY2, a region is dense if the number of its neighboring regions is n1/k

times greater than its size which provides an exponential growth of the size of a region. Applying only STRATEGY2
allows us to obtain asymptotically stretches polynomial in k.

Algorithm SPANNER switches from one strategy to another at each phase in order to obtain the smallest possible
stretch. A full analysis shows that, by alternating STRATEGY1 and STRATEGY2, the best stretch can be obtained by
applying STRATEGY1 only once at a well-chosen phase i0.

We associate with each region R(v) a node, called center, and the set of centers forms U . Initially, each node is
the center of the region formed by itself. Each phase i ∈ {1, . . . , `(k) + 1} is decomposed in seven parts we briefly
sketch.

B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100 87

In Step 1, we partition the regions in sparse (their centers are denoted by L) and dense regions (denoted by
H = U \ L). In Step 2, a sparse region is connected with some neighboring nodes. This step is crucial in the
stretch bound analysis. If STRATEGY1 is applied, then each sparse region is connected with each neighboring node in
V . So, R+(u) is spanned for each u ∈ L . If STRATEGY2 is applied, then each sparse region is connected with every
neighboring region. Note that at the beginning of a given phase, every region is spanned by a BFS tree constructed in
Step 6 of the previous phase.

The centers in H are then processed at the aim of constructing new regions. The key point of our construction is to
efficiently merge all the regions whose centers are in H into more dense, connected and disjoint regions. In order to
guarantee that the algorithm terminates quickly, the dense regions must grow enough. More precisely, if a dense region
R(v) is enlarged it must contain at least its neighborhood R+(v) when STRATEGY1 is applied or its neighborhood in
the graph GU if STRATEGY2 is applied. It is clear that two regions at distance one or two (in G or in GU depending
on the strategy) cannot grow simultaneously without overlapping. Thus, the difficulty is to elect in an efficient way
the centers of regions that are allowed to grow in parallel.

In Step 3, we compute an independent ρ-dominating set X in the graph G2(r+1)
[H] if STRATEGY1 is applied (resp.

GU
2
[H] for STRATEGY2), where r is a radius that grows at each phase. The set X defines the set of center regions

allowed to grow in parallel.
In order to guarantee that nodes in non-selected regions in Step 3 (the set H \ X) will be spanned by the output

spanner, we must merge them with nodes in the selected regions. Thus, in Step 4, we define a coloring strategy
allowing a correct merge process. In fact, in order to ensure that the new regions are disjoint, we let nodes choose
their new region in a consistent manner, i.e., a node chooses to be in the region of the closest node in X breaking
ties using identities. If STRATEGY1 is applied then each node chooses by itself its dominator, i.e., its closest center
in X . However, once a node u chooses its dominator node v, and in order to ensure that the new formed regions
are connected, we include all the nodes in the shortest path between u and v, even those in non-dense region. If
STRATEGY2 is applied then, the center of each region chooses a dominating region and merge its whole region with
it.

In Step 5, the new regions are formed according to the coloring step 4. Note that as soon as the new region are
formed, they are spanned in Step 6. Finally, in Step 7, the set of active centers, U , and the variable r are updated for
the next phase.

3. Analysis of the algorithm

For every phase i in both strategies, we denote by L i (resp. X i) the set L (resp. X) computed during phase i , i.e.,
after Steps 1 and 3 of phase i . Similarly, we denote by ci (z) the color of z assigned during phase i , i.e., after Step 4 of
phase i . We denote by Ui the set U at the beginning of phase i , and ri denotes the value of r at the beginning of phase
i . Observe that Ui = X i−1 for every i > 1. For a node v ∈ Ui , we denote by Ri (v) the region of v at the beginning of
phase i .

The stretch analysis, which is the most technical part of the paper, is given in Section 3.2, and the size analysis is
given in Section 3.3. For these needs, four important properties are presented in the next Section 3.1.

3.1. Properties

Lemma 1. For every phase i , and for every v ∈ Ui , v is of eccentricity at most ri in G[Ri (v)].

Proof. We prove the lemma by induction. The lemma is clearly true for i = 1. Let us consider a node v ∈ Ui and a
node z ∈ Ri (v) at a given phase i > 1. We have Ui = X i−1. Thus, the region Ri (v) was computed in Step 5 of phase
i − 1.

– Case 1: STRATEGY1 is used at phase i − 1. Hence, using Step 5, for every node z ∈ Ri (v), z was colored
v at phase i − 1. Thus, ∀z ∈ Ri (v), ci−1(z) = v. Thus, from the coloring step, there exists a shortest path
P = (z = z1, z2, z3, . . . , zl , v) connecting z and v in G, with l 6 2(ρ + 1)ri−1 + 2ρ. Let us consider z j ∈ P with
1 6 j 6 l. Let us first note that dG(z j , v) 6 2(ρ + 1)ri−1 + 2ρ and v ∈ X i−1. Hence, z j has also chosen a color
at phase i − 1. Using the fact that the coloring is consistent, ci−1(z j) = v. Thus, using Step 5, P ⊆ Ri (v). Hence,
dG[Ri (v)](z, v) 6 2(ρ + 1)ri−1 + 2ρ = ri .

88 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

– Case 2: STRATEGY2 is used at phase i − 1. Hence, using Step 5, there exists u ∈ Ui−1 such that ci−1(u) = v and
z ∈ Ri−1(u). Using Step 4, there exists a path P in GUi−1 such that P = (u = u1, u2, . . . , ul = v) with l 6 2ρ.
From now, it is convenient for the proof of the lemma to view the path P as a directed path where u1 is the leftmost
node and ul is the rightmost one. From the definition of the graph GUi−1 , for every pair of successive nodes u j
and u j+1, there exists a pair of neighboring nodes z j and z j+1 such that z j ∈ Ri−1(u j), z j+1 ∈ Ri−1(u j+1)

and (z j , z j+1) ∈ E . Thus, dRi−1(u j)∪Ri−1(u j+1)(u j , u j+1) 6 dRi−1(u j)(u j , z j) + 1 + dRi−1(u j+1)(u j+1, z j+1). Thus,
using the induction hypothesis, dRi−1(u j)∪Ri−1(u j+1)(u j , u j+1) 6 2ri−1 + 1. Therefore, d∪16 j6l Ri−1(u j)(u1, ul) 6
2ρ ·(2ri−1+1) = 4ρ ·ri−1+2ρ. As we have z ∈ Ri−1(u = u1), then d∪16 j6l Ri−1(u j)(z, ul) 6 4ρ ·ri−1+2ρ+ri−1 =

(4ρ + 1)ri−1 + 2ρ.
Notice that ∀1 6 j 6 l, dGUi−1

(u j , v) 6 2ρ. Hence, u j has also chosen a color in Step 4 of phase i − 1.
Using the fact that the coloring is consistent, ci−1(u j) = v. Thus, ∀1 6 j 6 l, Ri−1(u j) ⊂ Ri (v). Therefore,
dR(v)(z, v) 6 (4ρ + 1)ri−1 + 2ρ. By Step 7, we have ri = (4ρ + 1)ri−1 + 2ρ which completes the proof. �

Lemma 2. For every phase i , and for every two nodes u 6= v ∈ Ui , Ri (u) ∩ Ri (v) = ∅.

Proof. We prove the lemma by induction. The lemma is clearly true for i = 1. Let us consider a phase i > 1, so
Ui = X i−1. Let us consider two nodes u 6= v ∈ Ui = X i1 .

– Case 1: STRATEGY1 is used at phase i − 1. Suppose that there exists z ∈ Ri (u) ∩ Ri (v). From Step 5 of phase
i − 1, we have: ci−1(z) = u and ci−1(z) = v. Thus, u = v which is a contradiction.

– Case 2: STRATEGY2 is used at phase i − 1. Suppose that there exists z ∈ Ri (u) ∩ Ri (v). From Step 5 of phase
i − 1, there exist w1, w2 ∈ Ui−1 such that ci−1(w1) = u and ci−1(w2) = v and z ∈ Ri−1(w1) ∩ Ri−1(w2). Using
the induction hypothesis, w1 = w2. Thus, ci−1(w1) = ci−1(w2) = u = v which is a contradiction.

Therefore for every two nodes u, v ∈ Ui such that u 6= v, Ri (u) ∩ Ri (v) = ∅, which completes the proof. �

Lemma 3. For every phase i 6= i0, if |Ri (v)| > V for every v ∈ Ui , then |Ri+1(w)| > n1/k
· V2 for every w ∈ Ui+1.

Proof. First, because i 6= i0, STRATEGY2 is applied at phase i . Note that Ui+1 = X i . Let w ∈ Ui+1 and
u ∈ R+

Ui
(w). Clearly, u ∈ Ui \ X i , otherwise the independence of set X i is violated. Suppose that there exists a

node v′ at distance 1 from u in the graph GUi . Thus, v′ is at distance 1 from w in GUi
2. Thus, v′

∈ Ui−1 \ X i−1,
otherwise the independence of set X i is violated. Therefore, w is the closest node in X i to u. Thus, ci (u) = w and
hence, Ri (u) ⊆ Ri+1(w). Therefore, by disjointness of the regions (Lemma 2), |Ri+1(w)| > |R+

Ui
(w)| · V, where

V = min {|Ri (u)|, u ∈ Ui and ci (u) = w} because |R+

Ui
(w)| is the radius-1 ball of Ri (w) in GUi . From Step 1 of

phase i , |R+

Ui
(v)| > n1/k

· |Ri (v)| for every v ∈ Ui+1, and therefore, for every v ∈ Ui+1, |Ri+1(v)| > n1/k
· V2. �

Lemma 4. For every node u ∈ V , there exists a phase i and a node v such that u ∈ Ri (v), and v ∈ L i ∩ Ui .

Proof. Let us denote by i1 = `(k) and i2 = `(k − 2`(k)), i.e., i0 = i1 − i2. Let Vi be the minimum size of any region
of a node in Ui .

First, let us show that

Claim 5. U`(k)+1 = L`(k)+1.

Proof. Note that L i ⊆ Ui for every i , so let us show that U`(k)+1 ⊆ L`(k)+1.

– Case 1: i2 = −1. Hence, i0 = `(k) + 1 and k = 2`(k). By induction and using Lemma 3, at the beginning of phase
i0, the size of the region of any node in Ui0 is at least Vi0 > n(2i0−1

−1)/k
= n(k−1)/k (because V1 = 1). Hence, for

every v ∈ Ui0 ,

n1/k
· |Ri0(v)| > n1/k

· n(k−1)/k
= n > |R+

i0
(v)|.

As STRATEGY1 is applied at phase i0, after Step 1, U`(k)+1 = L`(k)+1.

– Case 2: i2 > 0. We have Vi0 > n(2i0−1
−1)/k . At phase i0, we apply STRATEGY1. Thus, using the same arguments

than that in Lemma 3, the new enlarged regions constructed at phase i0 contain all their neighborhood (in G)
otherwise the independence of set X i0 is violated. Thus, Vi0+1 > n1/k

· Vi0 > n2i0−1/k .

B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100 89

· Subcase 2.1: i2 = 0. Then, i0 = i1 = `(k) and k = 2`(k)
+ 1. Thus,

n1/k
· V2

`(k)+1 > n(1+2`(k))/k
= n.

· Subcase 2.2: i2 6= 0. Then, by applying Lemma 3 to phase i going from i0 + 1 to `(k) + 1 (excluding `(k) + 1),
we have

V`(k)+1 > n1/k
· V2

`(k) > n1/k
·

(
n1/k

· V2
`(k)−1

)2
> · · · > n(1+21

+···+2 j−1)/k
· V2 j

`(k)+1− j

> n
∑(`(k)+1)−(i0+1)−1

j=0 2 j /k
· V2(`(k)+1)−(i0+1)

i0+1 > n(2`(k)−i0−1+2`(k)−1)/k .

Thus,
n1/k

· V2
`(k)+1 > n(1+2(2`(k)−i0−1+2`(k)−1))/k > n(2`(k)−i0+1

−1+2`(k))/k .

Note that `(k) − i0 + 1 = i1 − i0 + 1 = i2 + 1. Thus,
2`(k)−i0+1

− 1 + 2`(k)
= 2i2+1

+ 2i1 − 1 > k.

Thus, we get n1/k
· V2

`(k)+1 > n.
Hence, in both subcases, we have

n

V`(k)+1
6 n1/k

· V`(k)+1.

Now, let us take a node v ∈ U`(k)+1. Because STRATEGY2 is applied at phase `(k) + 1, v is in L`(k)+1 iff
|R+

U`(k)+1
(v)| 6 n1/k

· |R`(k)+1(v)|. Let us show that, in fact v is in L`(k)+1 . There is at least V`(k)+1 nodes in a
region, thus using Lemma 2, we have

|R+

U`(k)+1
(v)| 6

n

V`(k)+1
6 n1/k

· V`(k)+1 6 n1/k
· |R`(k)+1(v)|.

Thus, all nodes of U`(k)+1 are in L`(k)+1.

Therefore, in both cases, U`(k)+1 = L`(k)+1, completing the proof of the claim. �

We are now ready to prove Lemma 4.
Let us consider a node u ∈ V . At the beginning of the algorithm, the node u is also in U . If R(u) does not satisfy

the condition of Step 1 of the algorithm then u ∈ L1. Hence, the lemma is true. Otherwise, u participates in Step 3 and
u is at distance at most 2ρ from a node in X1. Thus, u joins the region of some other node u1 ∈ X1 ⊂ U2 (possibly
equal to u) and u ∈ R2(u1). Let us call u1 the new dominator of u. At the next phase i = 2, if u1 is in L2 then the
lemma holds. Otherwise, u1 participates in Step 3 and by Step 4, u will be in the region of a new dominator u2 ∈ U3.
By induction, one can show that, if the (i − 1)th dominator of u is still not in L i at phase i , then u will join the region
of a new dominator ui .

In the worst-case, the `(k)th dominator of u will be in L`(k)+1 in phase `(k) + 1. Thus, there must exist some node
v such that u is in the region of v at the beginning of some phase i , i.e., v is the (i − 1)th dominator of u, and v is in
the set L i computed in Step 1 of phase i . �

3.2. Stretch analysis

In the following, we denote i1 = `(k) and i2 = `(k − 2`(k)), i.e., i0 = i1 − i2.

Lemma 6. For every integer ρ > 1, and for every phase i , we have:

ri =

(4ρ + 1)i−1/2 − 1/2 if i 6 i0

(2ρ + 1)(4ρ + 1)i0−1/2 + ρ − 1/2 if i = i0 + 1
(2ρ + 1)(4ρ + 1)i−2/2 + ρ(4ρ + 1)i−i0−1

− 1/2 if i > i0 + 1.

Proof. Note that r1 = 0, so the result holds for i = 1. Assume i > 1. STRATEGY2 is applied until phase i0. So, for
every 1 < i 6 i0, ri = (4ρ + 1)ri−1 + 2ρ, and by induction we have

ri = (4ρ + 1) ·

(
(4ρ + 1)i−2/2 − 1/2

)
+ 2ρ = (4ρ + 1)i−1/2 − 1/2. (1)

90 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

Fig. 3. Stretch analysis for distance 1: Subcase 1.1 and Subcase 1.2.

In phase i0, STRATEGY1 is applied. Thus, ri0+1 = (2ρ + 1)ri0 + 2ρ. Applying Eq. (1) to i = i0, we obtain

ri0+1 = (2ρ + 1)
(
(4ρ + 1)i0−1/2 − 1/2

)
+ 2ρ (2)

= (2ρ + 1)(4ρ + 1)i0−1/2 + ρ − 1/2 . (3)

Assume now i > i0 + 1. STRATEGY2 is applied at each phase 6= i0, so ri = (4ρ + 1)ri−1 + 2ρ. By induction and by
plugging the value of ri0+1 from Eq. (3), we have

ri = (4ρ + 1)i−(i0+1)
· ri0+1 + (4ρ + 1)i−(i0+1)/2 − 1/2 (4)

= (4ρ + 1)i−(i0+1)
·

(
(2ρ + 1)(4ρ + 1)i0−1/2 + ρ − 1/2

)
+ (4ρ + 1)i−(i0+1)/2 − 1/2 (5)

= (2ρ + 1)(4ρ + 1)i−2/2 + ρ(4ρ + 1)i−i0−1
− 1/2. (6)

This completes the proof of the lemma. �

Lemma 7. Let z and z′ be two adjacent nodes of G. For all integers k, ρ > 1, the output spanner S of algorithm
SPANNER satisfies

dS(z, z′) 6

{
(4ρ + 1)`(k) if k = 2`(k)

2(2ρ + 1)(4ρ + 1)`(k)−1
+ 4ρ(4ρ + 1)`(k−2`(k))

− 1 otherwise.

Proof. Using Lemma 4, there exist a phase j and a node v such that z ∈ R j (v) and v ∈ U j ∩ L j . Similarly for z′,
there exist j ′ and v′ such that z′

∈ R j ′(v) and v ∈ U j ′ ∩ L j ′ . W.l.o.g. assume that j and j ′ are minimum, and that
j 6 j ′.

– Case 1: k = 2`(k), i.e., i2 = −1 and i0 = `(k)+ 1 and. By induction and using Lemma 3, at the beginning of phase
i0, the size of the region of any node in Ui0 is at least n(2i0−1

−1)/k
= n(k−1)/k . Note that we apply STRATEGY1 at

phase i0. Thus, every node in Ui0 is in L i0 .
· Subcase 1.1: j 6 j ′ < i0 (see Fig. 3, left-side). Thus, using Step 6, a BFS tree spanning R j (v) is added to

the output spanner at phase j − 1. In addition, one can easily show that there exists a node w ∈ U j such that
z′

∈ R j (w). Hence, a BFS tree spanning R j (w) is added to the output spanner at phase j − 1. Using Step 2
of STRATEGY2, there exists an edge e ∈ S connecting R j (v) and R j (w). Thus, dS(z, z′) 6 4r j + 1. Using
Lemma 6, dS(z, z′) 6 2(4ρ + 1) j−1

− 1.
· Subcase 1.2: j 6 j ′ = i0 (see Fig. 3, right-side). In this subcase, STRATEGY1 is applied at phase j ′.

Using Step 2, R+

j ′(v
′) is spanned. In addition, by Step 6, a BFS tree spanning R j ′(v

′) is added to the output

spanner at phase j ′ − 1. Thus, because z ∈ R+

j ′(v
′), dS(z, z′) 6 2r j ′ + 1 = 2ri0 + 1. Using Lemma 6,

dS(z, z′) 6 (4ρ + 1)i0−1.
Finally, because ρ > 0, in both subcases, the stretch is bounded by (4ρ + 1)`(k).

– Case 2: k 6= 2`(k), i.e., i2 > 0.
· Subcase 2.1: j 6= i0. Thus, it easy to show that there exists a node w ∈ U j such that z′

∈ R j (w). Using Step 6,
R j (w) and R j (v) were spanned by a BFS tree at phase j − 1. In addition, because STRATEGY2 is applied at
phase j , an edge e connecting R j (v) and R j (w) is added at phase j (Step 2). Thus, dS(z, z′) 6 4r j + 1.

· Subcase 2.2: j = i0. Thus, STRATEGY1 is applied at phase j and R+

j (v) is spanned by a BFS tree. Since

z′
∈ R+

j (v), we have dS(z, z′) 6 2r j + 1 = 2ri0 + 1.

B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100 91

Fig. 4. Stretch analysis for distance 2: Subcase 1.1 and Subcase 1.2.

Thus, the stretch is bounded by 4r`(k)+1 + 1. Using Lemma 6, we have:

4r`(k)+1 + 1 = 4
(

(4ρ + 1)i2 · ri0+1 +
1
2
((4ρ + 1)i2 − 1)

)
+ 1

= 2(2ρ + 1)(4ρ + 1)i1−1
+ 4ρ(4ρ + 1)i2 − 1. �

From Lemma 7, we can obtain a general bound for the stretch of the output spanner S of algorithm SPANNER.
However, in the next lemmas, by considering distance 2 and distance 3 nodes, we give a different analysis which
provides improved bounds.

Lemma 8. Let z1 and z′

1 (resp. z2 and z′

2) be two nodes at distance 2 (resp. at distance 3). For all integers k, ρ > 1,
if i0 = `(k) + 1, i.e., k = 2`(k), then the output spanner S of algorithm SPANNER satisfies:{

dS(z1, z′

1) 6 (4ρ + 1)`(k)
+ 1

dS(z2, z′

2) 6 2(4ρ + 1)`(k)
+ 1.

Proof. In the following proof, we shall keep in mind that in the case k = 2`(k), STRATEGY1 is applied in the last
phase `(k) + 1 = i0.

First let us study the stretch for the two nodes z1 and z′

1 satisfying dG(z1, z′

1) = 2. Let us consider a path (z1, z, z′

1)

of length 2 in G. Using Lemma 4, there exist a phase j (resp. j1 and j ′1) and a node v (resp. v1 and v′

1) such that
v ∈ U j (resp. v1 ∈ U j1 and v′

1 ∈ U j ′1
), z ∈ R j (v) (resp. z1 ∈ R j1(v1) and z′

1 ∈ R j ′1
(v′

1)) and v ∈ L j (resp. v1 ∈ L j1

and v′

1 ∈ L j ′1
). W.l.o.g. assume that j, j1, j ′1 are minimum.

In the following, we analyze of all possible cases.

– Case 1: j 6= i0, i.e., z belongs to a sparse region before the last phase `(k) + 1 = i0.
· Subcase 1.1: j 6 j1, and j 6 j ′1 (see Fig. 4, left-side). Let R j (w) and R j (w

′) the regions containing z1 and z′

1
at phase j . Since the regions R j (v), R j (w) and R j (w

′) are neighbors and using Step 2 of STRATEGY2, there
exist nodes y, y1, y′ and y′

1 (respectively in regions R j (v), R j (w), R j (v) and R j (w
′)) such that e1 = (y, y1) is

an edge in the spanner S connecting R j (v) with R j (w) and e′

1 = (y′, y′

1) is an edge in the spanner S connecting
R j (v) with R j (w

′). In addition, using Step 6, the regions R j (v), R j (w) and R j (w
′) were spanned by a BFS

tree in phase j − 1. Thus, we have:

dS(z1, z′

1) 6 dS(z1, v1) + dS(v1, y1) + dS(y1, y) + dS(y, v) + dS(v, y′)

+ dS(y′, y′

1) + dS(y′

1, v
′

1) + dS(v′

1, z′

1)

= r j + r j + 1 + r j + r j + 1 + r j + r j

6 6ri0−1 + 2.

· Subcase 1.2: j > j1, and j > j ′1 (see Fig. 4, right-side). W.l.o.g. assume that j1 6 j ′1. By construction, there
exists a node w such that z ∈ R j1(w), i.e., R j1(w) is the region containing z in phase j1. Since R j1(v1) and
R j1(w) are neighbors and using Step 2, there exist nodes y1 ∈ R j1(v1) and y ∈ R j1(w) such that (y, y1) is an
edge in the spanner S connecting R j1(w) and R j1(v1). Thus, using Step 6, we have:

dS(z1, y) 6 2r j1 + 1 6 2ri0−1.

92 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

Fig. 5. Stretch analysis for distance 2: Subcase 1.3 and Case 2.

Let us suppose that j ′1 > j1 and let us focus on the region R j1(w) containing both z and y. We only apply
STRATEGY2 in phases before phase j ′1 6 j < i0. Thus, at each phase where STRATEGY2 is applied, and
using Steps 4 and 5, the whole region R j1(w) is entirely merged with neighboring ones in order to form a
new enlarged region. Then, the new enlarged region is entirely merged with other regions and so on. Thus,
nodes z and y will always belong to the same region (which is connected). In particular, there exists a region
R j ′1

(w′) such that both z and y are in R j ′1
(w′). Since R j ′1

(v′

1) and R j ′1
(w′) are neighbors, there exist nodes

y′
∈ R j ′1

(w′) and y′

1 ∈ R j ′1
(w′) such that (y′, y′

1) is an edge of the output spanner S connecting R j ′1
(w′) and

R j ′1
(w′). Thus, dS(z′

1, y′) 6 2r j ′1
+ 1 6 2ri0−1 + 1. Using Step 6, R j ′1

(w′) is spanned by a BFS tree. Thus,
dS(y, y′) 6 2r j ′1

6 2ri0−1. Thus,

dS(z1, z′

1) 6 6ri0−1 + 2.

If j ′1 = j1, then it is easy to see that the region R j ′1
(v′

1) is connected to R j1(w) using an edge in the output
spanner. Hence, it is easy to find a path in S such that dS(z1, z′

1) 6 2r j1 + 1 + 2r j1 + 1 + 2r j1 = 6ri0−1 + 2.
· Subcase 1.3: j1 6 j 6 j ′1 (see Fig. 5, left-side) which is symmetric to j ′1 6 j 6 j1. Here, the only difference

with subcase 1.2 is that the region R j (v) becomes sparse before R j ′1
(v′

1). It is straightforward from the analysis
of subcase 1.2 and Fig. 5 (left-side) that: dS(z1, z′

1) 6 6ri0−1 + 2.
– Case 2: j = i0 (see Fig. 5, right-side). Thus, STRATEGY1 is applied at phase j . It is clear by Lemma 4 and the

analysis there that R j (v) ∈ L j=i0 . Thus, the neighborhood R+

j (v) of R j (v) is spanned by a BFS tree. Since,

z1, z′

1 ∈ R+

j (v), we get: dS(z1, z′

1) 6 2ri0 + 2.

Thus, in all cases, the following holds: dS(z1, z′

1) 6 max
{
2ri0 + 2, 6ri0−1 + 2

}
.

But ri0 = (4ρ + 1)ri0−1 + 2ρ. Hence,

dS(z1, z′

1) 6 max{2(4ρ + 1)ri0−1 + 4ρ + 2, 6ri0−1 + 2}

= 2ri0 + 2.

Using Lemma 6, we have dS(z1, z′

1) 6 2 · (1
2 ·

(
(4ρ + 1)i0−1

− 1
)
) + 2 = (4ρ + 1)`(k)

+ 1. This demonstrates the
lemma for the case of distance 2 nodes.

The case of distance 3 nodes z2 and z′

2 follows easily from Lemma 7. In fact, consider a node z in the shortest
path (in G) between z2 and z′

2. W.l.o.g, suppose that z is at distance 2 (resp. 1) from z2 (resp. from z′

2) in G. Then,
dS(z2, z′

2) 6 dS(z2, z) + dS(z, z′

2). Hence, using the previous bound for distance 2 nodes and Lemma 7, we have
dS(z2, z′

2) 6 (4ρ + 1)`(k)
+ 1 + (4ρ + 1)`(k). This concludes the proof. �

Lemma 9. Let z1 and z′

1 (resp. z2 and z′

2) be two nodes at distance 2 (resp. at distance 3). For all integers k, ρ > 1,
if i0 < `(k) + 1, then the output spanner S of algorithm SPANNER satisfies:{

dS(z1, z′

1) 6 3(2ρ + 1)(4ρ + 1)`(k)−1
+ 6ρ(4ρ + 1)`(k−2`(k))

− 1
dS(z2, z′

2) 6 4(2ρ + 1)(4ρ + 1)`(k)−1
+ 8ρ(4ρ + 1)`(k−2`(k))

− 1.

Proof. First let us study the stretch for the two nodes z1 and z′

1 which satisfy dG(z1, z′

1) = 2. Let us consider a path
(z1, z, z′

1) of length 2 in G. Using Lemma 4, there exists a phase j (resp. j1 and j ′1) and a node v (resp. v1 and v′

1)

B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100 93

Fig. 6. Stretch analysis for distance 2: j1 < i0 < j 6 j ′1.

such that v ∈ U j (resp. v1 ∈ U j1 and v′

1 ∈ U j ′1
), z ∈ R j (v) (resp. z1 ∈ R j1(v1) and z′

1 ∈ R j ′1
(v′

1)) and v ∈ L j (resp.
v1 ∈ L j1 and v′

1 ∈ L j ′1
). W.l.o.g. assume that j, j1, j ′1 are minimum.

– Case 1: j1 6 j 6 j ′1. Here the critical subcase is when j1 < i0 < j 6 j ′1 (see Fig. 6).
In fact, we can find two nodes y1 ∈ R j1(v1) and y2 ∈ R j1(w) where R j1(w) is the region containing z in phase

j1 such that the edge (y1, y2) is in the spanner. Then, the region R j1(w) is entirely merged with other regions until
phase i0. At phase i0 < j , it may happen that the region R j1(w) becomes broken into many parts and the nodes y1
and y2 become in two new different regions. Thus, it may happen that R j1(w) * R j (v). (This is the main difference
with the case k = 2`(k)). Nevertheless, we can find two nodes y3 ∈ R j (v) and y4 ∈ R j (w

′), where R j (w
′) is the

region containing z′

1 at phase j , such that the edge (y3, y4) is in the output spanner. Thus,

dS(z1, z′

1) 6 4r j1 + 1 + 4r j + 1 6 4ri0−1 + 1 + 4r`(k)+1 + 1.

In the other subcases (depending on the position of phase i0 compared with phases j1, j and j ′1), we have essentially
the same analysis as for the case k = 2`(k) and it is not difficult to show that dS(z1, z′

1) 6 6r`(k)+1 + 2. Thus, we
obtain:

dS(z1, z′

1) 6 max
{
6r`(k)+1 + 2, 4ri0−1 + 4r`(k)+1 + 2

}
.

– Other cases: By checking the other cases one by one, one can verify that the previous bound is still true.

Using Lemma 6 and by a simple checking, one can show that
(
6r`(k)+1 + 2

)
−

(
4ri0−1 + 4r`(k)+1 + 2

)
> 0. Using

Lemma 6 to compute 6r`(k)+1 + 2 concludes the proof of the lemma for distance 2 nodes.
Now, let us study the stretch for the two nodes z2 and z′

2 satisfying dG(z2, z′

2) = 2. Let us consider a path
(z2, z, z′, z′

2) of length 3 in G. Using Lemma 4, there exists a phase j (resp. j ′, j2 and j ′2) and a node v (resp. v′,
v2 and v′

2) such that v ∈ U j (resp. v′
∈ U j ′ , v2 ∈ U j2 and v′

2 ∈ U j ′2
), z ∈ R j (v) (resp. z ∈ R j ′(v

′), z2 ∈ R j2(v1) and
z′

2 ∈ R j ′2
(v′

2)) and v ∈ L j (resp. v′
∈ L j ′ , v2 ∈ L j2 and v′

2 ∈ L j ′2
). W.l.o.g. assume that j, j ′, j2, j ′2 are minimum.

There are too many cases to detail all of them. Thus, we will just give the bound obtained for each case. Using the
same ideas than previously, the reader can guess the path of S allowing to obtain the corresponding bound.

– Case 1: j2 6 j 6 j ′ 6 j ′2. The critical case is when j2 6 i0 6 j or j 6 i0 6 j ′. In fact, we have:
· If j2 < i0 6 j (see Fig. 7 left-side), then dS(z2, z′

2) 6 4r j2 + 1 + 2r j + 1 + 2r j ′ + 1 + 2r j ′ . Thus,
dS(z2, z′

2) 6 4ri0−1 + 6r`(k)+1 + 3.
· If j < i0 6 j ′ (see Fig. 7, right-side), then dS(z2, z′

2) 6 2r j2 + 1 + 2r j + 1 + 2r j + 2r j ′ + 1 + 2r j ′ . Thus,
dS(z2, z′

2) 6 6ri0−1 + 4r`(k)+1 + 3.
· Otherwise, one can easily see that dS(z2, z′

2) 6 8r`(k)+1 + 3. For instance, if j2 6 j 6 j ′ 6 j ′2 < i0 (or if
i0 < j2 6 j 6 j ′ 6 j ′2), then we have the situation depicted on Fig. 8 (left-side) which is the same that for

94 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

Fig. 7. Stretch analysis for distance 3 (k not power of 2): j2 < i0 6 j 6 j ′ 6 j ′2 (left), and j2 6 j < i0 6 j ′ 6 j ′2 (right).

Fig. 8. Stretch analysis for distance 3 (k not power of 2): j2 6 j 6 j ′ 6 j ′2 < i0 (left), and j2 6 j ′2 < i0 6 j ′ 6 j (right).

the case k power of 2. All the other subcases are very similar and are based on the observation that if two nodes
belong to the same region at phase i < i0 (resp. i > i0), then in any phase i ′ such that i < i ′ 6 i0 (resp. i < i ′)
the two nodes will still belong to a common region, i.e., a region is never broken by STRATEGY2.

– Case 2: j2 6 j 6 j ′2 6 j ′. Here, we obtain the same bounds as for Case 1.

– Case 3: j2 6 j ′2 6 j ′ 6 j . Here, the critical cases are:

· j ′2 < i0 and we have the situation of Fig. 8 (right-side). Thus, we obtain:
dS(z2, z′

2) 6 4r j2 + 1 + 4r j ′ + 1 + 4r j2 + 1 6 8ri0−1 + 4r`(k)+1 + 3
· j2 < i0 < j ′2 and we obtain dS(z2, z′

2) 6 4ri0−1 + 6r`(k)+1 + 3.

– Other cases: By studying all the remaining cases, we always get similar situations than that in the previous cases,
and it is not difficult to show that we obtain the same upper bounds.

At final, and in all cases, we have:

dS(z2, z′

2) 6 max
{

8r`(k)+1 + 3, 6ri0−1 + 4r`(k)+1 + 3, 4ri0−1 + 6r`(k)+1 + 3, 8ri0−1 + 4r`(k)+1 + 3
}
.

Thus, by a routine computation based on Lemma 6, one can check that:

dS(z2, z′

2) 6 8r`(k)+1 + 3 = 4(2ρ + 1)(4ρ + 1)`(k)−1
+ 8ρ(4ρ + 1)`(k−2`(k))

− 1. �

B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100 95

3.3. Size analysis

Lemma 10. For all integers k, ρ > 1, the size of the output spanner S of algorithm SPANNER is O(n1+1/k log k).

Proof. The output spanner S is updated in Steps 2 and 6 of each phase. Let us consider two consecutive phases i and
i − 1 and the edges added by Step 6 at phase i − 1 and the edges added by Step 2 at phase i > 1.

– Case 1: STRATEGY1 is applied at phase i . Thus, the number of edges is bounded by:∑
v∈L i

|BFS(v, Ri (v))| +

∑
v∈L i

|R+(v)| 6 n +

∑
v∈L i

|R+(v)|

6 n +

∑
v∈L i

n1/k
|Ri (v)|

6 n + n1+1/k .

– Case 2: STRATEGY2 is applied at phase i . Thus, the number of edges added is bounded by:∑
v∈L i

|BFS(v, Ri (v))| +

∑
v∈L i

|R+

Ui
(v)| 6 n + n1/k

∑
v∈L i

|Ri (v)|

6 n + n1+1/k .

Since there are O(log k) phases in the algorithm, the lemma is true. �

3.4. Distributed implementation and time complexity

In the LOCAL model, distributed computation of some distributed procedure A on G t
[H] can be easily simulated

on G as follows, charging the overall time by a factor of t . Hereafter, we assume that each node u ∈ G can determine
if it belongs or not to H . Indeed, consider one communication step in A running on some node u of G t

[H] followed
by one local computation step. In G, an original message in A is sent from u with a counter initialized to t − 1 as an
extra field. Now, each node v ∈ G, upon the reception of a message with some counter in its header: (1) decrements
the counter; (2) stores this message if v ∈ H ; and (3) forwards the incoming message with the updated counter to
all its neighbors in G if the updated counter is non-null (if many messages are received during a round, then they are
concatenated before being sent). After t communication rounds in G, every node u ∈ H starts the local computation
step of A on the base of all received messages during the last t communication rounds.

Similarly, given U ⊆ V , the computation of some distributed procedure A on GU can be simulated on G as
follows, charging the overall time by a factor O(r) where r is an upper bound of the eccentricity of a node v ∈ U in
G[R(v)]. At each time procedure A requires for a node v of GU to send a message to a neighbor, v broadcasts the
message in G[R(v)] (which is connected). The nodes at the frontier of R(v), i.e., nodes having neighbors in different
regions, also broadcasts the message out of their region. Symmetrically, upon the reception of messages from different
regions, messages are concatenated and a convergecast is performed to v. The time overhead for one step of A is at
most 2r + 1.

Relying on the above discussions, running procedure A on G2(r+1)
[H] or on GU

2
[H] can be simulated on G

within a factor of O(r) on the time complexity.

Lemma 11. For all integers k, ρ > 1, SPANNER can be implemented with a deterministic distributed algorithm in
kO(log ρ)

· τ time, where τ is the time complexity to compute an independent ρ-dominating set in a graph of at most n
nodes.

Proof. Let us first remark that in the LOCAL model, we can make the nodes know their entire p-neighborhood in
O(p) time. Therefore, any task which requires only information about p-neighborhood can be solved within O(p)

time.
Let us consider a fixed phase i 6 `(k). For every v ∈ U , Steps 1 and 6 of the algorithm can be implemented by

traversing R+

i (v) a constant number of times which is O(ri) time consuming. The time needed to run procedure IDS
on G2(ri +1)

[H] blows up by a factor of 2(ri + 1) as explained before. Thus, if STRATEGY1 is applied, then Step 3 is

96 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

O(ri · τ) time consuming. Similarly, the time complexity of procedure IDS on GU [H] blows up by a factor 2ri . Thus,
if STRATEGY2 is applied, Step 3 is O(ri · τ) time consuming.

Steps 4 and 5 can be implemented by letting each node exploring its O(2(ri + 1)ρ + ri)-neighborhood which is
O(ri) time consuming for fixed ρ. Finally, Step 7 is O(1) time consuming. Summing up among all steps, every phase
i 6 `(k) is O(ri · τ) time consuming.

At phase `(k) + 1, the set U \ L is empty and thus phase `(k) + 1 is O(r`(k)+1) time consuming.
Using Lemmas 1 and 6 and summing up among all phases, the time complexity of the algorithm is O((4ρ +

1)`(k)
· τ). Since `(k) = O(log k), the time complexity is bounded by ρO(log k)

· τ = kO(log ρ)
· τ which completes the

proof. �

4. Applications to low stretch spanners

4.1. Constant stretch spanners with subquadratic size

In this section we are interested in small values of k. The stretch is optimized for special values of k that are on the
form k = 2p

+ 2q
− 1 for integers p, q > 0. This include all powers of two (q = 0), and we observe that all integers

from 1 to 9, but 6, are on this form.
Let MIS(n) denote the time complexity for computing, by a deterministic distributed algorithm, a maximal

independent set (MIS) in a graph with at most n nodes. The fastest deterministic algorithm [34] shows that

MIS(n) 6 nO(1/
√

log n). It is also known that MIS(n) > Ω(
√

log n/ log log n) [24].
It is not difficult to check that a set X is an independent 1-dominating set if and only if X is a maximal independent

set (cf. [35, pp. 259, Ex. 4]). In this part we therefore concentrate our attention on ρ = 1. Thus, using the fast
distributed MIS algorithm as a subroutine in algorithm SPANNER with ρ = 1, we obtain:

Theorem 12. There is a deterministic distributed algorithm that given a graph G with n nodes and any integer
k = 2p

+ 2q
− 1 with p > q > 0, constructs a spanner for G with O(n1+1/k log k) edges in O(kO(1)MIS(n)) time,

with the following stretch properties, ∀u, v ∈ V :
If q = 0, i.e., k = 2p, then:

– If dG(u, v) is even, then: dS(u, v) 6 1
2 (5p

+ 1) · dG(u, v).
– Otherwise, dS(u, v) 6 1

2 (5p
+ 1) · dG(u, v) +

1
2 (5p

− 1).

If q > 0, then:

– If dG(u, v) = 1, then: dS(u, v) 6 6 · 5p−1
+ 4 · 5q−1

− 1.
– If dG(u, v) is even, then: dS(u, v) 6 1

2

(
9 · 5p−1

+ 6 · 5q−1
− 1

)
· dG(u, v).

– Otherwise, dS(u, v) 6 1
2

(
9 · 5p−1

+ 6 · 5q−1
− 1

)
· dG(u, v) −

1
2

(
3 · 5p−1

+ 2 · 5q−1
− 1

)
.

Proof. We just detail the stretch analysis, size and time which are direct consequences of Lemmas 3 and 11 for ρ = 1.
First, let us assume that q = 0, i.e., k = 2p

= 2`(k).
If dG(u, v) = 2t for some integer t > 0, then we consider a shortest path between u and v in G. This path can be

viewed as the sum of t segments of length 2 each. Now, using Lemma 8, the stretch of each segment is 5p
+ 1. Thus

dS(u, v) 6 (5p
+ 1) · t =

1
2 (5p

+ 1)dG(u, v) and the stretch bound for even distances holds.
If dG(u, v) = 2t + 1 for some integer t > 0, then we consider a shortest path between u and v in G. It can

be viewed as the sum of t − 1 > 0 segments of length 2, and a segment of length 3. Now, using Lemma 8,
the stretch of each even segment is 5p

+ 1 and the stretch of the length 3 segment is 2 · 5p
+ 1. In total,

dS(u, v) 6 (5p
+1)(t −1)+2·5p

+1 = (5p
+1)·(1

2 (dG(u, v)−1)−1)+2·5p
+1 =

1
2 (5p

+1)·dG(u, v)+ 1
2 (5p

−1),
and the stretch bound for odd distances holds.

If dG(u, v) = 1, then using Lemma 7, dS(u, v) 6 5p
=

1
2 (5p

+ 1) · dG(u, v) +
1
2 (5p

− 1).
Assume now that q > 0.
First, if p = q , then k = 2p+1

−1 =
∑p

j=0 2 j . Hence, `(k) = p and `(k−2`(k)) = `(2p+1
−1−2p) = `(2p

−1) =

p − 1. If p 6= q , then k = 2p
+

∑q−1
j=0 2 j . Hence, `(k) = p. In addition, `(k − 2`(k)) = `(2p

+ 2q
− 1 − 2p) =

`(2q
− 1) = q − 1.

B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100 97

k 1 2 3 4 5 7 8 9
(p, q) : i0 (0, 0) : 1 (1, 0) : 2 (1, 1) : 1 (2, 0) : 3 (2, 1) : 2 (2, 2) : 1 (3, 0) : 4 (3, 1) : 3

dG(u, v) = 1 (1, 0) (3, 2) (7, 2) (13, 12) (25, 8) (37, 12) (63, 62) (115, 38)

dG(u, v) > 1 is even (1, 0) (3, 0) (7, 0) (13, 0) (25, 0) (37, 0) (63, 0) (115, 0)

dG(u, v) > 1 is odd (1, 0) (3, 2) (7, −2) (13, 12) (25, −8) (37, −12) (63, 62) (115, −38)

Fig. 9. Stretches (αk , βk) for k = 2p
+ 2q

− 1.

If dG(u, v) = 1, the stretch bound is given by Lemma 7 (with ρ = 1).
If dG(u, v) = 2t for some t > 0, then by viewing the shortest path between u and v as a sum of segments of

length 2 and using Lemma 9, we have dS(u, v) 6 (9 ·5p−1
+6 ·5q−1

−1)t . Hence, the stretch bound for even distance
holds.

Otherwise, if dG(u, v) = 2t + 1 for some t > 0, then using Lemma 9, we have dS(u, v) 6 (9 · 5p−1
+ 6 · 5q−1

−

1)(t − 1) + (12 · 5p−1
+ 8 · 5q−1

− 1). Hence, the stretch bound for even distances also holds. �

For concreteness, stretches given by Theorem 12 are compiled in the table of Fig. 9 for k < 10. For k = 6, which
is not on the form 2p

+ 2q
− 1, the next entry (7) must be taken.

4.2. Graphs with large minimum degree

It is known that sparser spanners exist whenever the minimum degree increases (cf. the concluding remark of [7]).
In this paragraph, we show that graphs with minimum degree large enough enjoy an O(1)-spanner with only O(n)

edges, moreover computable with a fast deterministic distributed algorithm.
Let us first show that if a graph G has a ρ-dominating set of size γ (not necessarily independent), then in O(ρ)

time one can construct for G a O(ρ)-spanner with n+O(γ 2) edges. Indeed, assuming we are given such a dominating
set, the spanner can be constructed distributively in O(ρ) time by first clustering the nodes of the graph around the
nodes in the dominating set, and then by connecting every two neighboring clusters using one edge. The edges are
composed of n − γ edges for spanning all the regions, plus at most

(
γ
2

)
edges for connecting every pair of adjacent

regions. More formally we have:

Lemma 13. For every integer ρ > 1, there exists a deterministic distributed algorithm that given a graph G with
n nodes and a ρ-dominating set of size γ , constructs in O(ρ) time for G a (2ρ + 1, 2ρ)-spanner of size at most
n − γ +

(
γ
2

)
.

Proof. The size of the spanner and the time complexity of the construction are clear from the above explanations. Let
us detail the stretch analysis.

Consider any two nodes u, v at distance d in G, and consider a shortest path P = p0, . . . , pd connecting u = p0
to v = pd . Let W = w0, . . . , wt be a maximal subsequence of nodes in P such that w0 = p0, wt = pd , and such that
for every 0 < i < d , wi belongs to a region that contains none of the w j ’s with j < i . Finally, let ci denote the center
of the region containing wi . Note that dS(ci , wi) 6 ρ.

The key point is that there must exist an edge between the region of wi and the region of wi+1, for any 0 6 i < d.
Indeed, if not, then the subpath of P connecting wi to wi+1 traverses a third region of some node pm that appears
between the nodes wi and wi+1 in P: this contradicts the maximality of the sequence W .

In particular, there exists a path in S from ci to ci+1 of length at most 2ρ + 1. Therefore, between u = w0 and
v = wt there exists in S a path of the form: w0 c0 c1 · · · ct wt , where x y denotes a shortest path
in S going from x to y. The length of this path is at most ρ + (2ρ + 1) · t + ρ 6 (2ρ + 1) · d + 2ρ since t 6 d. Thus
we have proved that dS(u, v) 6 (2ρ + 1) · d + 2ρ, i.e., S is a (2ρ + 1, 2ρ)-spanner. �

This lemma can be combined with the observation that if G has minimum degree δ >
√

n log n, then G has a
1-dominating set X of size O(

√
n log n). Indeed, this can be proved using the following greedy algorithm [31]: one

starts with X = ∅ and with the set of all radius-1 balls, B = {N [v] | v ∈ V }, where N [v] = {u ∈ V | dG(u, v) 6 1}.
Then, while B is non-empty, one selects a node x ∈ V for X that belongs to the maximum number of balls in the
current set B. The set B is updated by removing all balls containing x . The constructed set X is a 1-dominating set
and it can be shown that |X | 6 n(1 + ln n)/ minv∈V |N [v]| which is at most O(

√
n log n) if δ >

√
n log n. Thus, the

problem is to efficiently compute such 1-dominating set.

98 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

Unfortunately, no deterministic distributed implementation of the greedy algorithm faster than that O(|X |) is
known. A small ρ-dominating set can be computed much more efficiently in O(ρ log∗ n) time by the algorithm of [26].
Unfortunately, its guaranteed size for X is only of O(n/ρ). Finally, no algorithm is known to run in o(

√
n log n) time

for this problem.
However, using our technique, we obtain a spanner with only O(n) edges, moreover with a better time complexity.

Theorem 14. There exists a deterministic distributed algorithm that given a graph G with n nodes and minimum
degree δ >

√
n, constructs a (5, 4)-spanner for G with at most 3n/2 edges in O(MIS(n)) time.

Proof. Notice that the size of a MIS of G2 is at most n/δ 6
√

n. Moreover, a MIS of G2 is a 2-dominating set. Since
constructing a MIS for the logical graph G2 takes O(MIS(n)) time, we conclude by applying Lemma 13 for ρ = 2
and γ 6

√
n. �

4.3. Randomized distributed implementation issues

In [32], Luby gives a simple and efficient randomized PRAM algorithm for computing a MIS in O(log n) expected
time. Luby’s algorithm can be turned to run in the distributed LOCAL model, and we obtain a distributed algorithm
for computing an independent 1-dominating set which terminates within O(log n) expected time. We remark that
upon termination of the algorithm, the constructed 1-dominating set is always correct, the randomization is only on
the running time, i.e., it is a Las Vegas algorithm.

Thus, we obtain the following randomized version of Theorem 12:

Theorem 15. There is a (Las Vegas) randomized distributed algorithm that given a graph G with n nodes and any
fixed integer k = 2p

+2q
−1 with p > q > 0, constructs a spanner for G with O(n1+1/k) edges in O(log n) expected

time, with the same stretch properties than that in Theorem 12.

Our (Las Vegas) randomized algorithms guarantee the stretch and the size bounds for the constructed spanners,
while the O(k) time (Monte Carlo) randomized algorithms [8] do not give any guarantee on the spanner size. This is
of course achieved at the price of increasing the stretch factor of the spanner.

Recently, in [25], Kuhn et al. show that every packing problem can be approximated by a constant factor with
high probability in O(log n) time in the LOCAL model. Therefore, the (Monte Carlo) algorithm of [25] implies a
randomized constant approximation algorithm for the minimum 1-dominating set problem with O(log n) time. Thus,
using Lemma 13, we obtain the following result (to be compared with Theorem 14 and [8]):

Theorem 16. There exists a (Monte Carlo) randomized distributed algorithm that given a graph G with n nodes of
minimum degree δ >

√
n, constructs a (3, 2)-spanner for G in O(log n) time. The size is O(n log2 n) edges with

high probability. More generally, for a minimum degree δ graph, we obtain a (3, 2)-spanner with O(n + (n log n/δ)2)

edges with high probability.

Let us remark that the stretch given in Theorem 16 is best possible: there are n-node graphs with minimum degree
δ = Ω(

√
n) for which any (α, β)-spanner with α + β < 5 requires Ω(n3/2) edges. Indeed, it is known that there are

n-node graphs with minimum degree at least 1
2

√
n and girth2 6. Thus, the deletion of any edge implies a stretch of

at least 5 for its endpoints. Therefore, any (α, β)-spanner with size less than 1
4 n

√
n requires α + β > 5. Since, for3

δ = ω(n1/4 log n) our spanner has O(n + (n log n/δ)2) = o(n
√

n) edges, its stretch (α, β) must satisfied α + β > 5.

5. Conclusion

In this paper we have considered deterministic distributed algorithms to construct low stretch and sparse spanners of
unweighted arbitrary graphs. In particular, we have shown that (3, 2)-spanner with O(n3/2) edges can be constructed

in nO(1/
√

log n) time. Let us observe that log n < n1/
√

log n only for n > 242
. In other words, deterministic distributed

2 The length of its smallest cycle.
3 The notation f (n) = ω(g(n)) means that g(n) = o(f (n)).

B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100 99

n1/
√

log n time algorithms might be competitive over randomized log n time algorithms for distributed systems of some
thousand processors.

Recently, [13] have showed that (3, 0)-spanner with O(n3/2) edges can be constructed in (deterministic) O(log n)

time. This leads to the question of determining whether it is possible to extended for every k > 2 this latter result to
a (2k − 1, 0)-spanner with O(n1+1/k) edges in O(f (k) log n) time, for some function f . Finally, we leave open the
natural question of determining the distributed time complexity of computing a O(k)-spanner with O(n1+1/k) edges.
Is the time complexity in o(log n)? or even in O(log∗ n)?

Acknowledgement

The authors were supported by the project “PairAPair” of the ACI Masses de Données.

References

[1] B. Awerbuch, Complexity of network synchronization, Journal of the Association for Computing Machinery 32 (1985) 804–823.
[2] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems, in: 19th

Annual ACM Symp. on Theory of Computing, STOC, ACM Press, 1987.
[3] B. Awerbuch, B. Berger, L.J. Cowen, D. Peleg, Near-linear cost sequential and distributed constructions of sparse neighborhood covers,

in: 34th Annual IEEE Symposium on Foundations of Computer Science, FOCS, IEEE Computer Society Press, 1993.
[4] B. Awerbuch, B. Berger, L.J. Cowen, D. Peleg, Fast distributed network decompositions and covers, Journal of Parallel and Distributed

Computing 39 (1996) 105–114.
[5] B. Awerbuch, B. Berger, L.J. Cowen, D. Peleg, Near-linear time construction of sparse neighborhood covers, SIAM Journal on Computing

28 (1) (1998) 263–277.
[6] B. Awerbuch, D. Peleg, Sparse partitions, in: 31th Annual IEEE Symposium on Foundations of Computer Science, FOCS, IEEE Computer

Society Press, 1990.
[7] S. Baswana, T. Kavitha, K. Mehlhorn, S. Pettie, New constructions of (α, β)-spanners and purely additive spanners, in: 16th Symposium on

Discrete Algorithms, SODA, ACM-SIAM, 2005.
[8] S. Baswana, S. Sen, A simple linear time algorithm for computing a (2k − 1)-spanner of O(n1+1/k) size in weighted graphs, in: 30th

International Colloquium on Automata, Languages and Programming, ICALP, in: Lecture Notes in Computer Science, vol. 2719, Springer,
2003.

[9] S. Baswana, S. Sen, Approximate distance oracles for unweighted graphs in Õ(n2) time, in: 15th Symposium on Discrete Algorithms, SODA,
ACM-SIAM, 2004.

[10] E. Cohen, Fast algorithms for constructing t-spanners and paths with stretch t , SIAM Journal on Computing 28 (1) (1998) 210–236.
[11] R. Cole, U. Vishkin, Deterministic coin tossing with applications to optimal parallel list ranking, Information and Control 70 (1) (1986) 32–53.
[12] L.J. Cowen, Compact routing with minimum stretch, Journal of Algorithms 38 (1) (2001) 170–183.
[13] B. Derbel, C. Gavoille, D. Peleg, Deterministic distributed construction of linear stretch spanners in polylogarithmic time, in: 21st International

Symposium on Distributed Computing, DISC, in: Lecture Notes in Computer Science, vol. 4731, Springer, 2007.
[14] B. Derbel, M. Mosbah, A. Zemmari, Fast distributed graph partition and application, in: 20th IEEE International Parallel & Distributed

Processing Symposium, IPDPS, IEEE Computer Society Press, 2006.
[15] T. Eilam, C. Gavoille, D. Peleg, Compact routing schemes with low stretch factor, Journal of Algorithms 46 (2003) 97–114.
[16] M. Elkin, Computing almost shortest paths, in: 20th Annual ACM Symp. on Principles of Distributed Computing, PODC, ACM Press, 2001.
[17] M. Elkin, A faster distributed protocol for constructing a minimum spanning tree, in: 15th Symp. on Discrete Algorithms, SODA, ACM-

SIAM, 2004.
[18] M. Elkin, Unconditional lower bounds on the time-approximation tradeoffs for the distributed minimum spanning tree problems, in: 36th

Annual ACM Symp. on Theory of Computing, STOC, ACM Press, 2004.
[19] M. Elkin, D. Peleg, (1 + ε, β)-spanner constructions for general graphs, SIAM Journal on Computing 33 (3) (2004) 608–631.
[20] M. Elkin, J. Zhang, Efficient algorithms for constructing (1 + ε, β)-spanners in the distributed and streaming models, in: 23rd Annual ACM

Symposium on Principles of Distributed Computing, PODC, ACM Press, 2004.
[21] C. Gavoille, D. Peleg, S. Pérennès, R. Raz, Distance labeling in graphs, Journal of Algorithms 53 (1) (2004) 85–112.
[22] A.V. Goldberg, S.A. Plotkin, G.E. Shannon, Parallel symmetry-breaking in sparse graphs, SIAM Journal on Discrete Mathematics 1 (4) (1988)

434–446.
[23] F. Kuhn, T. Moscibroda, T. Nieberg, R. Wattenhofer, Fast deterministic distributed maximal independent set computation on growth-bounded

graphs, in: 19th International Symposium on Distributed Computing, DISC, in: Lecture Notes in Computer Science, vol. 3724, Springer,
2005.

[24] F. Kuhn, T. Moscibroda, R. Wattenhofer, What cannot be computed locally! in: 23rd Annual ACM Symposium on Principles of Distributed
Computing, PODC, ACM Press, 2004.

[25] F. Kuhn, T. Moscibroda, R. Wattenhofer, The price of being near-sighted, in: 17th Symposium on Discrete Algorithms, SODA, ACM-SIAM,
2006.

[26] S. Kutten, D. Peleg, Fast distributed construction of small k-dominating sets and applications, Journal of Algorithms 28 (1) (1998) 40–66.

100 B. Derbel, C. Gavoille / Theoretical Computer Science 399 (2008) 83–100

[27] N. Linial, Distributive graph algorithms — Global solutions from local data, in: 28th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, IEEE Computer Society Press, 1987.

[28] N. Linial, Locality in distributed graphs algorithms, SIAM Journal on Computing 21 (1) (1992) 193–201.
[29] Z. Lotker, B. Patt-Shamir, E. Pavlov, D. Peleg, Minimum-weight spanning tree construction in O(log log n) communication rounds, SIAM

Journal on Discrete Mathematics 35 (1) (2005) 120–131.
[30] Z. Lotker, B. Patt-Shamir, D. Peleg, Distributed MST for constant diameter graphs, in: 20th Annual ACM Symposium on Principles of

Distributed Computing, PODC, ACM Press, 2001.
[31] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Mathematics 13 (1975) 383–390.
[32] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM Journal on Computing 15 (4) (1986) 1036–1053.
[33] S. Moran, S. Snir, Simple and efficient network decomposition and synchronization, Theoretical Computer Science 243 (1–2) (2000) 217–241.
[34] A. Panconesi, A. Srinivasan, On the complexity of distributed network decomposition, Journal of Algorithms 20 (2) (1996) 356–374.
[35] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, in: SIAM Monographs on Discrete Mathematics and Applications, 2000.
[36] D. Peleg, V. Rubinovich, A near-tight lower bound on the time complexity of distributed minimum-weight spanning tree construction, SIAM

Journal on Computing 30 (5) (2000) 1427–1442.
[37] D. Peleg, J.D. Ullman, An optimal synchornizer for the hypercube, SIAM Journal on Computing 18 (4) (1989) 740–747.
[38] D. Peleg, E. Upfal, A trade-off between space and efficiency for routing tables, Journal of the ACM 36 (3) (1989) 510–530.
[39] L.D. Penso, C.B. Valmir, A distributed algorithm to find k-dominating sets, Discrete Applied Mathematics 141 (1–3) (2004) 243–253.
[40] L. Roditty, M. Thorup, U. Zwick, Roundtrip spanners and roundtrip routing in directed graphs, in: 13th Symposium on Discrete Algorithms,

SODA, ACM-SIAM, 2002.
[41] L. Roditty, M. Thorup, U. Zwick, Deterministic constructions of approximate distance oracles and spanners, in: 32nd International Colloquium

on Automata, Languages and Programming, ICALP, in: Lecture Notes in Computer Science, vol. 3580, 2005.
[42] M. Thorup, U. Zwick, Compact routing schemes, in: 13th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA, ACM

Press, 2001.
[43] M. Thorup, U. Zwick, Approximate distance oracles, Journal of the ACM 52 (1) (2005) 1–24.
[44] R. Wenger, Extremal graphs with no C4’s, C6’s, or C10’s, Journal of Combinatorial Theory, Series B 52 (1) (1991) 113–116.

	Fast deterministic distributed algorithms for sparse spanners
	Introduction
	Motivations
	Related works
	Main results
	Outline of the paper

	A generic algorithm
	Definitions
	Description of the algorithm

	Analysis of the algorithm
	Properties
	Stretch analysis
	Size analysis
	Distributed implementation and time complexity

	Applications to low stretch spanners
	Constant stretch spanners with subquadratic size
	Graphs with large minimum degree
	Randomized distributed implementation issues

	Conclusion
	Acknowledgement
	References

