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Problem
Definition: H is a k-spanner of G if H ⊆ G and
dH(u, v) ≤ k · dG(u, v) ∀u, v ∈ V (G)
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Problem
Definition: H is a k-spanner of G if H ⊆ G and
dH(u, v) ≤ k · dG(u, v) ∀u, v ∈ V (G)

G is a 1-spanner of G
A BFS spanning tree of G is a D-spanner of G.
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Problem
Definition: H is a k-spanner of G if H ⊆ G and
dH(u, v) ≤ k · dG(u, v) ∀u, v ∈ V (G)

We want to efficiently compute a high quality
spanner in a distributed way.
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Problem
Definition: H is a k-spanner of G if H ⊆ G and
dH(u, v) ≤ k · dG(u, v) ∀u, v ∈ V (G)

We want to efficiently compute a high quality
spanner in a distributed way.

Model of computation = LOCAL model
locality nature of a distributed problem
in 1 time unit, a node can send messages of unlimited
size to its neighbours.
negligible time for local computations.
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Problem
Definition: H is a k-spanner of G if H ⊆ G and
dH(u, v) ≤ k · dG(u, v) ∀u, v ∈ V (G)

We want to efficiently compute a high quality
spanner in a distributed way.

Model of computation = LOCAL model

high quality = good stretch-size trade-offs
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Problem
Definition: H is a k-spanner of G if H ⊆ G and
dH(u, v) ≤ k · dG(u, v) ∀u, v ∈ V (G)

We want to efficiently compute a high quality
spanner in a distributed way.

Model of computation = LOCAL model

high quality = good stretch-size trade-offs
[Folklore] Every graph G has a (2k − 1)-spanner with
O(n1+1/k) edges

this stretch-size trade-off is believed to be tight
according to a girth conjecture by Erdos (proved for
k = 1, 2, 3, 5).
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Problem

Deterministic Constructions (A. Awerbuch, D. Peleg ... )

O(nε+1/k) time ⇐= Sparse covers and decompositions
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Problem

Deterministic Constructions (A. Awerbuch, D. Peleg ... )

O(nε+1/k) time ⇐= Sparse covers and decompositions

=⇒ O(k)-spanner with O(n1+1/k) edges.
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Problem

Deterministic Constructions (A. Awerbuch, D. Peleg ... )

O(nε+1/k) time ⇐= Sparse covers and decompositions

=⇒ O(k)-spanner with O(n1+1/k) edges.

Can we construct a constant stretch spanner with
o(n2) edges in O(nε) (deterministic) time ?
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Problem

Deterministic Constructions (A. Awerbuch, D. Peleg ... )

O(nε+1/k) time ⇐= Sparse covers and decompositions

=⇒ O(k)-spanner with O(n1+1/k) edges.

Can we construct a constant stretch spanner with
o(n2) edges in O(nε) (deterministic) time ?

YES
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Main idea of our algorithm

add edges to the spanner in parallel at different regions
of the graph

break the symmetry

we use a maximal independent ρ-dominating set
IDS(G)

∀u ∈ V , ∃v ∈ IDS(G) such that d(u, v) ≤ ρ.
∀u, v ∈ IDS(G), d(u, v) ≥ 2, i.e., (u, v) /∈ E.
maximal for inclusion.

a MIS is a maximal independent 1-dominating set
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Main idea of our algorithm : k = 2

G
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

G
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

find a maximal independent set I of G2.

G
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

find a maximal independent set I of G2.
=⇒ ∀u ∈ V , d(u, I) ≤ 2

=⇒ |I| ≤ n/
√

n =
√

n

G

√
n
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

find a maximal independent set I of G2.
=⇒ ∀u ∈ V , d(u, I) ≤ 2

=⇒ |I| ≤ n/
√

n =
√

n
∀v ∈ I, add a BFS tree of N3(v) to the spanner

G

√
n
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

find a maximal independent set I of G2.
=⇒ ∀u ∈ V , d(u, I) ≤ 2

=⇒ |I| ≤ n/
√

n =
√

n
∀v ∈ I, add a BFS tree of N3(v) to the spanner
Analysis : Let us consider an edge u, v

u v
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

find a maximal independent set I of G2.
=⇒ ∀u ∈ V , d(u, I) ≤ 2

=⇒ |I| ≤ n/
√

n =
√

n
∀v ∈ I, add a BFS tree of N3(v) to the spanner
Analysis : Let us consider an edge u, v

case 1 : du ≤ √
n =⇒ stretch = 1

vdu ≤
√

n
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

find a maximal independent set I of G2.
=⇒ ∀u ∈ V , d(u, I) ≤ 2

=⇒ |I| ≤ n/
√

n =
√

n
∀v ∈ I, add a BFS tree of N3(v) to the spanner
Analysis : Let us consider an edge u, v

case 1 : du ≤ √
n =⇒ stretch = 1

case 2 : du >
√

n and dv >
√

n =⇒ stretch = 5

u v
w ∈ MIS(G2)
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

find a maximal independent set I of G2.
=⇒ ∀u ∈ V , d(u, I) ≤ 2

=⇒ |I| ≤ n/
√

n =
√

n
∀v ∈ I, add a BFS tree of N3(v) to the spanner
Analysis

stretch = 5
size = n · √n +

√
n · n = O(n3/2)
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Main idea of our algorithm : k = 2

if the degree dv of a node v verifies dv ≤ √
n, then

add the star N (v) to the spanner.
delete v from G

find a maximal independent set I of G2.
=⇒ ∀u ∈ V , d(u, I) ≤ 2

=⇒ |I| ≤ n/
√

n =
√

n
∀v ∈ I, add a BFS tree of N3(v) to the spanner
Analysis

stretch = 5
size = O(n3/2)

5-spanner with O(n3/2) edges.
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Main idea of our algorithm : k = 3

G
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.

G
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.
find a MIS I of G2.

G
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.
find a MIS I of G2.

=⇒ |I| ≤ n/n1/3 = n2/3

n · n2/3 > n1+1/3 !

G

n1/3
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.
find a MIS I of G2.

=⇒ |I| ≤ n/n1/3 = n2/3

n · n2/3 > n1+1/3 !
∀v ∈ I, construct the region R(v) of v

if |Γ(R(v))| ≤ n1/3|R(v)|, then span Γ(R(v))

=⇒ ∑ |Γ(R(v))| ≤ n1/3
∑ |R(v)| = n1/3 · n

G

n1/3
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.
find a MIS I of G2.

=⇒ |I| ≤ n/n1/3 = n2/3

n · n2/3 > n1+1/3 !
∀v ∈ I, construct the region R(v) of v
find a MIS I ′ of G6[I]

=⇒ ∀u ∈ I, d(u, I ′) ≤ 6 =⇒ ∀v ∈ V , d(v, I ′) ≤ 8

=⇒ |I ′| ≤ n/n2/3 = n1/3

G

n2/3
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.
find a MIS I of G2.

=⇒ |I| ≤ n/n1/3 = n2/3

n · n2/3 > n1+1/3 !
∀v ∈ I, construct the region R(v) of v
find a MIS I ′ of G6(I)
∀v ∈ I ′, add a BFS tree of N9(v) to the spanner

stretch = 2 · 8 + 1 = 17

G

n2/3
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.
find a MIS I of G2.

=⇒ |I| ≤ n/n1/3 = n2/3

n · n2/3 > n1+1/3 !
∀v ∈ I, construct the region R(v) of v

there are at most n2/3 regions !

G

n1/3
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.
find a MIS I of G2.

=⇒ |I| ≤ n/n1/3 = n2/3

n · n2/3 > n1+1/3 !
∀v ∈ I, construct the region R(v) of v

there are at most n2/3 regions !
connect each two neighbouring regions

size = n + n2/3n2/3 = O(n1+1/3)
stretch = 2 + 2 + 1 + 2 + 2 = 9

G

n1/3
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Main idea of our algorithm : k = 3

dv ≤ n1/3 =⇒ add the star N (v) to the spanner.
find a MIS I of G2.

=⇒ |I| ≤ n/n1/3 = n2/3

n · n2/3 > n1+1/3 !
∀v ∈ I, construct the region R(v) of v

there are at most n2/3 regions !
connect each two neighbouring regions

size = n + n2/3n2/3 = O(n1+1/3)
stretch = 2 + 2 + 1 + 2 + 2 = 9

sparsity condition using the number of neighbouring
regions
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Main idea : general framework
associate a region R(v) to each node v

select some regions to enlarge in parallel
independent dominating set

enlarge the dense regions

merge the regions together in order to span all nodes in
non selected regions

How to merge the regions ?

if R(v) is sparse, then span the edges of R(v)

How to decide if a region is sparse ?
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First strategy
sparsity = the neighbourhood of a region in G
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First strategy
sparsity = the neighbourhood of a region in G

r

SIROCCO06/03-07-06 B.DERBEL OFast Deterministic Distributed Algorithms for Sparse Spanners – p.8/16



First strategy
sparsity = the neighbourhood of a region in G

r

SIROCCO06/03-07-06 B.DERBEL OFast Deterministic Distributed Algorithms for Sparse Spanners – p.8/16



First strategy
sparsity = the neighbourhood of a region in G

2r+1

2r+2

r
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First strategy
sparsity = the neighbourhood of a region in G
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First strategy
sparsity = the neighbourhood of a region in G
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First strategy
sparsity = the neighbourhood of a region in G
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First strategy
sparsity = the neighbourhood of a region in G

3r+2
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First strategy
sparsity = the neighbourhood of a region in G

1. L :=
˘

v ∈ C, |R+(v)| ≤ n1/k · |R(v)|
¯

and H := C \ L ;
2. ∀(u, v) ∈ L × V such that ∃ edge e between R(u) and v, S := S ∪ {e}
3. X := IDS(G2(r+1)[H], ρ)

4. ∀z ∈ V , if dG(z, X) ≤ (2ρ + 1)r + 2ρ, then set c(z) to be its closest node
of X, breaking ties with identities.

5. ∀v ∈ X, R(v) := {z ∈ V | c(z) = v}
6. ∀v ∈ X, S := S ∪ BFS(v, R(v))

7. C := X and r := (2ρ + 1)r + 2ρ

r := 3r + 2
|R(v)| > n1/k|R(v)|

k steps
exponential stretch
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Second strategy
sparsity = the number of neighbouring regions
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Second strategy
sparsity = the number of neighbouring regions

r
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Second strategy
sparsity = the number of neighbouring regions
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Second strategy
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Second strategy
sparsity = the number of neighbouring regions
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Second strategy
sparsity = the number of neighbouring regions
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Second strategy
sparsity = the number of neighbouring regions

5r+2
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Second strategy
sparsity = the number of neighbouring regions

1. L :=
n

v ∈ C, |R+
C(v)| ≤ n1/k · |R(v)|

o

and H := C \ L

2. ∀(u, v) ∈ L × C such that ∃ edge e between R(u) and R(v), S := S ∪ {e}
3. X := IDS((GC)2[H], ρ)

4. ∀u ∈ C, if dGC
(u, X) ≤ 2ρ, then set c(u) to be its closest node of X in

GC , breaking ties with identities.
5. ∀v ∈ X, R(v) := {R(u) | u ∈ C and c(u) = v}
6. ∀v ∈ X, S := S ∪ BFS(v, R(v))

7. C := X and r := (4ρ + 1)r + 2ρ

r := 5r + 2
|R(v)| > n1/k|Rmin|2

log(k) steps
polynomial stretch
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General algorithm

i1

1 000 · · · 0000 0 1 ×××× · · ·

i0

i2

bin(k)

STRATEGY2 STRATEGY2

Input : a graph G = (V, E) with n = |V |, and integers ρ, k ≥ 1

Output : a spanner S

1. i0 := i1 − i2 ; C := V ; r = 0 ; ∀v ∈ V , R(v) := {v}, and c(v) := v

2. for i := 1 to blog2 kc + 1 do : if i = i0 then STRATEGY 1 else STRATEGY 2
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General algorithm

i1

1 000 · · · 0000 0 1 ×××× · · ·

i0

i2

bin(k)

STRATEGY2 STRATEGY2

the radius increases essentially in a similar way in both
strategies
the size of a region increases very quickly with
STRATEGY2

sparsity condition = n2i1+2i1−i0+1−1
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Some Results

if k = 2p =⇒ i0 = last iteration
stretch = klog 5 = k2.321···

size = O(n1+1/k)
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Some Results

if k = 2p =⇒ i0 = last iteration
stretch = klog 5 = k2.321···

size = O(n1+1/k)

if k = 2p + 2q − 1 =⇒ i0 = p − q + 1
stretch = 6 · 5p−1 + 4 · 5q−1 − 1
size = O(n1+1/k)
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Some Results

if k = 2p =⇒ i0 = last iteration
stretch = klog 5 = k2.321···

size = O(n1+1/k)

if k = 2p + 2q − 1 =⇒ i0 = p − q + 1
stretch = 6 · 5p−1 + 4 · 5q−1 − 1
size = O(n1+1/k)

k 1 2 3 4 5

s[k] 1 5 9 25 33
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Distributed implementation

LOCAL model
MIS in the logical graphs GO(r) and (GC)2[H]

O(r · τ) time consuming with τ the time needed to
construct a MIS in G

forming the new regions = O(r) time consuming
constructing the BFS trees = O(r) time consuming
connecting the regions = O(r) time consuming

Deterministic Implementation
nO(1/

√
log n) time consuming

Randomised Implementation
O(log n) time consuming (Las Vegas)
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Summary

our method

sparse decomposition

best possible

Time

O(nε)

O(nε+1/k)

?

k 2 3 4 5

s[k] 5 9 25 33

4k − 2 6 10 14 18

2k − 1 3 5 7 9
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Graphs with high minimum degree δ

Suppose we are given a ρ-dominating set X of G
we can construct a (4ρ + 1)-spanner with n + |X|2/2
edges in ρ time
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Graphs with high minimum degree δ

Suppose we are given a ρ-dominating set X of G
we can construct a (4ρ + 1)-spanner with n + |X|2/2
edges in ρ time

If δ ≥ √
n

we can construct a 9-spanner with 3n/2 edges
in O(MIS) deterministic time
in O(log n) expected time
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Graphs with high minimum degree δ

Suppose we are given a ρ-dominating set X of G
we can construct a (4ρ + 1)-spanner with n + |X|2/2
edges in ρ time

If δ ≥ √
n

we can construct a 9-spanner with 3n/2 edges
in O(MIS) deterministic time
in O(log n) expected time

we can construct a 5-spanner with O(n log2 n) edges
w.h.p in O(log n) time (Monte Carlo)

G has a dominating set with size O(
√

n log n)
(greedy technique)
we use the constant approximation algorithm of
Khun et al [KMW](SODA 06)
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Concluding remarks

The challenge is to efficiently construct an independent
ρ-dominating set.
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Concluding remarks

The challenge is to efficiently construct an independent
ρ-dominating set.
Can we construct a 3-spanner using a MIS ?

a more careful analysis shows that :
if dG(u, v) is even =⇒ dH(u, v) ≤ 3 · dG(u, v)
if dG(u, v) is odd =⇒ dH(u, v) ≤ 3 · dG(u, v) + 2
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Concluding remarks

The challenge is to efficiently construct an independent
ρ-dominating set.
Can we construct a 3-spanner using a MIS ?

a more careful analysis shows that :
if dG(u, v) is even =⇒ dH(u, v) ≤ 3 · dG(u, v)
if dG(u, v) is odd =⇒ dH(u, v) ≤ 3 · dG(u, v) + 2

Idea
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THE END
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