
Fast Deterministic Distributed Algorithms for

Sparse Spanners

Bilel Derbel and Cyril Gavoille?

LaBRI, Université Bordeaux 1
351, Cours de la Libération,

33405 Talence, France
{derbel,gavoille}@labri.fr

Abstract. This paper concerns the efficient construction of sparse and
low stretch spanners for unweighted arbitrary graphs with n nodes. All
previous deterministic distributed algorithms, for constant stretch span-
ner of o(n2) edges, have a running time Ω(nε) for some constant ε > 0
depending on the stretch. Our deterministic distributed algorithms con-
struct constant stretch spanners of o(n2) edges in o(nε) time for any
constant ε > 0.
More precisely, in the Linial’s free model, we construct in nO(1/

√

log n)

time, for every graph, a 5-spanner of O(n3/2) edges. The result is ex-
tended to O(k2.322)-spanners with O(n1+1/k) edges for every parameter
k > 1. If the minimum degree of the graph is Ω(

√
n), then, in the same

time complexity, a 9-spanner with O(n) edges can be constructed.

Key Words: distributed algorithms, graph spanners, time complexity,
Linial’s free model, deterministic and randomized algorithms

1 Introduction

This paper deals with deterministic distributed construction of sparse and low
stretch graph spanners. Intuitively, spanners can be thought of as a generaliza-
tion of the concept of a spanning tree. We look for a spanning subgraph such
that the distance between any two nodes in the subgraph is bounded by some
constant times the distance in the whole graph. More formally, H is a k-spanner
of a graph G if H is a spanning subgraph of G, and if dH(u, v) 6 k · dG(u, v)
for all nodes u, v of G, where dX (u, v) denotes the distance from u to v in the
graph X . The smallest k for which H is a k-spanner is called the stretch of H ,
and the size of H is its number of edges. The quality of a spanner refers to the
trade-off between the stretch and the size of the spanner.

The distributed model of computation we will be concerned with is the
Linial’s free model [26], also known as LOCAL model in [34]. In this model,
communication is completely synchronous and reliable. At every time unit, each
node may send or receive a message of unlimited size to or from all its neigh-
bors, and can locally compute any function. The model also assumes that each

? Supported by the project “PairAPair” of the ACI Masses de Données.

node is equipped with a unique identifier. Much as PRAM algorithms in parallel
computing give a good indication of parallelism, the free model gives a good
indication of the locality and distributed time.

From a theoretical point of view, we are interested in the locality nature of
constructing graph spanners, i.e., what spanners can we compute assuming only
some local knowledge? The locality of a distributed problem is often expressed
in term of the time needed to resolve it. In fact, in the distributed setting,
the best a node can do in O(t) time units is to collect its t neighborhood.
For instance, Θ(log∗ n) time are necessary and sufficient to compute a maximal
independent set for trees, bounded degree graphs, or bounded growth graphs
with n nodes [11, 21, 27, 22]. Results are known for other fundamental problems
such as non-uniform coloring [2, 33], minimum spanning tree [16, 17, 29, 28, 35],
small dominating set [25, 38], and maximal matching [23, 27].

Graph spanners are in the basis of various applications in distributed systems.
For instance, Peleg and Ullman [36] establish the relationship between the quality
of spanners, and the time and message complexity of network synchronizers (see
also [1, 32]). Spanners are also implicitly used for the design of low stretch routing
schemes with compact tables [12, 14, 37, 39, 41], and appear in many parallel and
distributed algorithms for computing approximate shortest paths and for the
design of compact data-structures, a.k.a. distance oracles [9, 20, 40, 42, 10].

1.1 Related Works

Sparse and low stretch spanners can be constructed from (d, c)-decomposition
of Awerbuch and Peleg [6], that is a partition of the graph into clusters of di-
ameter at most d such that the graph obtained by contracting each cluster can
be properly c-colored. There are several deterministic algorithms for construct-
ing (d, c)-decompositions [3–5, 33]. The resulting distributed algorithms provide
O(k)-spanners of size O(n1+1/k), for any integral parameter k > 1. However,
these algorithms run in Ω(n1/k+ε) time, where ε = Ω(1/

√
log n), and provide a

stretch s > 4k − 3.
Better stretch-size trade-offs exist but with an increasing time complexity.

Recently, a deterministic distributed algorithm has been proposed for construct-
ing a (2k − 1)-spanner of size O(n1+1/k) in O(n1−1/k) time [13]. In particular,
3-spanners of size O(n3/2) can be deterministically constructed in O(

√
n) time.

Elkin et al. [15, 19, 18] develop a distributed algorithm for spanners such that
the distance between two nodes in the spanner is at most 1+ε times the distance
in the original graph plus β. The size is O(βn1+δ) whereas the time is O(nδ),
where β = β(δ, ε) is independent of n but grows super-polynomially in δ−1 and
ε−1.

Randomized algorithms achieving better performances exist. Baswana et
al. [8, 7] gave a randomized algorithm which computes an optimal (2k − 1)-
spanner with expected size O(n1+1/k) in O(k) time. The latter stretch-size
trade-off is optimal since, according to an Erdös Conjecture verified for k =
1, 2, 3, 5 [43], there are graphs with Ω(n1+1/k) edges and girth 2k +2 (the length
of the smallest induced cycle), thus for which every s-spanner requires Ω(n1+1/k)

edges if s < 2k + 1. However, as mentioned in [4], a randomized solution might
not be acceptable in some cases, especially for distributed computing applica-
tions. In the case of graph spanners, deterministic algorithms that guarantee a
high quality spanner are more than of a theoretical interest. Indeed, one cannot
just run a randomized distributed algorithm several times to guarantee a good
decomposition, since it is impossible to efficiently check the global quality of the
spanner in the distributed model.

1.2 Results

We consider unweighted connected graphs with n nodes. All previous determin-
istic distributed algorithm for O(1)-spanner of size o(n2) have a running time
Ω(nδ) for some constant δ > 0 depending on the stretch. In this paper we
construct constant stretch spanner of size o(n2) in o(nε) time for any constant
ε > 0.

More precisely, in the free model we construct in nO(1/
√

log n) time for every
graph a 5-spanner of O(n3/2) edges. The result is extended to larger stretch
spanner of size O(n1+1/k) for every k > 1. More precisely, for k power of two,
the stretch is at most klog2 5 < k2.322. For other values of k, we obtain stretches
s = s(k) which surprisingly depend on the positions of the first two leading 1’s
in the binary written of k (cf. the table below for the first values).

k 1 2 3 4 5

s(k) 1 5 9 25 33

We also show that if the minimum degree of the graph is Ω(
√

n), then, in
the same time complexity, a 9-spanner with O(n) edges can be constructed.

The previous algorithms have simple randomized versions with improved
performances. In particular, we can compute a 5-spanner of size O(n log2 n) in
O(log n) time if the minimum degree is Ω(

√
n).

1.3 Outline of the paper

The main idea to break the O(nδ) time barrier is to abandon the optimality
on the stretch-size trade-off. We show that constant stretch spanners can be
constructed on the basis of a maximal independent set, i.e., a set of pairwise
non-adjacent nodes, maximal for inclusion. This can be deterministically com-
puted in nO(1/

√
log n) time [4, 33]. Therefore, the time complexity to construct

our spanners is improved by a factor of n1/k.
The generic algorithm is described in Section 2 and analyzed in Section 3,

where a distributed implementation is presented.
We mainly reduce the problem to the computation of an independent ρ-

dominating set, that is a set X of pairwise non-adjacent nodes such that every
node of the graph is at distance at most ρ from X . Using the terminology of [34],
a ρ-dominating set if nothing else than a (ρ, s)-ruling set for some s > 1. Actually,

in order to optimize the stretch, the main algorithm combines two strategies in
a way depending on the binary written of k.

In Section 4, we present the main results about 5- and 9-spanners. Observing
that for ρ = 1 an independent ρ-dominating set is a maximal independent set, we
conclude that our generic algorithm can be implemented to run in nO(1/

√
log n)

time for ρ = 1. Several optimizations are then proposed including randomization
and graphs of large minimum degree.

2 A Generic Algorithm

2.1 Definitions

Let us consider an unweighted connected graph G = (V, E). Given an integer
t > 1, the t-th power of G, denoted by Gt, is the graph obtained from G by
adding an edge between any two nodes at distance at most t in G. For a set
of nodes H , G[H] denotes the subgraph of G induced by H . For X, Y ⊆ V , let
dG(X, Y) = min {dG(x, y) | x ∈ X and y ∈ Y }.

We associate with each v ∈ V a region, denoted by R(v), that is a set of
nodes containing v and inducing a connected subgraph of G. Given C ⊆ V , GC

denotes the graph whose node set is C, and there is an edge between u and v in
C if dG(R(v), R(u)) = 1. We denote by R+(v) = {u ∈ V | dG(u, R(v)) 6 1} and
by R+

C(v) = {u ∈ C | dG(R(u), R(v)) 6 1}.
The eccentricity of a node v in G is defined as maxu∈V {dG(u, v)}. For a

node v ∈ X , we denote by BFS(v, X) a Breadth First Search spanning tree in
X rooted at v. We define IDS(G, ρ) as any independent ρ-dominating set of G.
Finally, we define the integer `(x) as follows:

`(x) =

{

−1 if x 6 0,
blog2 xc otherwise.

In the reminder of the paper we assume the free model of computation as
defined in the introduction. We define the time complexity of a distributed al-
gorithm to be the worst-case number of time units from the beginning of the
algorithm to its termination.

2.2 Description of the algorithm

The main idea of the algorithm is to find an efficient clustering of dense regions
in the graph. A high level description of the algorithm, named Spanner, is given
in Fig. 1. Intuitively, i0 represents the relative position of the first two leading
1’s in the binary written of k.

The algorithm works in many phases, where new regions are formed at each
phase. There are two types: the light regions (L) and the heavy regions (H). At
a given phase, some of the heavy regions are selected and enlarged by including
nodes from other neighboring regions. One important observation is that each

Spanner

Input : a graph G = (V, E) with n = |V |, and integers ρ, k > 1
Output : a spanner S

1. i0 := `(k)−`(k−2`(k)); C := V ; r = 0; ∀v ∈ V , R(v) := {v}, and c(v) := v

2. for i := 1 to `(k) + 1 do: if i = i0 then Strategy 1 else Strategy 2

Fig. 1. The algorithm Spanner.

new enlarged region is connected and the new constructed regions are mutually
disjoint.

At each phase of the algorithm, one of the two strategies depicted in Fig. 2
and Fig. 3 applies. The main idea behind the two strategies is the same: choose
some well selected dense regions and merge them with the other ones in order
to form new larger regions. The main difference is that the density of a region
is computed in a different way. The stretch of the output spanner depends on
the way the radius of the regions increases and on the total number of phases of
the algorithm, depending on the volume of the regions. And, radius and volume
increase very differently.

On one hand, in Strategy 1, a region is dense if its neighborhood is n1/k

times greater than its size. Applying only Strategy 1 allows to obtain small
stretch for small values of k. However, asymptotically, the stretch is exponential
in k. On the other hand, in Strategy 2, a region is dense if the number of
its neighboring regions is n1/k times greater than its size which provides an
exponential growth of the size of a region. Applying only Strategy 2 allows to
obtain asymptotically stretches polynomial in k.

The main idea of algorithm Spanner is to switch from one strategy to an
other at each phase in order to obtain the smallest possible stretch. A full analysis
shows that, by alternating Strategy 1 and Strategy 2, the best stretch can be
obtained by applying Strategy 1 only once at a well chosen phase i0. Typically,
i0 = p − q if k = 2p + 2q with p > q.

We associate with each region R(v) an active node, called center, and the
set of centers forms C. Initially, each node is the center of the region formed
by itself. Each phase i ∈ {1, . . . , `(k) + 1} can be decomposed in seven parts we
briefly sketch.

In Step 1, we compute the two sets H and L corresponding respectively to
heavy and light regions. In Step 2, a light region is connected with some neigh-
boring nodes. This step is crucial in the stretch bound analysis. If Strategy 1
is applied, then each light region is connected with each neighboring node in
V , i.e., ∀u ∈ L, R+(u) is spanned. If Strategy 2 is applied, then each light
region is connected with every neighboring region. Note that at the beginning
of a given phase, every region is spanned by a BFS tree constructed in Step 6 of
the previous phase.

1. L :=
n

v ∈ C, |R+(v)| 6 n1/k · |R(v)|
o

and H := C \ L;

2. ∀(u, v) ∈ L × V such that ∃ edge e between R(u) and v, S := S ∪ {e}
3. X := IDS(G2(r+1)[H], ρ)
4. ∀z ∈ V , if dG(z, X) 6 (2ρ + 1)r + 2ρ, then set c(z) to be its closest node

of X, breaking ties with identities.
5. ∀v ∈ X, R(v) := {z ∈ V | c(z) = v}
6. ∀v ∈ X, S := S ∪ BFS(v, R(v))
7. C := X and r := (2ρ + 1)r + 2ρ

Fig. 2. Strategy 1.

1. L :=
n

v ∈ C, |R+
C(v)| 6 n1/k · |R(v)|

o

and H := C \ L

2. ∀(u, v) ∈ L × C such that ∃ edge e between R(u) and R(v), S := S ∪ {e}
3. X := IDS((GC)2[H], ρ)
4. ∀u ∈ C, if dGC

(u, X) 6 2ρ, then set c(u) to be its closest node of X in
GC , breaking ties with identities.

5. ∀v ∈ X, R(v) := {R(u) | u ∈ C and c(u) = v}
6. ∀v ∈ X, S := S ∪ BFS(v, R(v))
7. C := X and r := (4ρ + 1)r + 2ρ

Fig. 3. Strategy 2.

The nodes H are then processed at the aim of constructing new regions with
a set of new centers. The key point of our construction is to efficiently merge
all the regions defined by the set H into more dense, connected and disjoint
regions. In order to guarantee that the algorithm terminates quickly, the dense
regions must grow enough. More precisely, if a dense region R(v) is enlarged it
must contain at least its neighborhood R+(v) when Strategy 1 is applied or
its neighborhood in the graph GC if Strategy 2 is applied. It is clear that two
regions at distance one or two (in G or in GC depending on the strategy 1 or 2)
cannot grow simultaneously without overlapping. Thus, a difficulty is to elect in
an efficient way the centers of regions that are allowed to grow in parallel.

In Step 3, we compute an independent ρ-dominating set X in the graph
G2(r+1)[H] if Strategy 1 is applied (resp. (GC)2[H] for Strategy 2), where r
is a radius that grows at each phase. The set X defines the set of nodes allowed
to grow in parallel.

In order to guarantee that nodes in non selected regions in Step 3 (the set
H \X) will be spanned by the output spanner, we must merge them with nodes
in the selected regions. Thus, in Step 4, we define a coloring strategy allowing a
correct merge process. In fact, in order to ensure that the new regions are disjoint,
we let nodes choose their new region in a consistent manner, i.e., a node chooses
to be in the region of the closest node in X breaking ties using identities. If

Strategy 1 is applied then each node chooses by itself its new dominator, i.e.,
its new region. However, once a node u chooses its new dominator node v, and
in order to ensure that the new formed regions are connected, we include all the
nodes in the shortest path between u and v, even those in non dense region. If
Strategy 2 is applied then, the center of each region chooses a new region and
merge its whole region with the new chosen region.

In Step 5, the new regions are formed according to the coloring step. Note
that as soon as the new region are formed, they are spanned in Step 6. Finally,
in Step 7, the set C and the variable r are updated for the next phase.

3 Analysis of the Algorithm

For every phase i, we denote by Hi (resp. Xi and Li) the set H (resp. X and
L) computed during phase i, i.e., after Steps 1 and 3 of phase i. Similarly, we
denote by ci(z) the color of z assigned during phase i, i.e., after Step 4 of phase
i. We denote by Ci the set C at the beginning of phase i, and ri denotes the
value of r at the beginning of phase i. For a node v ∈ Ci, we denote by Ri(v)
the region of v at the beginning of phase i. In the following we need the four
important properties.

Lemma 1. At the beginning of phase i, every v ∈ Ci is of eccentricity at most
r in G[Ri(v)].

Lemma 2. At the beginning of phase i, for every two nodes u 6= v ∈ Ci, Ri(u)∩
Ri(v) = ∅.

Lemma 3. At the beginning of phase i 6= i0, if |Ri(v)| > Vi for every v ∈ Ci,
then |Ri+1(v)| > n1/k · V2

i for every v ∈ Ci+1.

Lemma 4. For every node u ∈ V , there exists a phase i and a node v ∈ V such
that:

– at the beginning of phase i, v ∈ Ci and u ∈ Ri(v); and
– v is in the set Li computed in Step 1 of phase i.

3.1 Stretch and size analysis

Lemma 5. For any integer k, ρ > 1, the stretch s of the output spanner S of
algorithm Spanner verifies

s 6

{

(4ρ + 1)`(k) if k = 2`(k),

2(2ρ + 1)(4ρ + 1)`(k)−1 + 4ρ(4ρ + 1)`(k−2`(k)) − 1 otherwise.

Proof. As a consequence of Lemma 4 and Step 6 of the algorithm, every node
u ∈ V is spanned by the output S of the algorithm, i.e., S is a spanner of G.
From the initialization step of the algorithm, we have r1 = 0. Let us denote by

i1 = `(k) and i2 = `(k − 2`(k)), i.e., i0 = i1 − i2. For every 1 < i 6 i0, we have
ri = (4ρ + 1)ri−1 + 2ρ. Thus, ri = 1

2 ·
(

(4ρ + 1)i−1 − 1
)

for 1 6 i 6 i0.

Let us consider an edge (z, z′) ∈ E. Using Lemma 4, there exists a phase j
(resp. j′) and a node v (resp. v′) such that v ∈ Cj (resp. v′ ∈ Cj′), z ∈ Rj(v)
(resp. z′ ∈ Rj′ (v

′)) and v ∈ Lj (resp. v′ ∈ Lj′). We take v (resp. v′) to be the
first dominator of z, i.e., node in C whose region contains z, (resp. z ′) that fall
into set L. In fact, one can see that node z (or z′) can be in a sparse region at
some phase and switch to a dense region at the next phase, because either its
sparse region has been merged with a neighboring dense one (if Strategy 2 is
applied), or it is in the neighborhood of a dense region, or it is on a shortest
path leading to a dense region (if Strategy 1 is applied). W.l.o.g., suppose that
j 6 j′.

Case 1: i2 = −1. Hence, i0 = `(k) + 1 and k = 2`(k). By induction and using
Lemma 3, at the beginning of phase i0, the size of the region of any node in Ci0

is at least n(2i0−1−1)/k = n(k−1)/k. Note that we apply Strategy 1 at phase i0.
Thus, every node in Ci0 will be in L.

Subcase 1.1: Suppose that j 6 j ′ < i0. Thus, using Step 6, a BFS tree spanning
Rj(v) is added to the output spanner at phase j − 1. In addition, one can
easily show that there exists a node v′′ ∈ Cj such that z′ ∈ Rj(v

′′). Hence,
a BFS tree spanning Rj(v

′′) is added to the output spanner at phase j − 1.
Using Step 2, there exists an edge e ∈ S connecting Rj(v) and Rj(v

′′). Thus,
dS(z, z′) 6 4rj + 1 = 2(4ρ + 1)j−1 − 1.

Subcase 1.2: Suppose that j = j ′ = i0. Hence, Strategy 1 is applied at phase
j. Thus, a BFS tree spanning Rj(v) is added to the output spanner at phase
j−1. Using Step 2, R+

j (v) is also spanned. Thus, because z′ ∈ R+
j (v), dS(z, z′) 6

2rj + 1 = 2ri0 + 1 6 (4ρ + 1)i0−1.

Finally, because ρ > 0, in both subcases, the stretch is bounded by (4ρ + 1)`(k).

Case 2: i2 > 0. Hence, at the beginning of phase i0 +1, the radius of a region
is at most (2ρ + 1)ri0 + 2ρ. Thus,

ri0+1 =
1

2
(2ρ + 1) ·

(

(4ρ + 1)i0−1 − 1
)

+ 2ρ (1)

Suppose i2 6= 0. For every i0+1 < i 6 `(k)+1, we have ri = (4ρ+1)ri−1+2ρ.
Thus, by induction, for every i0 + 1 < i 6 `(k) + 1,

ri = (4ρ + 1)i−i0−1 · ri0+1 +
1

2
((4ρ + 1)i−i0−1 − 1)

In particular,

r`(k)+1 = (4ρ + 1)`(k)−i0 · ri0+1 +
1

2
((4ρ + 1)`(k)−i0 − 1)

Thus,

r`(k)+1 = (4ρ + 1)i2 · ri0+1 +
1

2
((4ρ + 1)i2 − 1) (2)

Now suppose that i2 = 0. Hence, i0 = `(k) and it is easy to see that Eq. 2 is
still true.

Subcase 2.1: Suppose that j 6= i0. Thus, it easy to show that there exists a node
v′′ ∈ Cj such that z′ ∈ Rj(v

′′). Using Step 6, Rj(v
′′) and Rj(v) were spanned

by a BFS tree at phase j − 1. In addition, because Strategy 2 is applied at
phase j, an edge e connecting Rj(v) and Rj(v

′′) is added at phase j (Step 2).
Thus, dS(z, z′) 6 4rj + 1.
Subcase 2.2: Suppose that j = i0. Thus, because R+

j (v) is spanned, dS(z, z′) 6

2rj + 1.
At phase `(k)+1, all active nodes will be in the set L`(k)+1. Thus the stretch

is bounded by 4r`(k)+1 + 1. Using Eq. (1) and (2), we have:

4r`(k)+1 + 1 = 4
(

(4ρ + 1)i2 · ri0+1 + 1
2 ((4ρ + 1)i2 − 1)

)

+ 1
= 2(2ρ + 1)(4ρ + 1)i1−1 + 4ρ(4ρ + 1)i2 − 1

ut

Lemma 6. For any integer k, ρ > 1, the size of the output spanner S of algo-
rithm Spanner is O(log k · n1+1/k).

3.2 Distributed implementation and time complexity

In the free model, distributed computation of some distributed procedure A on
Gt[H] can be easily simulated on G as follows, charging the overall time by
a factor of t. Hereafter, we assume that each node u ∈ G can determine if it
belongs or not to H . Indeed, consider one communication step in A running on
some node u of Gt[H] followed by one local computation step. In G, an original
message in A is sent from u with a counter initialized to t − 1 as an extra field.
Now, each node v ∈ G, upon the reception of a message with some counter in
its header: 1) decrements the counter; 2) stores this message if v ∈ H ; and 3)
forwards the incoming message with the updated counter to all its neighbors in
G if the updated counter is non-null (if many messages are received during a
round, then they are concatenated before being sent). After t communication
rounds in G, every node u ∈ H starts the local computation step of A on the
base of all received messages during the last t communication rounds.

Similarly, given C ⊆ V , the computation of some distributed procedure A on
GC can be simulated on G as follows, charging the overall time by a factor O(r)
where r is an upper bound of the eccentricity of a node v ∈ C in G[R(v)]. At each
time procedure A requires for a node v of GC to send a message to a neighbor,
v broadcasts the message in G[R(v)] (which is connected). The nodes at the
frontier of R(v), i.e., nodes having neighbors in different regions, broadcast also
the message out their region. Symmetrically, upon the reception of messages from
different regions, messages are concatenated and a convergecast is performed to
v. The time overhead for one step of A is at most 2r + 1.

Relying on the above discussions, running procedure A on G2(r+1)[H] or on
(GC)2[H] can be simulated on G within a factor of O(r) on the time complexity.

Lemma 7. For any integer k, ρ > 1, Spanner can be implemented with a de-
terministic distributed algorithm in O(log k · ρlog k · τ) time, where τ is the time
complexity to compute an independent ρ-dominating set in a graph of at most n
nodes.

4 Applications to Low Stretch Spanners

4.1 Constant stretch spanners with sub-quadratic size

Let MIS(n) denote the time complexity for computing, by a deterministic dis-
tributed algorithm, a maximal independent set (MIS) in a graph with at most n

nodes. The fastest deterministic algorithm [33] shows that MIS(n) 6 nO(1/
√

log n).
It is also known that MIS(n) > Ω(

√

log n/ log log n) [23].
It is not difficult to check that a set X is an independent 1-dominating set

if and only if X is a maximal independent set (cf. [34, pp. 259, Ex. 4]). Thus,
using the fast distributed MIS algorithm as a subroutine in algorithm Spanner,
we obtain:

Theorem 1. There is a deterministic distributed algorithm that given a graph
G with n nodes and any fixed integer k = 2p with p > 0, constructs a (klog2 5)-
spanner for G with O(n1+1/k) edges in O(MIS(n)) time.

Proof. Size and time are direct consequences of lemmas 3 and 7 fixing k and
ρ = 1. Note that `(k) = p = log k. Thus, using Lemma 5, the stretch of the
output spanner is bounded by 5log k = klog 5. ut

Theorem 2. There is a deterministic distributed algorithm that given a graph
G with n nodes and any fixed integer k = 2p + 2q − 1 with p > q > 0, constructs
a (6 ·5p−1 +4 ·5q−1−1)-spanner for G with O(n1+1/k) edges in O(MIS(n)) time.

Proof. Size and time are direct consequences of lemmas 3 and 7 fixing k and
ρ = 1.

If p = q, then k = 2p+1 − 1 =
∑p

j=0 2j . Hence, `(k) = p and `(k − 2`(k)) =

`(2p+1 − 1 − 2p) = `(2p − 1) = p − 1. Thus, using Lemma 5 (second case), the
stretch of the output spanner is bounded by 6 · 5p + 4 · 5p−1 − 1.

If p 6= q, then k = 2p +
∑q−1

j=0 2j . Hence, `(k) = p. In addition, `(k − 2`(k)) =
`(2p + 2q − 1− 2p) = `(2q − 1) = q − 1. Thus, using Lemma 5 (second case), the
stretch of the output spanner is bounded by 6 · 5p + 4 · 5q−1 − 1. ut

Corollary 1. For every integer k such that k = 2p + 2q − 1, where p > q > 0,
there is a deterministic distributed algorithm that given a graph G with n nodes,
constructs a s[k]-spanner for G with O(n1+1/k) edges in O(MIS(n)) time, where
s[k] is given by Table 1.

(p, q) (0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (2, 2) (3, 0) (3, 1) (3, 2) (3, 3)

k 1 2 3 4 5 7 8 9 11 15

s[k] 1 5 9 25 33 49 125 153 169 249

i0 1 2 1 3 2 1 4 3 2 1

Table 1. Stretch and Strategy examples for k = 2p + 2q − 1.

4.2 Graphs with large minimum degree

It is known that sparser spanners exist whenever the minimum degree increases
(cf. the concluding remark of [7]). In this paragraph, we show that graphs with
minimum degree large enough enjoy an O(1)-spanner with only O(n) edges,
moreover computable with a fast deterministic distributed algorithm.

Let us first note that if a graph G has a ρ-dominating set X , then G has a
(4ρ + 1)-spanner with at most n + |X |2/2 edges. Assuming we are given such a
dominating set, the spanner can be constructed distributively in O(ρ) time by
first clustering the nodes of the graph around the nodes in the dominating set,
and then by connecting every two neighboring clusters. The two endpoints either
belong to the same cluster, and thus the endpoints are at distance at most 2ρ in
the spanner, or belong to two adjacent clusters. In that case the endpoints are
at distance at most 2ρ + 1 + 2ρ in the spanner using the selected inter-cluster
edge of the spanner.

Proposition 1. For every parameter ρ > 1, there exists a deterministic dis-
tributed algorithm that given a graph G with n nodes and a ρ-dominating set X,
constructs a (4ρ+1)-spanner for G with at most n+ |X |2/2 edges in O(ρ) time.

This proposition can be combined with the observation that if G has mini-
mum degree δ >

√
n log n, then G has a 1-dominating set X of size O(

√
n log n).

Indeed, this can be proved using the following greedy algorithm [30]: one starts
with X = ∅ and with the set of all radius-1 balls, B = {N [v] | v ∈ V }, where
N [v] = {u ∈ V | dG(u, v) 6 1}. Then, while B is nonempty, one selects a node
x ∈ V for X that belongs to the maximum number of balls in the current set B.
The set B is updated by removing all balls containing x. The constructed set X
is a 1-dominating set and it can be shown that |X | 6 n(1 + ln n)/ minv∈V |N [v]|
which is at most O(

√
n logn) if δ >

√
n log n. Thus, the problem is to efficiently

compute such 1-dominating set.
Unfortunately, no deterministic distributed implementation of the greedy al-

gorithm faster than O(|X |) is known. A small ρ-dominating set can be computed
much more efficiently in O(ρ log∗ n) time by the algorithm of [25]. Unfortunately,
its guaranteed size for X is only of O(n/ρ). Finally, no algorithm is known to
run in o(

√
n log n) time for this problem.

However, using our algorithm, we obtain a 9-spanner with only O(n) edges,
moreover with a better time complexity.

Theorem 3. There exists a deterministic distributed algorithm that given a
graph G with n nodes and minimum degree δ >

√
n, constructs a 9-spanner

for G with at most 3n/2 edges in O(MIS(n)) time.

Proof. The algorithm consists in two stages. First, we construct an MIS for G2.
Then, each node of the MIS constructs its region using the coloring technique
of Spanner. The spanner is obtained by considering the edges spanning the
regions and the edges connecting every two adjacent regions (cf. Proposition 1).

The number of nodes belonging to the MIS, and thus the number of regions,
is at most n/δ 6

√
n. Therefore, the number of edges of the spanner is at most

n +
√

n
2
/2 = 3n/2. The radius of a region is bounded by 2. Thus, the stretch is

2 · 2 + 1 + 2 · 2 = 9. ut

4.3 Randomized Distributed Implementation Issues

In [31], Luby gives a simple and efficient randomized PRAM algorithm for com-
puting an MIS in O(log n) expected time. Luby’s algorithm can be turned to run
in the free model, and we obtain a distributed algorithm for computing an inde-
pendent 1-dominating set which terminates within O(log n) expected time. We
remark that upon termination of the algorithm, the constructed 1-dominating
set is always correct, the randomization is only on the running time, i.e., it is a
Las Vegas algorithm.

The two randomized algorithms we present below guarantee the stretch and
the size bounds for the constructed spanners, while the O(k) time (Monte Carlo)
randomized algorithms [8] do not give any guarantee on the spanner size. This
is of course achieved at the price of increasing the stretch factor of the spanner.

Thus, we obtain the following randomized version of Theorems 1 and 2:

Theorem 4. There is a (Las Vegas) randomized distributed algorithm that given
a graph G with n nodes and any fixed integer k = 2p with p > 0, constructs a
(klog2 5)-spanner for G with O(n1+1/k) edges in O(log n) expected time.

Theorem 5. For every fixed integer k > 3, there is a (Las Vegas) randomized
distributed algorithm that given a graph G with n nodes and any fixed integer
k = 2p + 2q − 1 with p > q > 0, constructs a (6 · 5p−1 + 4 · 5q−1 − 1)-spanner for
G with O(n1+1/k) edges in O(log n) expected time.

Recently, in [24], Khun et al. show that every packing problem can be ap-
proximated by a constant factor with high probability in O(log n) time in the
free model. Therefore, the (Monte Carlo) algorithm of [24] implies a randomized
constant approximation algorithm for the minimum 1-dominating set problem
with O(log n) time. Thus, using Proposition 1, we obtain the following result (to
be compared with Theorem 3 and [8]):

Theorem 6. There exists a (Monte Carlo) randomized distributed algorithm
that given a graph G with n nodes of minimum degree δ >

√
n, constructs a

5-spanner for G in O(log n) time. The size is O(n log2 n) edges with high prob-
ability. More generally, for a minimum degree δ graph, we obtain a 5-spanner
with O(n + (n log n/δ)2) edges.

Let us remark that, in Theorem 6, 5 is the best possible bound on the
stretch if δ > w(n1/4 log n). In fact, there exist graphs with minimum degree
c
√

n (for some constant c > 0) and girth 6 (the length of its smallest cycle).
Thus, the deletion of any edge implies a stretch of at least 5 for its endpoints.
Therefore, any spanner with size less than 1

2cn
√

n have stretch at least 5, and

O(n + (n log n/δ)2) = o(n
√

n) if δ > w(n1/4 log n).

5 Conclusion

In this paper we have considered deterministic distributed algorithm to con-
struct low stretch and sparse spanners of unweighted arbitrary graphs. In par-
ticular we have shown that 5-spanner with O(n3/2) edges can be constructed in

nO(1/
√

log n) time. Let us observe that log n < n1/
√

log n only for n > 242

. In other
words, deterministic distributed n1/

√
log n time algorithms might be competitive1

over randomized log n time algorithms for distributed system up to n 6 32656
processors. We left open the two following problems:

1. Reduce the stretch from 5 to optimal stretch 3, without increasing the size
of the spanner and the running time. More generally, is it possible, for every
k > 1, to compute with a deterministic distributed algorithm a (2k − 1)-
spanners of size O(n1+1/k) in O(MIS(n)) time?

2. Reduce the time complexity to o(MIS(n)), possibly with some small stretch
and size increasings. More precisely, is it possible to compute with a deter-
ministic distributed algorithm a constant stretch spanner with o(n2) edges
in o(MIS(n)) time? Using our approach, it suffices to show that there is a
constant ρ for which an independent ρ-dominating set can be computed in
o(MIS(n)) time for every graph.

References

1. Baruch Awerbuch. Complexity of network synchronization. Journal of the Asso-
ciation for Computing Machinery, 32:804–823, 1985.

2. Baruch Awerbuch. Optimal distributed algorithms for minimum weight spanning
tree, counting, leader election and related problems. In 19th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 230–240. ACM Press, May 1987.

3. Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Near-linear
cost sequential and distributed constructions of sparse neighborhood coverss. In
34th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
638–647. IEEE Computer Society Press, November 1993.

4. Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Fast dis-
tributed network decompositions and covers. Journal of Parallel and Distributed
Computing, 39:105–114, 1996.

5. Baruch Awerbuch, Bonnie Berger, Lenore J. Cowen, and David Peleg. Near-linear
time construction of sparse neighborhood covers. SIAM Journal on Computing,
28(1):263–277, February 1998.

1 This obviously depends on the constants hidden in the O-notation.

6. Baruch Awerbuch and David Peleg. Sparse partitions. In 31th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 503–513. IEEE
Computer Society Press, October 1990.

7. Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New
constructions of (α, β)-spanners and purely additive spanners. In 16th Symposium
on Discrete Algorithms (SODA), pages 672–681. ACM-SIAM, January 2005.

8. Surender Baswana and Sandeep Sen. A simple linear time algorithm for computing
a (2k − 1)-spanner of O(n1+1/k) size in weighted graphs. In 30th International
Colloquium on Automata, Languages and Programming (ICALP), volume 2719 of
Lecture Notes in Computer Science, pages 384–396. Springer, July 2003.

9. Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted
graphs in Õ(n2) time. In 15th Symposium on Discrete Algorithms (SODA), pages
271–280. ACM-SIAM, January 2004.

10. Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch
t. SIAM Journal on Computing, 28(1):210–236, 1998.

11. Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to
optimal parallel list ranking. Information and Control, 70(1):32–53, 1986.

12. Lenore J. Cowen. Compact routing with minimum stretch. Journal of Algorithms,
38(1):170–183, 2001.

13. Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Fast distributed graph parti-
tion and application. In 20th IEEE International Parallel & Distributed Processing
Symposium (IPDPS). IEEE Computer Society Press, April 2006.

14. Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with low
stretch factor. Journal of Algorithms, 46:97–114, 2003.

15. Michael Elkin. Computing almost shortest paths. In 20th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 53–62. ACM Press, 2001.

16. Michael Elkin. A faster distributed protocol for constructing a minimum spanning
tree. In 15th Symposium on Discrete Algorithms (SODA), pages 359–368. ACM-
SIAM, January 2004.

17. Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for
the distributed minimum spanning tree problems. In 36th Annual ACM Symposium
on Theory of Computing (STOC), pages 331–340. ACM Press, May 2004.

18. Michael Elkin and David Peleg. (1+ε, β)-spanner constructions for general graphs.
SIAM Journal on Computing, 33(3):608–631, 2004.

19. Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + ε, β)-
spanners in the distributed and streaming models. In 23rd Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 160–168. ACM Press,
July 2004.

20. Cyril Gavoille, David Peleg, Stéphane Pérennès, and Ran Raz. Distance labeling
in graphs. Journal of Algorithms, 53(1):85–112, 2004.

21. Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel
symmetry-breaking in sparse graphs. SIAM Journal on Discrete Mathematics,
1(4):434–446, 1988.

22. Fabian Kuhn, Thomas Moscibroda, Tim Nieberg, and Roger Wattenhofer. Fast de-
terministic distributed maximal independent set computation on growth-bounded
graphs. In 19th International Symposium on Distributed Computing (DISC), vol-
ume Lecture Notes in Computer Science. Springer, September 2005.

23. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be
computed locally! In 23rd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 300–309. ACM Press, July 2004.

24. Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price of being
near-sighted. In 17th Symposium on Discrete Algorithms (SODA), pages 980–989.
ACM-SIAM, January 2006.

25. Shay Kutten and David Peleg. Fast distributed construction of small k-dominating
sets and applications. Journal of Algorithms, 28(1):40–66, 1998.

26. Nathan Linial. Distributive graph algorithms - Global solutions from local data.
In 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 331–335. IEEE Computer Society Press, October 1987.

27. Nathan Linial. Locality in distributed graphs algorithms. SIAM Journal on Com-
puting, 21(1):193–201, 1992.

28. Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight
spanning tree construction in O(log log n) communication rounds. SIAM Journal
on Discrete Mathematics, 35(1):120–131, 2005.

29. Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for constant
diameter graphs. In 20th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 63–71. ACM Press, 2001.

30. Laszlo Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975.

31. Michael Luby. A simple parallel algorithm for the maximal independent set prob-
lem. SIAM Journal on Computing, 15(4):1036–1053, November 1986.

32. Shlomo Moran and Sagi Snir. Simple and efficient network decomposition and
synchronization. Theoretical Computer Science, 243(1-2):217–241, 2000.

33. Alessandro Panconesi and Aravind Srinivasan. On the complexity of distributed
network decomposition. Journal of Algorithms, 20(2):356–374, 1996.

34. David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications, 2000.

35. David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time com-
plexity of distributed minimum-weight spanning tree construction. SIAM Journal
on Computing, 30(5):1427–1442, 2000.

36. David Peleg and Jeffrey D. Ullman. An optimal synchornizer for the hypercube.
SIAM Journal on Computing, 18(4):740–747, 1989.

37. David Peleg and Eli Upfal. A trade-off between space and efficiency for routing
tables. Journal of the ACM, 36(3):510–530, July 1989.

38. Lucia Draque Penso and C. Barbosa Valmir. A distributed algorithm to find k-
dominating sets. Discrete Applied Mathematics, 141(1-3):243–253, May 2004.

39. Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners and roundtrip
routing in directed graphs. In 13th Symposium on Discrete Algorithms (SODA),
pages 844–851. ACM-SIAM, January 2002.

40. Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of ap-
proximate distance oracles and spanners. In 32nd International Colloquium on
Automata, Languages and Programming (ICALP), volume Lecture Notes in Com-
puter Science, 2005.

41. Mikkel Thorup and Uri Zwick. Compact routing schemes. In 13th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 1–10. ACM
Press, July 2001.

42. Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM,
52(1):1–24, January 2005.

43. Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Com-
binatorial Theory, Series B, 52(1):113–116, 1991.

