

Fast Deterministic Distributed Algorithms for Sparse Spanners

Bilel Derbel

(LaBRI, Bordeaux 1)

joint work with *Cyril Gavoille* (LaBRI, Bordeaux1)

03 June 2006

SIROCC006

Definition: *H* is a *k*-spanner of *G* if $H \subseteq G$ and $d_H(u, v) \leq k \cdot d_G(u, v) \quad \forall u, v \in V(G)$

SIROCCO06/03-07-06 B.DERBEL

Definition: *H* is a *k*-spanner of *G* if $H \subseteq G$ and $d_H(u, v) \leq k \cdot d_G(u, v) \quad \forall u, v \in V(G)$

- G is a 1-spanner of G
- A BFS spanning tree of G is a D-spanner of G.

Definition: *H* is a *k*-spanner of *G* if $H \subseteq G$ and $d_H(u, v) \leq k \cdot d_G(u, v) \quad \forall u, v \in V(G)$

Definition: *H* is a *k*-spanner of *G* if $H \subseteq G$ and $d_H(u, v) \leq k \cdot d_G(u, v) \quad \forall u, v \in V(G)$

- Model of computation = \mathcal{LOCAL} model
 - Iocality nature of a distributed problem
 - in 1 time unit, a node can send messages of unlimited size to its neighbours.
 - negligible time for local computations.

Definition: *H* is a *k*-spanner of *G* if $H \subseteq G$ and $d_H(u, v) \leq k \cdot d_G(u, v) \quad \forall u, v \in V(G)$

- Model of computation = \mathcal{LOCAL} model
- high quality = good stretch-size trade-offs

Definition: *H* is a *k*-spanner of *G* if $H \subseteq G$ and $d_H(u, v) \leq k \cdot d_G(u, v) \quad \forall u, v \in V(G)$

- Model of computation = \mathcal{LOCAL} model
- high quality = good stretch-size trade-offs
 - **[Folklore]** Every graph *G* has a (2k 1)-spanner with $O(n^{1+1/k})$ edges
 - this stretch-size trade-off is believed to be tight according to a girth conjecture by Erdos (proved for k = 1, 2, 3, 5).

Deterministic Constructions (A. Awerbuch, D. Peleg ...)

• $O(n^{\epsilon+1/k})$ time \Leftarrow Sparse covers and decompositions

Deterministic Constructions (A. Awerbuch, D. Peleg ...)

- $O(n^{\epsilon+1/k})$ time \Leftarrow Sparse covers and decompositions
 - $\implies O(k)$ -spanner with $O(n^{1+1/k})$ edges.

Deterministic Constructions (A. Awerbuch, D. Peleg ...)

- $O(n^{\epsilon+1/k})$ time \Leftarrow Sparse covers and decompositions
 - $\implies O(k)$ -spanner with $O(n^{1+1/k})$ edges.

Can we construct a constant stretch spanner with $o(n^2)$ edges in $O(n^{\epsilon})$ (deterministic) time?

Deterministic Constructions (A. Awerbuch, D. Peleg ...)

- $O(n^{\epsilon+1/k})$ time \Leftarrow Sparse covers and decompositions
 - $\implies O(k)$ -spanner with $O(n^{1+1/k})$ edges.

Can we construct a constant stretch spanner with $o(n^2)$ edges in $O(n^{\epsilon})$ (deterministic) time?

YES

T.

Main idea of our algorithm

- add edges to the spanner in *parallel* at different regions of the graph
- break the symmetry
- we use a maximal independent ρ -dominating set IDS(G)
 - •. $\forall u \in V, \exists v \in IDS(G) \text{ such that } d(u,v) \leq \rho.$
 - $\forall u, v \in IDS(G)$, $d(u, v) \ge 2$, i.e., $(u, v) \notin E$.
 - maximal for inclusion.
- a MIS is a maximal independent 1-dominating set

• if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then

- add the star $\mathcal{N}(v)$ to the spanner.
- delete v from G

• if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then

- add the star $\mathcal{N}(v)$ to the spanner.
- delete v from G
- find a maximal independent set I of G^2 .

• if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then

- add the star $\mathcal{N}(v)$ to the spanner.
- delete v from G

• find a maximal independent set I of G^2 .

$$\bullet \implies \forall u \in V, \, d(u, I) \leq 2$$

$$\bullet \implies |I| \le n/\sqrt{n} = \sqrt{n}$$

• if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then

- add the star $\mathcal{N}(v)$ to the spanner.
- delete v from G
- find a maximal independent set I of G^2 .

$$\blacksquare \implies \forall u \in V, d(u, I) \leq 2$$

$$\blacksquare \implies |I| \le n/\sqrt{n} = \sqrt{n}$$

• $\forall v \in I$, add a BFS tree of $\mathcal{N}_3(v)$ to the spanner

- if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then
 - add the star $\mathcal{N}(v)$ to the spanner.
 - delete v from G
- find a maximal independent set I of G^2 .

$$\bullet \implies \forall u \in V, \, d(u, I) \leq 2$$

$$\implies |I| \le n/\sqrt{n} = \sqrt{n}$$

- $\forall v \in I$, add a BFS tree of $\mathcal{N}_3(v)$ to the spanner
- Analysis : Let us consider an edge u, v

• if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then

- add the star $\mathcal{N}(v)$ to the spanner.
- delete v from G
- find a maximal independent set I of G^2 .

$$\bullet \implies \forall u \in V, d(u, I) \leq 2$$

 $\bullet \implies |I| \le n/\sqrt{n} = \sqrt{n}$

- $\forall v \in I$, add a BFS tree of $\mathcal{N}_3(v)$ to the spanner
- Analysis : Let us consider an edge u, v

• case 1 : $d_u \leq \sqrt{n} \Longrightarrow$ stretch = 1

• if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then

- add the star $\mathcal{N}(v)$ to the spanner.
- delete v from G
- find a maximal independent set I of G^2 .

$$\bullet \implies \forall u \in V, d(u, I) \leq 2$$

 $\bullet \implies |I| \le n/\sqrt{n} = \sqrt{n}$

- $\forall v \in I$, add a BFS tree of $\mathcal{N}_3(v)$ to the spanner
- Analysis : Let us consider an edge u, v
 - case 1 : $d_u \leq \sqrt{n} \Longrightarrow$ stretch = 1
 - case 2: $d_u > \sqrt{n}$ and $d_v > \sqrt{n} \Longrightarrow$ stretch = 5

- if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then
 - add the star $\mathcal{N}(v)$ to the spanner.
 - delete v from G
- find a maximal independent set I of G^2 .

$$\blacksquare \Longrightarrow \forall u \in V, \, d(u, I) \leq 2$$

$$\implies |I| \le n/\sqrt{n} = \sqrt{n}$$

- $\forall v \in I$, add a BFS tree of $\mathcal{N}_3(v)$ to the spanner
- Analysis
 - stretch = 5

• size =
$$n \cdot \sqrt{n} + \sqrt{n} \cdot n = O(n^{3/2})$$

• if the degree d_v of a node v verifies $d_v \leq \sqrt{n}$, then

- add the star $\mathcal{N}(v)$ to the spanner.
- delete v from G
- find a maximal independent set I of G^2 .

$$\bullet \implies \forall u \in V, \, d(u, I) \leq 2$$

$$\implies |I| \le n/\sqrt{n} = \sqrt{n}$$

- $\forall v \in I$, add a BFS tree of $\mathcal{N}_3(v)$ to the spanner
- Analysis
 - stretch = 5
 - size = $O(n^{3/2})$

5-spanner with $O(n^{3/2})$ edges.

• $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner.

• $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner. • find a MIS I of G^2 .

- $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner.
- find a MIS I of G^2 .

•
$$\implies |I| \le n/n^{1/3} = n^{2/3}$$

• $n \cdot n^{2/3} > n^{1+1/3}!$

- $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner.
- find a MIS I of G^2 .

•
$$\implies |I| \le n/n^{1/3} = n^{2/3}$$

• $n \cdot n^{2/3} > n^{1+1/3}!$

- $\forall v \in I$, construct the region R(v) of v
 - if $|\Gamma(R(v))| \le n^{1/3} |R(v)|$, then span $\Gamma(R(v))$ • $\Longrightarrow \sum |\Gamma(R(v))| \le n^{1/3} \sum |R(v)| = n^{1/3} \cdot n$

$$\implies \sum |\Gamma(R(v))| \le n^{1/3} \sum |R(v)| = n^{1/3} \cdot n^{1/3}$$

- $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner.
- find a MIS I of G^2 .

•
$$\implies |I| \le n/n^{1/3} = n^{2/3}$$

• $n \cdot n^{2/3} > n^{1+1/3}!$

- $\forall v \in I$, construct the region R(v) of v
- find a MIS I' of $G^6[I]$

$$\Longrightarrow \forall u \in I, d(u, I') \leq 6 \Longrightarrow \forall v \in V, d(v, I') \leq 8$$
$$\Longrightarrow |I'| \leq n/n^{2/3} = n^{1/3}$$

- $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner.
- find a MIS I of G^2 .

•
$$\implies |I| \le n/n^{1/3} = n^{2/3}$$

• $n \cdot n^{2/3} > n^{1+1/3}!$

- $\forall v \in I$, construct the region R(v) of v
- find a MIS I' of $G^6(I)$
- $\forall v \in I'$, add a BFS tree of $\mathcal{N}_9(v)$ to the spanner
 - stretch = $2 \cdot 8 + 1 = 17$

• $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner.

• find a MIS I of G^2 .

•
$$\implies |I| \le n/n^{1/3} = n^{2/3}$$

• $n \cdot n^{2/3} > n^{1+1/3}!$

• $\forall v \in I$, construct the region R(v) of v

• there are at most $n^{2/3}$ regions!

• $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner.

• find a MIS I of G^2 .

•
$$\implies |I| \le n/n^{1/3} = n^{2/3}$$

• $n \cdot n^{2/3} > n^{1+1/3}!$

- $\forall v \in I$, construct the region R(v) of v
 - there are at most $n^{2/3}$ regions!
- connect each two neighbouring regions

• size =
$$n + n^{2/3}n^{2/3} = O(n^{1+1/3})$$

• stretch = 2 + 2 + 1 + 2 + 2 = 9

• $d_v \leq n^{1/3} \Longrightarrow$ add the star $\mathcal{N}(v)$ to the spanner.

• find a MIS I of G^2 .

•
$$\implies |I| \le n/n^{1/3} = n^{2/3}$$

• $n \cdot n^{2/3} > n^{1+1/3}!$

- $\forall v \in I$, construct the region R(v) of v
 - there are at most $n^{2/3}$ regions!
- connect each two neighbouring regions
 - size = $n + n^{2/3}n^{2/3} = O(n^{1+1/3})$
 - stretch = 2 + 2 + 1 + 2 + 2 = 9
- sparsity condition using the number of neighbouring regions

Main idea : general framework

- associate a region R(v) to each node v
- select some regions to enlarge in parallel
 independent dominating set
- enlarge the dense regions
- merge the regions together in order to span all nodes in non selected regions

How to merge the regions?

• if R(v) is sparse, then span the edges of R(v)

How to decide if a region is sparse?

- 1. $L := \{ v \in C, |R^+(v)| \le n^{1/k} \cdot |R(v)| \}$ and $H := C \setminus L;$
- 2. $\forall (u,v) \in L \times V$ such that \exists edge e between R(u) and $v, S := S \cup \{e\}$
- **3.** $X := IDS(G^{2(r+1)}[H], \rho)$
- 4. $\forall z \in V$, if $d_G(z, X) \leq (2\rho + 1)r + 2\rho$, then set c(z) to be its closest node of X, breaking ties with identities.
- 5. $\forall v \in X, R(v) := \{z \in V \mid c(z) = v\}$
- 6. $\forall v \in X, S := S \cup BFS(v, R(v))$
- 7. C := X and $r := (2\rho + 1)r + 2\rho$

•
$$r := 3r + 2$$

• $|R(v)| > n^{1/k} |R(v)|$

- k steps
- exponential stretch

sparsity = the number of neighbouring regions

1.
$$L := \left\{ v \in C, |R_C^+(v)| \le n^{1/k} \cdot |R(v)| \right\}$$
 and $H := C \setminus L$

2. $\forall (u,v) \in L \times C$ such that \exists edge e between R(u) and R(v), $S := S \cup \{e\}$

3.
$$X := IDS((G_C)^2[H], \rho)$$

- 4. $\forall u \in C$, if $d_{G_C}(u, X) \leq 2\rho$, then set c(u) to be its closest node of X in G_C , breaking ties with identities.
- 5. $\forall v \in X, R(v) := \{R(u) \mid u \in C \text{ and } c(u) = v\}$
- 6. $\forall v \in X, S := S \cup BFS(v, R(v))$

7.
$$C := X$$
 and $r := (4\rho + 1)r + 2\rho$

•
$$r := 5r + 2$$

- $|R(v)| > n^{1/k} |R_{\min}|^2$
 - $\log(k)$ steps
 - polynomial stretch

General algorithm

Input : a graph G = (V, E) with n = |V|, and integers $\rho, k \ge 1$ Output : a spanner S1. $i_0 := i_1 - i_2$; C := V; r = 0; $\forall v \in V$, $R(v) := \{v\}$, and c(v) := v2. for i := 1 to $\lfloor \log_2 k \rfloor + 1$ do : if $i = i_0$ then STRATEGY 1 else STRATEGY 2

SIROCCO06/03-07-06 B.DERBEL

General algorithm

- the radius increases essentially in a similar way in both strategies
- the size of a region increases very quickly with STRATEGY₂

sparsity condition = $n^{2^{i_1}+2^{i_1-i_0+1}-1}$

Some Results

• if $k = 2^p \Longrightarrow i_0 = \text{last iteration}$ • stretch = $k^{\log 5} = k^{2.321\cdots}$ • size = $O(n^{1+1/k})$

Some Results

• if
$$k = 2^p \implies i_0 = \text{last iteration}$$

• stretch = $k^{\log 5} = k^{2.321\cdots}$
• size = $O(n^{1+1/k})$

• if
$$k = 2^p + 2^q - 1 \Longrightarrow i_0 = p - q + 1$$

• stretch = $6 \cdot 5^{p-1} + 4 \cdot 5^{q-1} - 1$
• size = $O(n^{1+1/k})$

Some Results

• if
$$k = 2^p \implies i_0 = \text{last iteration}$$

• stretch = $k^{\log 5} = k^{2.321\cdots}$
• size = $O(n^{1+1/k})$

• if
$$k = 2^p + 2^q - 1 \Longrightarrow i_0 = p - q + 1$$

• stretch = $6 \cdot 5^{p-1} + 4 \cdot 5^{q-1} - 1$
• size = $O(n^{1+1/k})$

k	1	2	3	4	5
s[k]	1	5	9	25	33

Distributed implementation

- \mathcal{LOCAL} model
 - MIS in the logical graphs $G^{O(r)}$ and $(G_C)^2[H]$
 - $O(r \cdot \tau)$ time consuming with τ the time needed to construct a MIS in G
 - forming the new regions = O(r) time consuming
 - constructing the BFS trees = O(r) time consuming
 - connecting the regions = O(r) time consuming
- Deterministic Implementation
 - $n^{O(1/\sqrt{\log n})}$ time consuming
- Randomised Implementation
 - $O(\log n)$ time consuming (Las Vegas)

Summary

	Time	k	2	3	4	5
our method	$O(n^{\epsilon})$	s[k]	5	9	25	33
sparse decomposition	$O(n^{\epsilon+1/k})$	4k - 2	6	10	14	18
best possible	?	2k - 1	3	5	7	9

Graphs with high minimum degree δ

- Suppose we are given a ρ -dominating set X of G
 - we can construct a $(4\rho+1)\text{-spanner}$ with $n+|X|^2/2$ edges in ρ time

Graphs with high minimum degree δ

- Suppose we are given a ρ -dominating set X of G
 - we can construct a $(4\rho + 1)$ -spanner with $n + |X|^2/2$ edges in ρ time
- If $\delta \ge \sqrt{n}$
 - we can construct a 9-spanner with 3n/2 edges
 - in O(MIS) deterministic time
 - in $O(\log n)$ expected time

Graphs with high minimum degree δ

- Suppose we are given a ρ -dominating set X of G
 - we can construct a $(4\rho + 1)$ -spanner with $n + |X|^2/2$ edges in ρ time
- If $\delta \ge \sqrt{n}$
 - we can construct a 9-spanner with 3n/2 edges
 - in O(MIS) deterministic time
 - in $O(\log n)$ expected time
 - we can construct a 5-spanner with $O(n \log^2 n)$ edges w.h.p in $O(\log n)$ time (*Monte Carlo*)
 - *G* has a dominating set with size $O(\sqrt{n \log n})$ (greedy technique)
 - we use the constant approximation algorithm of Khun et al [KMW](SODA 06)

T.

Concluding remarks

• The challenge is to efficiently construct an independent ρ -dominating set.

1

Concluding remarks

- The challenge is to efficiently construct an independent ρ -dominating set.
- Can we construct a 3-spanner using a MIS?
 - a more careful analysis shows that :
 - if $d_G(u,v)$ is even $\Longrightarrow d_H(u,v) \le 3 \cdot d_G(u,v)$
 - if $d_G(u,v)$ is odd $\Longrightarrow d_H(u,v) \leq 3 \cdot d_G(u,v) + 2$

Concluding remarks

- The challenge is to efficiently construct an independent ρ -dominating set.
- Can we construct a 3-spanner using a MIS?
 - a more careful analysis shows that :
 - if $d_G(u,v)$ is even $\Longrightarrow d_H(u,v) \le 3 \cdot d_G(u,v)$
 - if $d_G(u,v)$ is odd $\Longrightarrow d_H(u,v) \le 3 \cdot d_G(u,v) + 2$

Idea

THE END