
42

Adjacency Labelling for Planar Graphs (and Beyond)

VIDA DUJMOVIĆ, University of Ottawa, Canada

LOUIS ESPERET, CNRS, Univ. Grenoble Alpes, France

CYRIL GAVOILLE, University of Bordeaux, France

GWENAËL JORET, Université libre de Bruxelles, Belgium

PIOTR MICEK, Jagiellonian University, Poland

PAT MORIN, Carleton University, Canada

We show that there exists an adjacency labelling scheme for planar graphs where each vertex of an n-vertex

planar graph G is assigned a (1 + o(1)) log2 n-bit label and the labels of two vertices u and v are sufficient to

determine if uv is an edge ofG. This is optimal up to the lower order term and is the first such asymptotically

optimal result. An alternative, but equivalent, interpretation of this result is that, for every positive integer n,

there exists a graph Un with n1+o (1) vertices such that every n-vertex planar graph is an induced subgraph

of Un . These results generalize to a number of other graph classes, including bounded genus graphs, apex-

minor-free graphs, bounded-degree graphs from minor closed families, and k-planar graphs.

CCS Concepts: • Theory of computation→ Data structures design and analysis

Additional Key Words and Phrases: Planar graphs, adjacency labelling

ACM Reference format:

Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat Morin. 2021. Adjacency

Labelling for Planar Graphs (and Beyond). J. ACM 68, 6, Article 42 (September 2021), 33 pages.

https://doi.org/10.1145/3477542

1 INTRODUCTION

A family G of graphs has an f (n)-bit adjacency labelling scheme if there exists a function
A : ({0, 1}∗)2 → {0, 1} such that for every n-vertex graph G ∈ G there exists � : V (G) → {0, 1}∗

An extended abstract of this article appeared in Proceedings of the 61th Annual Symposium on Foundations of Computer

Science (FOCS’20). IEEE, pp. 577–588. https://doi.org/10.1109/FOCS46700.2020.00060.

This research was partially supported by NSERC, by the French ANR Projects ANR-16-CE40-0009-01 (GATO), ANR-18-

CE40-0032 (GrR), ANR-16-CE40-0023 (DESCARTES) and ANR-17-CE40-0015 (DISTANCIA), by an ARC grant from the

Wallonia-Brussels Federation of Belgium and by a grant from the National Fund for Scientific Research (FNRS), and by the

Polish National Science Center grant (BEETHOVEN; UMO-2018/31/G/ST1/03718).

Authors’ addresses: V. Dujmović, University of Ottawa, School of Computer Science and Electrical Engineering, Ottawa,

Canada; email: vida@cs.mcgill.ca; L. Esperet, CNRS, Univ. Grenoble Alpes, Laboratoire G-SCOP, Grenoble, France; email:

louis.esperet@grenoble-inp.fr; C. Gavoille, University of Bordeaux, LaBRI, Bordeaux, France; email: gavoille@labri.fr;

G. Joret, Université libre de Bruxelles, Département d’Informatique, Brussels, Belgium; email: gjoret@ulb.ac.be; P. Micek,

Jagiellonian University, Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Kraków,

Poland; email: piotr.micek@uj.edu.pl; P. Morin, Carleton University, School of Computer Science, Ottawa, Canada; email:

morin@scs.carleton.ca.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0004-5411/2021/09-ART42 $15.00

https://doi.org/10.1145/3477542

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

https://doi.org/10.1145/3477542
https://doi.org/10.1109/FOCS46700.2020.00060
mailto:permissions@acm.org
https://doi.org/10.1145/3477542

42:2 V. Dujmović et al.

such that |�(v) | � f (n) for each vertex v of G and such that, for every two vertices v,w of G,

A(�(v), �(w)) =
⎧⎪⎨⎪⎩0 if vw � E (G);

1 if vw ∈ E (G).

Let logx := log2 x denote the binary logarithm of x . In this article, we prove the following result:

Theorem 1. The family of planar graphs has a (1 + o(1)) logn-bit adjacency labelling scheme.

Theorem 1 is optimal up to the lower order o(logn) term, which is O (
√

logn log logn) in our
proof. An alternative, but equivalent, interpretation of Theorem 1 is that, for every integer n � 1,

there exists a graph Un with n1+o (1) vertices such that every n-vertex planar graph is isomorphic
to some vertex-induced subgraph of Un .1

Note that the proof of Theorem 1 is constructive: It gives an algorithm producing the labels in
O (n logn) time.

1.1 Previous Work

The current article is the latest in a series of results dating back to Kannan, Naor, and Rudich [20, 21]
and Muller [25] who defined adjacency labelling schemes2 and described O (logn)-bit adjacency
labelling schemes for several classes of graphs, including planar graphs. Since this initial work,
adjacency labelling schemes and, more generally, informative labelling schemes have remained a
very active area of research [1–3, 5–9].

Here, we review results most relevant to the current work, namely, results on planar graphs and
their supporting results on trees and bounded-treewidth graphs. First, a superficial review: Planar
graphs have been shown to have (c + o(1)) logn-bit adjacency labelling schemes for successive
values of c = 6, 4, 3, 2, 4

3 and finally Theorem 1 gives the optimal3 result c = 1. We now give details
of these results.

Muller’s scheme for planar graphs [25] is based on the fact that planar graphs are 5-degenerate.
This scheme orients the edges of the graph so each vertex has 5 outgoing edges, assigns each
vertex v an arbitrary �logn�-bit identifier, and assigns a label to v consisting of v’s identifier and
the identifiers of the targets of v’s outgoing edges. In this way, each vertex v is assigned a label of
length at most 6�logn�. Kannan, Naor, and Rudich [21] use a similar approach that makes use of
the fact that planar graphs have arboricity 3 (so their edges can be partitioned into three forests
[26]) to devise an adjacency labelling scheme for planar graphs whose labels have length at most
4�logn�.

A number of (1 + o(1)) logn-bit adjacency labelling schemes for forests have been devised [4,
9, 12], culminating with a recent (logn + O (1))-bit adjacency labelling scheme [4] for forests.
Combined with the fact that planar graphs have arboricity 3, these schemes imply (3+o(1)) logn-
bit adjacency labelling schemes for planar graphs.

A further improvement, also based on the idea of partitioning the edges of a planar graph into
simpler graphs, was obtained by Gavoille and Labourel [17]. Generalizing the results for forests,
they describe a (1 + o(1)) logn-bit adjacency labelling scheme for n-vertex graphs of bounded
treewidth. As is well known, the edges of a planar graph can be partitioned into two sets, each

1There is a small technicality that the equivalence between adjacency labelling schemes and universal graphs requires that

� : V (G) → {0, 1}∗ be injective. The labelling schemes we discuss satisfy this requirement. For more details about the

connection between labelling schemes and universal graphs, the reader is directed to Spinrad’s monograph [29, Section 2.1].
2There are some small technical differences between the definitions in References [21] and [25] that have to do with the

complexity of computing �(·) as a function of G and of computing A(·, ·) as a function of its two arguments.
3It is easy to see that, in any adjacency labelling scheme for any n-vertex graph G in which no two vertices have the same

neighborhood, all labels must be distinct, so some label must have length at least �log n �.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:3

Fig. 1. The strong product H � P of a tree H and a path P .

of which induces a bounded treewidth graph [19]. This results in a (2 + o(1)) logn-bit adjacency
labelling scheme for planar graphs.

Very recently, Bonamy, Gavoille, and Pilipczuk [10] described a (4/3 + o(1)) logn-bit adjacency
labelling scheme for planar graphs based on a recent graph product structure theorem of Dujmović
et al. [14]. This product structure theorem states that any planar graph is a subgraph of a strong
product H � P where H is a bounded-treewidth graph and P is a path. See Figure 1. It is helpful
to think of H � P as a graph whose vertices can be partitioned into h := |V (P) | rows H1, . . . ,Hh ,
each of which induces a copy of H and with vertical and diagonal edges joining corresponding
and adjacent vertices between consecutive rows.

The product structure theorem quickly leads to a (1+ o(1)) log(mh)-bit labelling scheme where
m := |V (H) | and h := |V (P) | by using a (1 + o(1)) logm-bit labelling scheme for H (a bounded
treewidth graph), a �logh�-bit labelling scheme for P (a path), and a constant number of bits to
locally encode the subgraph of H � P (of constant arboricity). However, for an n-vertex graph G
that is a subgraph of H � P in the worst case m and h are each Ω(n), so this offers no immediate
improvement over the existing (2 + o(1)) logn-bit scheme.

Bonamy, Gavoille, and Pilipczuk improve upon this by cutting P (and hence G) into subpaths
of length n1/3 in such a way that this corresponds to removing O (n2/3) vertices of G that have a
neighborhood of size O (n2/3). The resulting (cut) graph is a subgraph of H ′ � P ′ where H ′ has
bounded treewidth, |H ′ | � n, and P ′ is a path of length n1/3 so it has a labelling scheme in which
each vertex has a label of length (1+o(1)) log(|H ′| · |P ′ |) � (4/3+o(1)) logn. A slight modification
of this scheme allows for the O (n2/3) boundary vertices adjacent to the cuts to have shorter labels,
of length only (2/3 + o(1)) logn. The cut vertices and the boundary vertices induce a bounded-
treewidth graph of size O (n2/3). The vertices in this graph receive secondary labels of length (2/3+
o(1)) logn. In this way, every vertex receives a label of length at most (4/3 + o(1)) logn.

1.2 New Results

The adjacency labelling scheme described in the current article is also based on the product
structure theorem for planar graphs, but it avoids cutting the path P , and thus avoids boundary
vertices that take part in two different labelling schemes. Instead, it uses a weighted labelling
scheme on the rows H1, . . . ,Hh of H � P in which vertices that belong to Hi receive a label of
length (1 + o(1)) logn − logWi whereWi is related to the number of vertices of G contained in Hi

and Hi−1. The vertices of G in row i participate in a secondary labelling scheme for the subgraph
of G contained in Hi and Hi−1 and the labels in this scheme have length logWi + o(logn). Thus,
every vertex receives two labels, one of length (1 + o(1)) logn − logWi and another of length
logWi + o(logn) for a total label length of (1 + o(1)) logn.

The key new technique that allows all of this to work is that the labelling schemes of the rows
H1, . . . ,Hh are not independent. All of these labelling schemes are based on a single balanced
binary search tree T that undergoes insertions and deletions resulting in a sequence of related

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:4 V. Dujmović et al.

binary search trees T1, . . . ,Th where each Ti represents all vertices of G in Hi and Hi−1 and the
label assigned to a vertex of Hi is essentially based on a path from the root ofTi to some vertex of
Ti . By carefully maintaining the binary search tree T , the trees Ti−1 and Ti are similar enough so
the label for v in Hi can be obtained, with o(logn) additional bits from the label for v in Hi−1.

The product structure theorem has been generalized to a number of additional graph families
including bounded-genus graphs, apex-minor free graphs, bounded-degree graphs from minor-
closed families, k-planar graphs, powers of bounded-degree bounded genus graphs, and k-nearest
neighbor graphs of points in R2 [14, 15]. As a side-effect of designing a labelling scheme to work
directly on subgraphs of a strong product H � P , where H has bounded treewidth and P is a path,
we obtain (1 + o(1)) logn-bit labelling schemes for all of these graph families. All of these results
are optimal up to the lower order term.

A graph is apex if it has a vertex whose removal leaves a planar graph. A graph is k-planar if
it has a drawing in the plane in which each edge is involved in at most k crossings. Such graphs
provide a natural generalization of planar graphs and have been extensively studied [22]. The
definition of k-planar graphs naturally generalizes for other surfaces. A graphG is (д,k)-planar if
it has a drawing in some surface of Euler genus at most д in which each edge of G is involved in
at most k crossings. Note that already 1-planar graphs are not minor closed. The generalization of
Theorem 1 provided by known product structure theorems is summarized in the following result:

Theorem 2. For every fixed integer t � 1, the family of all graphs G such that G is a subgraph of

H � P for some graph H of treewidth t and some path P has a (1+ o(1)) logn-bit adjacency labelling

scheme. This includes the following graph classes:

(1) graphs of bounded genus and, more generally, apex-minor free graphs;

(2) bounded degree graphs that exclude a fixed graph as a minor; and

(3) k-planar graphs and, more generally, (д,k)-planar graphs.

The case of graphs of bounded degree from minor-closed classes (point 2 in Theorem 2) is
particularly interesting, since, prior to the current work, the best-known bound for adjacency
labelling schemes in planar graphs of bounded degree was the same as for general planar graphs,
i.e., (4/3 + o(1)) logn. However, our Theorem 2 now gives an asymptotically optimal bound of
(1 + o(1)) logn for graphs of bounded degree from any proper minor-closed class.

1.3 Outline

The remainder of the article is organized as follows: Section 2 reviews some preliminary definitions
and easy results. Section 3 describes a new type of balanced binary search tree that has the spe-
cific properties needed for our application. Section 4 solves a special case, where G is an n-vertex
subgraph of P1 � P2 where P1 and P2 are both paths. We include it to highlight the generic idea
behind our adjacency labelling scheme. Section 5 solves the general case in whichG is an n-vertex
subgraph of H � P where H has bounded treewidth and P is a path. Section 6 concludes with a
discussion of the computational complexity of assigning labels and testing adjacency and presents
directions for future work.

2 PRELIMINARIES

All graphs we consider are finite and simple. The vertex and edge sets of a graphG are denoted by
V (G) and E (G), respectively. The size of a graph G is denoted by |G | := |V (G) |.

For any graph G and any vertex v ∈ V (G), let NG (v) := {w ∈ V (G) : vw ∈ E (G)} and
NG [v] := NG (v) ∪ {v} denote the open neighborhood and closed neighborhood of v in G,
respectively.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:5

2.1 Prefix-free Codes

For a string s = s1, . . . , sk , we use |s | := k to denote the length of s . A string s1, . . . , sk is a prefix of a
string t1, . . . , t� if k � � and s1, . . . , sk = t1, . . . , tk . A prefix-free code c : X → {0, 1}∗ is a one-to-one
function in which c (x) is not a prefix of c (y) for any two distinct x ,y ∈ X . Let N denote the set of
non-negative integers. The following is a classic observation4 of Elias from 1975.

Lemma 3 (Elias [16]). There exists a prefix-free code γ : N → {0, 1}∗ such that, for each i ∈ N,

|γ (i) | � 2	log(i + 1)
 + 1.

In the remainder of the article, γ (which we call an Elias encoding) will be used extensively,
without referring systematically to Lemma 3.

2.2 Labelling Schemes Based on Binary Trees

A binary tree T is a rooted tree in which each node except the root is either the left or right child
of its parent and each node has at most one left and at most one right child. For any node x in T ,
PT (x) denotes the path from the root ofT to x . The length of a path P is the number of edges in P ,
i.e., |P | −1. The depth, dT (x) of x is the length of PT (x). The height ofT is h(T) := maxx ∈V (T) dT (x).
A perfectly balanced binary tree is any binary treeT of heighth(T) = 	log |T |
, where |T | := |V (T) |
denotes the number of nodes in T .

A binary tree is full if each non-leaf node has exactly two children. For a binary tree T , we
let T + denote the full binary tree obtained by attaching to each node x of T 2 − cx leaves where
cx ∈ {0, 1, 2} is the number of children of x . We call the leaves ofT + the external nodes ofT . (Note
that none of these external nodes are in T and, for any non-empty T , h(T +) = h(T) + 1.)

A node a inT is aT -ancestor of a node x inT if a ∈ V (PT (x)). If a is aT -ancestor of x , then x is
a T -descendant of a. (Note that a node is a T -ancestor and T -descendant of itself.) For a subset of
nodes X ⊆ V (T), the lowest common T -ancestor of X is the maximum-depth node a ∈ V (T) such
that a is a T -ancestor of x for each x ∈ X .

Let PT (xr) = x0, . . . ,xr be a path from the root x0 of T to some node xr (possibly r = 0). Then
the signature of xr in T , denoted σT (xr) is a binary string b1, . . . ,br where bi = 0 if and only if xi

is the left child of xi−1. Note that the signature of the root of T is the empty string.
A binary search tree T is a binary tree whose node set V (T) consists of distinct real numbers

and that has the binary search tree property: For each node x in T , z < x for each node z in x ’s
left subtree and z > x for each node z in x ’s right subtree. For any x ∈ R \V (T), the search path

PT (x) in T is the unique root-to-leaf path v0, . . . ,vr in T + such that adding x as a (left or right, as
appropriate) child of vr−1 in T would result in a binary search tree T ′ with V (T ′) = V (T) ∪ {x }.

The following observation allows us to compare values in a binary search tree just given their
signatures in the tree:

Observation 4. For any binary search tree T and any nodes x , y in T , we have x < y if and only

if σT (x) is lexicographically less than σT (y).

Let R+ denote the set of positive real numbers. The following is a folklore result about biased
binary search trees, but we sketch a proof here for completeness:

Lemma 5. For any finite S ⊂ R and any function w : S → R+, there exists a binary search tree T
with V (T) = S such that, for each y ∈ S , dT (y) � log(W /w (y)), whereW :=

∑
y∈S w (y).

4The binary representation w of a positive integer i has length |w | = 	log i
 + 1 and begins with 1. The gamma code for

i is given by γ (i) := 0|w |−1w . This gives a codeword that is decoded by counting the number, z , of leading zeros and then

treating the next z + 1 bits as the binary representation of a positive integer.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:6 V. Dujmović et al.

Fig. 2. An illustration of Observation 6: (1) σT (y1) = 11000 and σT (x1) = 11000 (2) σT (y2) = 10011 and
σT (x2) = 10011.

Proof. The proof is by induction on |S |. The base case |S | = 0 is vacuously true. For any x ∈ R,
let S<x := {y ∈ S : y < x } and S>x := {y ∈ S : y > x }. For |S | � 1, choose the root of T to be the
unique node y0 ∈ S such that

∑
z∈S<y0

w (z) �W /2 and
∑

z∈S>y0
<W /2. Apply induction on S<y0

and S>y0 to obtain the left and right subtrees of T , respectively.
Then dT (y0) = 0 = log 1 � log(W /w (y0)). For each y ∈ S<y0 ,

dT (y) � 1 + log ��
∑

z∈S<y0
w (z)

w (y)
�	 � 1 + log

(
W /2

w (y)

)
= log

(
W

w (y)

)
,

and the same argument shows that dT (y) < log(W /w (y)) for each y ∈ S>y0 . �

The following fact about binary search trees is useful, for example, in the deletion algorithms
for several types of balanced binary search trees [23, Section 6.2.3] (see Figure 2):

Observation 6. LetT be a binary search tree and let x , y be nodes inT such that x < y and there

is no node z in T such that x < z < y, i.e., x and y are consecutive in the sorted order of V (T). Then

(1) (ify has no left child) σT (x) is obtained from σT (y) by removing all trailing 0’s and the last 1; or

(2) (ify has a left child)σT (x) is obtained fromσT (y) by appending a 0 followed bydT (y)−dT (x)−1
1’s.

Therefore, there exists a function D : ({0, 1}∗)2 → {0, 1}∗ such that, for every binary search tree T
and for every two consecutive nodes x ,y in the sorted order of V (T), there exists δT (y) ∈ {0, 1}∗ with

|δT (y) | = O (logh(T)) such that D (σT (y),δT (y)) = σT (x).

The bitstring δT (y) from Observation 6 is obtained as follows: It consists of a first bit indicating
whether y has a left child in T or not and, in case y does have a left child, an Elias encoding γ (s)
of the value s := dT (y) − dT (x) − 1. More precisely, δT (y) = 0 or δT (y) = 1,γ (s).

Putting some of the preceding results together, we obtain the following useful coding result:

Lemma 7. There exists a function A : ({0, 1}∗)2 → {−1, 0, 1,⊥} such that, for any h ∈ N, and any

w : {1, . . . ,h} → R+ there is a prefix-free code α : {1, . . . ,h} → {0, 1}∗ such that

(1) for each i ∈ {1, . . . ,h}, |α (i) | = logW − logw (i) + O (log logh), whereW :=
∑h

j=1w (j);
(2) for any i, j ∈ {1, . . . ,h},

A(α (i),α (j)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if j = i ;

1 if j = i + 1;

−1 if j = i − 1;

⊥ otherwise.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:7

Proof. Define w ′ : {1, . . . ,h} → R+ as w ′(i) = w (i) +W /h and let W ′ :=
∑h

i=1w
′(i) = 2W .

Using Lemma 5, construct a biased binary search tree T on {1, . . . ,h} using w ′ so

dT (i) � log(2W) − log(w (i) +W /h) � logW − logw (i) + 1

and

dT (i) � log(2W) − log(w (i) +W /h) � logW − log(W /h) + 1 � logh + 1,

for each i ∈ {1, . . . ,h}. This latter inequality implies that h(T) � logh + 1.
The code α (i) for i consists of three parts. The first part, γ (|σT (i) |), is the Elias encoding of

the length of the path PT (i) from the root to i in T . The second part σT (i) encodes the left/right
turns along this path. The third part, δT (i), is defined in Observation 6. The length of δT (i) is
O (logh(T)) = O (log logh). Note that, since γ is prefix-free and two distinct sequences σT (i) and
σT (j) of the same length cannot be prefix of one another, the code α is also prefix-free (and thus
injective).

The function A is given by a simple algorithm: Given α (i) and α (j), first observe that the values
of γ (·), σT (·), and δT (·) can be extracted: γ (·) is first extracted using the fact that Elias encod-
ing is prefix-free, this then gives us the length of σT (·), and finally δT (·) consists of the remain-
ing bits. The function A extracts the values and lexicograp.hically compares σT (i) and σT (j). If
σT (i) = σT (j), then A outputs 0. Otherwise, assume for now that σT (i) is lexicographically less
than σT (j) so, by Observation 4, i < j. Now A computes D (σT (j),δT (j)) = σT (j − 1), as described
in Observation 6. If σT (j − 1) = σT (i), then A outputs 1, otherwise A outputs ⊥. In the case where
σT (i) is lexicographically greater than σT (j), A proceeds in the same manner, but reversing the
roles of i and j and outputting −1 in the case where σT (i − 1) = σT (j). �

2.3 Chunked Sets

For non-empty finite sets X ,Y ⊂ R and an integer a, we say that X a-chunks Y if, for any a + 1-
element subset S ⊆ Y , there exists x ∈ X , such that min S � x � max S . Observe that, ifX a-chunks
Y , then |Y \X | � a(|X | + 1) � 2a |X | so |X ∪Y | � (2a + 1) |X |. A sequenceV1, . . . ,Vh of non-empty
subsets of R is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy for each y ∈ {0, . . . ,h − 1}.

Lemma 8. For any finite sets S1, . . . , Sh ⊂ R and any integer a � 1, there exist setsV1, . . . ,Vh ⊂ R
such that

(1) for each y ∈ {1, . . . ,h}, Vy ⊇ Sy ;

(2) V1, . . . ,Vh is a-chunking;

(3)
∑h

y=1 |Vy | � ((a + 1)/a)2 ·∑h
y=1 |Sy |.

A proof of a much more general version of Lemma 8 (with larger constants) is implicit in the
iterated search structure of Chazelle and Guibas [11]. For the sake of completeness, we give a proof
of Lemma 8 below. In the remainder of the article, we will use Lemma 8 with a = 1. In that case
the third item above becomes

∑h
y=1 |Vy | � 4 ·∑h

y=1 |Sy |.

Proof of Lemma 8. SetW0 = ∅ and then for each y := 1, . . . ,h repeat the following procedure:
Let W ′

y−1 consist of every (a + 1)th element of the sequence obtained by sorting Wy−1, begin-

ning with the (a + 1)th element of this sequence. Observe that W ′
y−1 has size 	|Wy−1 |/(a + 1)
 �

|Wy−1 |/(a + 1). Now setWy := Sy ∪W ′
y−1.

After the final (y = h) iteration, it is clear that Wy ⊇ Sy and that Wy a-chunks Wy−1 for each
y ∈ {1, . . . ,h}. Furthermore, for each y ∈ {1, . . . ,h},

|Wy | = |Sy | + |W ′
y−1 | � |Sy | + |Wy−1 |/(a + 1)

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:8 V. Dujmović et al.

and an easy proof by induction on y shows that

|Wy | �
y−1∑
i=0

|Sy−i |/(a + 1)i .

Then
h∑

y=1

|Wy | �
h∑

y=1

y−1∑
i=0

|Sy−i |/(a + 1)i �
h∑

y=1

∞∑
i=0

|Sy |/(a + 1)i =
a + 1

a

h∑
y=1

|Sy |.

Next, observe that copying any element from Wy into Wy−1 preserves the fact that Wy a-chunks
Wy−1. This allows us to use exactly the same procedure on the sequence of sets Wh , . . . ,W1 to
obtain an a-chunking sequence V1, . . . ,Vh such that Vy ⊇Wy ⊇ Sy for each y ∈ {1, . . . ,h} and

h∑
y=1

|Vy | �
a + 1

a

h∑
y=1

|Wy | �
(a + 1

a

)2

·
h∑

y=1

|Sy |. �

2.4 Product Structure Theorems

The strong product A � B of two graphs A and B is the graph whose vertex set is the Cartesian
product V (A � B) := V (A) × V (B) and in which two distinct vertices (x1,y1) and (x2,y2) are
adjacent if and only if:

(1) x1x2 ∈ E (A) and y1y2 ∈ E (B); or
(2) x1 = x2 and y1y2 ∈ E (B); or
(3) x1x2 ∈ E (A) and y1 = y2.

Theorem 9 (Dujmović et al. [14]). Every planar graphG is a subgraph of a strong productH �P
where H is a graph of treewidth at most 8 and P is a path.

Theorem 9 can be generalized (replacing 8 with a larger constant) to bounded genus graphs, and
more generally to apex-minor free graphs.

Dujmović, Morin, and Wood [15] gave analogous product structure theorems for some non-
minor closed families of graphs including k-planar graphs, powers of bounded-degree planar
graphs, and k-nearest-neighbor graphs of points in R2. Dujmović, Esperet, Morin, Walczak, and
Wood [13] proved that a similar product structure theorem holds for graphs of bounded degree
from any (fixed) proper minor-closed class. This is summarized in the following theorem:

Theorem 10 ([14],[13],[15]). Every graph G in each of the following families of graphs is a sub-

graph of a strong product H � P where P is a path and H is a graph of bounded treewidth:

• graphs of bounded genus and, more generally, apex-minor free graphs;

• bounded degree graphs that exclude a fixed graph as a minor;

• k-planar graphs and, more generally, (д,k)-planar graphs.

3 BULK TREES

Our labelling scheme for a subgraph G of H � P uses labels that depend in part on the rows
(H -coordinates) of G, where each row corresponds to one vertex of P : Say P consists of vertices
1, 2, . . . ,h in this order, then the ith row of G is the subgraph Hi of G induced by the vertex set
{(v, i) ∈ V (G)}. A naive approach to create labels for each Hi is to use a labelling scheme for
bounded treewidth graphs; roughly, this entails building a specific binary search tree Ti and map-
ping each vertex v of Hi onto a node x of Ti that we call the position of v in Ti . The label of (v, i)
encodes the position ofv inTi plus some small extra information (see Section 5). This way, we can
determine if two vertices (v, i) and (w, i) in the same row are adjacent.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:9

The key problems that we face here, though, are queries of the type (v, i) and (w, i+1): We would
like to determine adjacency on the H -coordinate usingTi orTi+1. We could extend the node set of
Ti+1 so it represents all vertices from Hi . This way, we know that both v and w are represented in
Ti+1. However, we still have a major issue: The label of (v, i) describes the position ofv inTi but not
in Ti+1. In this setup, to determine if v and w are adjacent in H , we need to know their respective
positions in the same binary search tree. However, there is in principle no relation between the
position of v in Ti and its position in Ti+1.

To circumvent this difficulty, we build the binary search trees T1, . . . ,Th one-by-one, starting
with a balanced binary search tree, in such a way that Ti+1 is obtained from Ti by performing
carefully structured changes. By storing some small extra information related to these changes in
the label of (v, i), this will allow us to obtain the position of v in Ti+1. Finally, we also need to
guarantee that the binary search trees in our sequence are balanced so the labels are of length
log |Ti | plus a lower-order term.

In this section, we introduce three operations on a binary search tree that will allow us to carry
out this plan. These operations are called bulk insertion, bulk deletion, and rebalancing. Starting
from a perfectly balanced binary search tree T1, each tree Ti in our sequence T1, . . . ,Th will be
obtained from Ti−1 by applying these three operations.

3.1 Bulk Insertion

The bulk insertion operation, BulkInsert(I), in which a finite set I ⊂ R \ V (T) of new values
are inserted into a binary search treeT , is implemented using the standard insertion algorithm for
binary search trees. For each x ∈ I , PT (x) ends at an external node x ′ of T + whose parent y is a
node ofT . We simply make x a child of y. Doing this for each x ∈ I (in any order) results in a new
tree T ′ with V (T ′) = V (T) ∪ I .

Lemma 11. Let T be any binary search tree and let I be a finite set of values from R \ V (T) such

that V (T) 1-chunks I . Apply BulkInsert(I) to T to obtain T ′. Then T ′ is a supergraph of T and

h(T ′) � h(T) + 1.

Proof. ThatT ′ is a supergraph ofT is obvious. Next note that the 1-chunking property ensures
that, for any x ∈ I , the parent of x inT ′ is also inT . Thus, any root-to-leaf path inT ′ consists of a
root-to-leaf path in T followed by at most one node in I . Therefore, h(T ′) � h(T) + 1. �

Lemma 12. Let T be any binary search tree and let I be a set of values from R \ V (T) such that

V (T) 1-chunks I . Apply BulkInsert(I) toT to obtainT ′. Let x be any node ofT and letTx andT ′x be

the subtrees of T and T ′, respectively, rooted at x . Then |Tx | � |T ′x | < 4|Tx |.

Proof. We clearly have |Tx | � |T ′x |. By definition,V (T) 1-chunks I := V (T ′) \V (T). This implies
thatV (Tx) 1-chunks Ix := V (T ′x)\V (Tx). Therefore, |Ix | � |Tx |+1, so |T ′x | = |Tx |+ |Ix | � 2|Tx |+1 �
3|Tx | < 4|Tx |. �

In Lemma 12 and in Lemma 14, below, we use the constant 4 rather than 3, because this later
simplifies calculations involving binary logarithms.

3.2 Bulk Deletion

The bulk deletion operation, BulkDelete(D), of a subset D of nodes of a binary search tree T
is implemented as a series of |D | individual deletions, performed in any order. For each x ∈ D,
the deletion of x is implemented by running the following recursive algorithm: If x is a leaf, then
simply remove x from T . Otherwise, x has at least one child. If x has a left child, then recursively
delete the largest value x ′ in the subtree of T rooted at the left child of x and then replace x with

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:10 V. Dujmović et al.

x ′. Otherwise, x has a right child, so recursively delete the smallest value x ′ in the subtree of T
rooted at the right child of x and then replace x with x ′.

Lemma 13. Let T be any binary search tree and let D be a set of values from V (T). Apply

BulkDelete(D) to T to obtain a new tree T ′. Then, for any node x in T ′, σT ′ (x) is a prefix of σT (x).
In particular, h(T ′) � h(T).

Proof. This follows immediately from the fact the only operations performed during a bulk
deletion are (i) deletion of leaves and (ii) using a value x ′ to replace the value of one of its T -
ancestors x . The deletion of a leaf has no effect on σT ′ (x) for any node x in T ′. For any node z in
T ′ other than x ′, (ii) has no effect on σT (z). For the node x ′, (ii) has the effect of replacing σT (x ′)
by its length-dT (x) prefix. �

Lemma 14. LetT be any binary search tree and let D be a strict subset ofV (T) such thatV (T) \D
1-chunks D. Apply BulkDelete(D) to T to obtain a new tree T ′. Then |T |/4 � |T ′ | � |T |.

Proof. We clearly have |T ′ | � |T |. SinceV (T) \D 1-chunks D, we have |D | � |V (T) | − |D |+1 �
2(|V (T) |−|D |) (sinceD ⊂ V (T), |V (T) |−|D | � 1), so |D | � (2/3) |V (T) |. Thus, |T ′ | � |T |−(2/3) |T | =
|T |/3 > |T |/4. �

3.3 Rebalancing

The rebalancing operation on a binary search treeT uses several subroutines that we now discuss,
beginning with the most fundamental one: Split(x).

3.3.1 Split(x). The argument of Split(x) is a node x in T and the end result of the subroutine
is to split T into two binary search trees T<x and T>x where V (T<x) = {z ∈ V (T) : z < x }
and V (T>x) = {z ∈ V (T) : z > x }. Refer to Figure ??. Let PT (xr) = x0, . . . ,xr be the path in T
from the root x0 of T to x = xr . Partition x0, . . . ,xr−1 into two subsequences a := a1, . . . ,as and
b := b1, . . . ,bt where the elements of a are less than x and the elements of b are greater than x .
Note that the properties of a binary search tree guarantee that

a1 < · · · < as < x < bt < · · · < b1.

Make a binary search tree T0 that has x as root, the path a1, . . . ,as as the left subtree of x and
the path b1, . . . ,bt as the right subtree of x . Note that ai+1 is the right child of ai for each i ∈
{1, . . . , s − 1} and bi+1 is the left child of bi for each i ∈ {1, . . . , t − 1}.

Next, consider the forest F := T −{x0, . . . ,xr }. This forest consists of r +2 (possibly empty) trees
A1, . . . ,Ar−1,L,R where L and R are the subtrees of T rooted at the left and right child of x in Tx

and, for each i ∈ {1, . . . , r − 1}, Ai is the subtree of T rooted at the child ci � xi+1 of xi (if such a
child exists, otherwise Ai is empty). Make a binary search tree Tx by replacing each of the r + 2
external nodes of T +0 with the corresponding tree in F . Finally, let T<x be the subtree of Tx rooted
at the left child of x and let T>x be the subtree of Tx rooted at the right child of x in Tx .

Lemma 15. Let T be any binary search tree, let x be any node of T , and apply Split(x) to obtain

T<x and T>x . Then h(T<x) � h(T) and h(T>x) � h(T).

Proof. Note that for each node z of T<x , we have V (PT<x
(z)) ⊆ V (PT (z)), so dT<x

(z) � dT (z).
Therefore, h(T<x) � h(T). The argument for T>x is symmetric. �

The following observation shows that there is a simple relationship between a node’s signature
in T before calling Split(x) and its signature in T<x or T>x :

Observation 16. Let T , x , x0, . . . ,xr , A1, . . . ,Ar−1,L,R, a1, . . . ,as , and b1, . . . ,bt be defined as

above. Then

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:11

Fig. 3. The operation of Split(x).

(1) for each j ∈ {1, . . . , s} where aj = xi

(a) σT<x
(aj) = 1j−1, and

(b) σT<x
(z) = 1j−1, 0,σAi

(z) for each z ∈ V (Ai);
(2) for each j ∈ {1, . . . , t } where bj = xi

(a) σT>x
(bj) = 0j−1, and

(b) σT>x
(z) = 0j−1, 1,σAi

(z) for each z ∈ V (Ai);
(3) σT<x

(z) = 1s ,σL (z) for each z ∈ V (L); and

(4) σT>x
(z) = 0t ,σR (z) for each z ∈ V (R).

In particular, for any z ∈ V (T) \ {x }, σT<x
(z) or σT>x

(z) can be obtained from σT (z) by deleting a

prefix and replacing it with one of the 4 · h(T) strings in Π :=
⋃h (T)−1

j=0 {0j , 0j 1, 1j , 1j 0}.

3.3.2 MultiSplit(x1, . . . ,xc). From the Split(x) operation, we build the
MultiSplit(x1, . . . ,xc) operation that takes as input a sequence of nodes x1 < · · · < xc of
T . For convenience, define x0 = −∞ and xc+1 = ∞. The effect of MultiSplit(x1, . . . ,xc)
is to split T into a sequence of binary search trees T0, . . . ,Tc where, for each i ∈ {0, . . . , c},
V (Ti) = {z ∈ V (T) : xi < z < xi+1}.

The implementation of MultiSplit(x1, . . . ,xc) is straightforward divide-and-conquer: If
c = 0, then there is nothing to do. Otherwise, call Split(x �c/2�) to obtain T<x �c/2� and T>x �c/2� .
Next, apply MultiSplit(x1, . . . ,x �c/2�−1) to T<x �c/2� to obtain T0, . . . ,T �c/2�−1 and then apply
MultiSplit(x �c/2�+1, . . . ,xc) to T>x �c/2� to obtain T �c/2� , . . . ,Tc .

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:12 V. Dujmović et al.

Fig. 4. The operation of Balance(x ,k).

The following lemma is immediate from Lemma 15:

Lemma 17. Let T be any binary search tree and apply MultiSplit(x1, . . . ,xc) to T to obtain

T0, . . . ,Tc . Then h(Ti) � h(T) for each i ∈ {0, . . . , c}.

3.3.3 Balance(x ,k). The Balance(x ,k) operation operates on the subtree Tx of T rooted at
some node x in T . The goal of this operation is to balance the size of all the subtrees rooted at
nodes of depth dT (x) + k + 1 and contained in Tx . Refer to Figure 4.

If |V (Tx) | < 2k , then this operation simply replaces Tx with a perfectly balanced binary search
tree containing V (Tx). Otherwise, let Z := {z ∈ V (Tx) : dTx

(z) < k }. Call the m � 2k − 1 elements
of Z z1 < z2 < · · · < zm and, for convenience, define z0 = −∞ and zm+1 = ∞.

Select the nodes X := {x1, . . . ,x2k−1} ofTx where each x j has rank 	j |V (Tx) |/2k
 inV (Tx).5 The

Balance(x ,k) operation will turn Tx into a tree with a top part T̂0 that is a perfectly balanced
binary search tree on Z ∪ X . We now describe how this is done.
Tx −Z is a forest consisting ofm + 1 � 2k treesT0, . . . ,Tm . (Some of these trees may be empty.)

Order T0, . . . ,Tm so, for each i ∈ {0, . . . ,m} and each x ′ ∈ V (Ti), zi < x ′ < zi+1. For each
i ∈ {0, . . . ,m}, let {xi,1, . . . ,xi,ci

} := X ∩ V (Ti) where xi,1 < · · · < xi,ci
and define xi,0 := zi

and xi,ci+1 := zi+1. Note that for each i ∈ {0, . . . ,m}, ci � |X | � 2k − 1.
For each i ∈ {0, . . . ,m}, apply MultiSplit(xi,1, . . . ,xi,ci

) to the treeTi . As a result of these calls,
we obtain sequences of trees Ti,0, . . . ,Ti,ci

where, for each i ∈ {0, . . . ,m}, each j ∈ {0, . . . , ci }, and
each x ′ ∈ V (Ti, j), we have xi, j < x ′ < xi, j+1. Note that if ci = 0 (i.e., if X does not intersect V (Ti)),
then the result of this call is a single treeTi,0 = Ti . Observe that

⋃m
i=0

⋃ci

j=0V (Ti, j) = V (Tx)\ (Z∪X).

5For a finite set X ⊂ R, and x ∈ R, the rank of x in S is | {x ′ ∈ S : x ′ < x } |.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:13

Letp := |Z∪X |, let s1 < · · · < sp denote the elements ofZ∪X and define s0 := −∞ and sp+1 := ∞.
For each � ∈ {0, . . . ,p}, let i� := |Z ∩ {s1, . . . , s� }| and j� := � −max{q ∈ {1, . . . , �} : sq ∈ Z } and let
A� := Ti�, j� . Then, for each � ∈ {0, . . . ,p} and each x ′ ∈ V (A�), we have s� < x ′ < s�+1.

Now construct a perfectly balanced tree T̂0 with vertex set V (T̂0) := {s1, . . . , sp } = Z ∪ X . The

tree T̂0 has p + 1 external nodes a0, . . . ,ap . We obtain a new tree T ′x by replacing a� with A� for

each � ∈ {0, . . . ,p} in T̂ +0 . In the encompassing bulk tree T , we replace the subtree Tx with T ′x .

Lemma 18. Let T be any binary search tree, let x be any node of T , and apply Balance(x ,k) to T
to obtain a new tree T ′. Then h(T ′) � h(T) + 1.

Proof. Since Balance(x ,k) only affects the subtree Tx rooted at x , it suffices to show that
h(T ′x) � h(Tx)+1. For each i ∈ {0, . . . ,m},Ti is rooted at a depth-k node ofTx , so h(Ti) � h(Tx)−k .
For each � ∈ {0, . . . ,p},A� is obtained by an application of MultiSplit toTi for some i ∈ {0, . . . ,m}
so, by Lemma 17,h(A�) � h(Ti) � h(Tx)−k . Next, |Z∪X | � |Z |+ |X | � 2k−1+2k−1 < 2k+1−1 and

T̂0 is a perfectly balanced binary search tree of size |T̂0 | = |Z ∪ X |. Therefore, h(T̂0) � 	log |T̂0 |
 �
	log(2k+1 − 1)
 = k . Finally, h(T ′x) � h(T̂0) + 1+max{h(A�) : � ∈ {0, . . . ,p}} � k + 1+h(Tx) −k �
h(Tx) + 1. �

The following statement captures what we win after an application of Balance(x ,k) to a binary
search tree:

Lemma 19. LetT be any binary search tree, let x be any node ofT , letTx be the subtree ofT rooted

at x , and apply Balance(x ,k) to T to obtain a new tree T ′. Then, for each T ′-descendant z of x with

dT ′ (z) = dT (x) + k + 1, the subtree of T ′ rooted at z has size at most |Tx |/2k .

Proof. Each such subtree is a subtree of A� for some � ∈ {0, . . . ,p}. Now, V (A�) ⊂ (x j ,x j+1)

for some j ∈ {1, . . . , 2k−1}. The values x j and x j+1 have ranks 	j |Tx |/2k
 and 	(j +1) |Tx |/2k
 in the

set V (Tx). Therefore, |A� | � 	(j + 1) |Tx |/2k
 − 	j |Tx |/2k
 − 1 � |Tx |/2k . �

3.3.4 BulkBalance(θ ,k). The ultimate restructuring operation in bulk trees is
BulkBalance(θ ,k). It calls Balance(x ,k) for each node x of depth θ in T . (Note that this
operation has no effect if there is no such node.) The following two lemmas are immediate
consequences of Lemma 18 and Lemma 19, respectively:

Lemma 20. Let T be any binary search tree and apply the BulkBalance(θ ,k) operation to obtain

a new tree T ′. Then h(T ′) � h(T) + 1.

Lemma 21. Let T be any binary search tree and apply the BulkBalance(θ ,k) operation to obtain

a new tree T ′. Let x be any node of T of depth θ and let Tx be the subtree of T rooted at x . Then, for

eachT ′-descendant z of x with dT ′ (z) = θ +k+1, the subtree ofT ′ rooted at z has size at most |Tx |/2k .

3.4 Bulk Tree Sequences

Let k � 5 be an integer6 and let S0, . . . , Sq be a 1-chunking sequence. We define a one-phase k-

bulk tree sequence based on S0, . . . , Sq to be a sequence T0, . . . ,Tq of binary search trees such that
T0 is an arbitrary binary search tree on node set S0 and, for each y ∈ {0, . . . ,q − 1}, we have
h(Ty) > y · (k + 1) and the tree Ty+1 is obtained from Ty by applying

(i) BulkBalance(y · (k + 1),k), then
(ii) BulkInsert(I) with I := Sy+1 \ Sy , and finally

(iii) BulkDelete(D) with D := Sy \ Sy+1.

Note that V (Ty) = Sy for each y ∈ {0, . . . ,q}. The sequence is complete if h(Tq) � q · (k + 1).

6k � 5 is a technical requirement, to make sure that some inequalities hold later on.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:14 V. Dujmović et al.

For k � 5 and a 1-chunking sequence S1, . . . , Sh , we define a k-bulk tree sequence based on
S1, . . . , Sh to be a sequence T1, . . . ,Th of binary search trees satisfying: T1 is a perfectly balanced
binary search tree with V (T1) = S1, and there exist indices h1,h2, . . . ,h� with 1 = h1 < h2 <
· · · < h� = h such that Thj

,Thj+1, . . . ,Thj+1
is a complete one-phase k-bulk tree sequence based

on Shj
, Shj+1, . . . , Shj+1

for each j ∈ {1, . . . , � − 2}, and Th�−1
,Th�−1+1, . . . ,Th�

is a (non-necessarily
complete) one-phase k-bulk tree sequence based on Sh�−1

, Sh�−1+1, . . . , Sh�
.

Note that if we fix the 1-chunking sequence S1, . . . , Sh , the integer k � 5, and the start-
ing perfectly balanced binary search tree T1 with V (T1) = S1, a k-bulk tree sequence based on
S1, . . . , Sh and starting with T1 exists and is unique. It is obtained by a sequence of one-phase
k-bulk tree sequences, where we start a new one-phase sequence as soon as the current one is
complete.

This will not be needed until the final sections, but it is helpful to keep in mind that we will

ultimately take k = max{5, �
√

logn/ log logn�} when considering a k-bulk tree sequence built
for our n-vertex graph G, so the expression O (k + k−1 logn) (which appears many times in what
follows), is ω (1) and o(logn).

Lemma 22. Let T0, . . . ,Tq be a one-phase k-bulk tree sequence. Then, for each y ∈ {0, . . . ,q}

(i) h(Ty) � h(T0) + 2y;

(ii) each subtree of Ty rooted at a node of depth y · (k + 1) has size at most |T0 | · 2−y (k−2) .

Proof. The proof is by induction on y. For the base case y = 0, both properties are trivial:
(i) asserts that h(T0) � h(T0) and (ii) asserts that the subtree of T0 rooted at the root of T0 has size
at most |T0 |.

For the inductive step, assume y � 0 and (i) holds for Ty . To get Ty+1, we first apply
BulkBalance(y · (k + 1),k) to Ty to obtain T ′. By Lemma 20, we have h(T ′) � h(Ty) + 1. Let
I := V (Ty+1)\V (T ′) = V (Ty+1)\V (Ty). SinceV (Ty) 1-chunksV (Ty+1), we know thatV (T ′) 1-chunks
I . Next, we apply BulkInsert(I) toT ′ to obtainT ′′. Thus, by Lemma 11, we haveh(T ′′) � h(T ′)+1.
Finally, we apply BulkDelete(D) toT ′′ and obtainTy+1, whereD := V (Ty)\V (Ty+1). By Lemma 13,
we have h(Ty+1) � h(T ′′). Altogether, we have

h(Ty+1) � h(T ′′) � h(T ′) + 1 � h(Ty) + 2 � h(T0) + 2y + 2 = h(T0) + 2(y + 1).

Thus, (i) holds for Ty+1.
Next, we establish (ii). Assume that (ii) holds forTy . Thus, every subtree ofTy rooted at a node of

depth y (k + 1) has size at most |T0 | · 2−y (k−2) . Again, the first step when constructingTy+1 fromTy

is to apply BulkBalance(y (k + 1),k) to Ty . By Lemma 21, this results in a tree T ′ in which every

subtree rooted at a node of depth (y+1) (k +1) has size at most |T0 | · 2−y (k−2) · 2−k . The second step
is to apply BulkInsert(I) toT ′ to obtain a new treeT ′′. By Lemma 12, every subtree ofT ′′ rooted

at a node of depth (y + 1) (k + 1) has size at most |T0 | · 2−y (k−2) · 4 · 2−k = 2−y (k−2)+2−k = 2−(y+1)(k−2) .
Finally, the third step is to perform BulkDelete(D) on T ′′ to obtain Ty+1. Bulk deletion does not
increase the size of any subtree, so every subtree of Ty+1 rooted at a node of depth (y + 1) (k + 1)

has size at most |T0 | · 2−(y+1)(k−2) , as desired. �

Corollary 23. Let T0, . . . ,Tq be a one-phase k-bulk tree sequence. Then,

q �
⌈
log |T0 |
k − 2

⌉
.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:15

Proof. Arguing by contradiction, suppose that q > � log |T0 |
k−2 �. Note that when we take the loga-

rithm of the upper bound in Lemma 22(ii) for y := � log |T0 |
k−2 �, we have

log |T0 | −
⌈
log |T0 |
k − 2

⌉
· (k − 2) � log |T0 | −

log |T0 |
k − 2

· (k − 2) = 0.

Thus, each subtree of Ty rooted at a node of depth y (k + 1) has size at most

|T0 | · 2−y (k−2) � 1,

and hence h(Ty) � y (k + 1), which violates the height condition in the definition of a one-phase
k-bulk tree sequence. �

Lemma 24. Let T0, . . . ,Tq be a complete one-phase k-bulk tree sequence, and let r0 := h(T0) −
log |T0 |. Then, for each y ∈ {0, . . . ,q},

(i) |T0 |/4y � |Ty |, and thus log |T0 | � log |Ty | + 2y;

(ii) q = O (k−1 log |Ty |);
(iii) h(Ty) = log |Ty | + r0 + O (k−1 log |Ty |); and

(iv) h(Tq) = log |Tq | + O (k + k−1 log |Tq |).

Proof. Let I0, . . . , Iq−1 and D0, . . . ,Dq−1 be the sets so Ty+1 is obtained from Ty by rebalancing
and then applying BulkInsert(Iy) and BulkDelete(Dy), for each y ∈ {0, . . . ,q − 1}. First, recall

that by Lemma 12 and Lemma 14, we have |Ty+1 | � |Ty |/4.7

Iterating this starting with T0 implies that |T0 |/4y � |Ty |, and thus log |T0 | � log |Ty | + 2y for
each y ∈ {0, . . . ,q}, which proves (i).

By Corollary 23, we have q � � log |T0 |
k−2 �. Note that, for each y ∈ {0, . . . ,q}, we have

q �
log |T0 |
k − 2

+ 1 �
log |Ty | + 2y

k − 2
+ 1 �

log |Ty | + 2q

k − 2
+ 1, (by (i), and since y � q)

and rewriting this yields (using that k � 5)

q �
log |Ty |
k − 4

+
k − 2

k − 4
�

k

k − 4
·

log |Ty |
k

+
k − 2

k − 4

� 5 ·
log |Ty |

k
+ 3 = O (k−1 log |Ty |),

which proves (ii). Now (iii) follows as for each y ∈ {0, . . . ,q}, we have

h(Ty) � h(T0) + 2y (by Lemma 22(i))

= log |T0 | + 2y + r0 (by definition of r0)

� log |Ty | + 4y + r0 (by (i))

� log |Ty | + 4q + r0 (since y � q)

= log |Ty | + O (k−1 log |Ty |) + r0. (by (ii))

7The condition, in Lemma 14, that D is a strict subset of V (T) is satisfied, since BulkDelete(Dy) is performed on an

intermediate tree T ′y with V (T ′y) = V (Ty) ∪ Iy and produces a tree T ′′y with V (T ′y) \ Dy = V (T ′′y) = V (Ty+1) = Sy+1. By

definition Sy+1 is non-empty, therefore D = Dy � V (T ′y).

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:16 V. Dujmović et al.

(iv) follows from

h(Tq) � (k + 1)q (since the sequence is complete)

� (k + 1)

(
log |T0 |
k − 2

+ 1

)
(by Corollary 23)

=

(
k + 1

k − 2

)
· log |T0 | + (k + 1)

�
(
k + 1

k − 2

)
· (log |Tq | + 2q) + (k + 1) (by (i))

= log |Tq | +
3

k − 2
log |Tq | + 2 · k + 1

k − 2
q + k + 1

= log |Tq | + O (k + k−1 log |Tq |). (as k+1
k−2 �

6
3 , and by (ii)) �

The following lemma shows that trees in a bulk tree sequence are balanced at all times:

Lemma 25. Let T1, . . . ,Th be a k-bulk tree sequence and let y ∈ {1, . . . ,h}. Then

h(Ty) � log |Ty | + O (k + k−1 log |Ty |).

Proof. By the definition of a k-bulk tree sequence, T1 is a perfectly balanced binary tree so
h(T1) = �log |T1 |� and the statement is satisfied for y = 1. Let h1,h2, . . . ,h� be indices with
1 = h1 < h2 < · · · < h� = h such that Thj

, . . . ,Thj+1
is a complete one-phase k-bulk tree se-

quence for each j ∈ {1, . . . , � − 2}, and Th�−1
, . . . ,Th�

is a one-phase k-bulk tree sequence. Let
Y := {h1,h2, . . . ,h�−1}. For y ∈ Y \ {1}, Lemma 24(iv) implies thatTy satisfies the conditions of the
lemma.

All that remains is to show that the conditions of the lemma are satisfied for eachy ∈ {1, . . . ,h}\
Y . To show this, let y0 := max{y ′ ∈ Y : y ′ < y}. That is, Ty0 is the tree that began the one-phase
k-bulk tree sequence in which Ty takes part. In this case, Lemma 24(iii) implies that

h(Ty) � log |Ty | + O (k−1 log |Ty |) + h(Ty0) − log |Ty0 |.
Thus, all that is required is to show that r0 := h(Ty0)− log |Ty0 | ∈ O (k +k−1 log |Ty |) so that is what

we do. Note that by Lemma 24(ii) , we have y − y0 = O (k−1 log |Ty |).
r0 = h(Ty0) − log |Ty0 |
= O (k + k−1 log |Ty0 |) (by Lemma 24(iv))

= O (k + k−1 (log |Ty | + 2(y − y0))) (by Lemma 24(i))

= O (k + k−1 log |Ty | + k−2 log |Ty |) (by Lemma 24(ii))

= O (k + k−1 log |Ty |). �

3.5 Transition Codes for Nodes

We now arrive at the raison d’être of bulk tree sequences: For two consecutive treesTy andTy+1 in
a bulk tree sequence and any z ∈ V (Ty)∩V (Ty+1), the signatures σTy

(z) and σTy+1 (z) are so closely
related that σTy+1 (z) can be derived from σTy

(z) and a short transition code νy (z). The following
two lemmas make this precise:

Lemma 26. There exists a function B : ({0, 1}∗)2 → {0, 1}∗ such that, for every binary search tree

T , for any integers θ and k with 1 � θ � h(T) and k � 1, the following holds: Let T ′ be the binary

search tree obtained by an application of BulkBalance(θ ,k) to T . For each z ∈ V (T), there exists

ν (z) ∈ {0, 1}∗ with |ν (z) | = O (k logh(T)) such that B (σT (z),ν (z)) = σT ′ (z).

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:17

Proof. Recall that by Lemma 20, h(T ′) � h(T) + 1. Recall also that γ : N → {0, 1}∗ is a prefix-
free encoding of the natural numbers such that |γ (i) | = O (log i), for every natural number i as
in Lemma 3.

BulkBalance(θ ,k) calls Balance(x ,k) for each node x of depth θ inT . Recall that the changes
caused by Balance(x ,k) are limited to the subtree of T rooted at x . Thus, σT (z) can be affected
by Balance(x ,k) only if x is a T -ancestor of z. In particular, when |σT (z) | < θ , the signature of z
does not change, that is, σT (z) = σT ′ (z). In this case, we define

ν (z) := γ (θ).

Note that in this case |ν (z) | = O (logθ) = O (logh(T)).
Assume now that |σT (z) | � θ and let x be the T -ancestor of z at depth θ . Recall that the appli-

cation of Balance(x ,k) first identifies two sets of nodes Z and X that eventually form a perfectly

balanced tree T̂0 of height at most k that forms the top part of the subtree that replaces the subtree
of x in T . This means that if z ∈ Z ∪ X , then σT ′ (z) = σT (x),σT̂0

(z). In this case, we define

ν (z) := γ (θ), 0,γ (|σT̂0
(z) |),σT̂0

(z).

Note that in this case |ν (z) | = O (logθ) + O (logk) + O (k) = O (logh(T) + k).
Now, we are left with the case that |σT (z) | � θ and z � Z ∪ X . In particular, the node z is in

some treeTi of the forestTx −Z whereTx is the subtree ofT rooted at x . (Further on, we reuse the
notations Ti , Ti,0, . . . ,Ti,ci

, and so on, introduced in the definition of Balance(x ,k).) Recall that
Balance(x ,k) calls MultiSplit(xi,1, . . . ,xi,ci

) on Ti to obtain a sequence of trees Ti,0, . . . ,Ti,ci

and the node z ends up in one of these trees, say, in Ti,a . Note that

(i) σTi
(z) is a suffix of σT (z);

(ii) the application of MultiSplit(xi,1, . . . ,xi,ci
) toTi calls Split(x �ci /2�) (given ci > 0) to obtain

two trees T<x �ci /2� and T>x �ci /2� , and then recursively calls MultiSplit(xi,1, . . . ,xi, �ci /2�−1)
on T<xi, �ci /2� and MultiSplit(xi, �ci /2�+1, . . . ,xi,ci

) on T>xi, �ci /2� ; the node z lies in one of the
trees T<xi, �ci /2� , T>xi, �ci /2� and by Observation 16 the signature of z in the new tree can be

obtained from σTi
(z) by deleting a prefix and replacing it with one of the 4h(Ti) strings in⋃h (Ti)−1

j=0 {0j , 0j 1, 1j , 1j 0};
(iii) the application of MultiSplit(xi,1, . . . ,xi,ci

) thus defines a sequence of trees starting with
Ti and ending withTi,a that all contain z; by Lemma 15 the height of each of these trees is at
most h(Ti); the signature of z in these trees, which is σTi

(z) at the beginning, undergoes at
most 1 + log ci � 1 + k changes before becoming σTi,a (z); let b denote the number of these
changes and, for each j ∈ {1, . . . ,b}, let dj be the length of the prefix of the signature being
deleted during the jth change and let qj ∈ {1, . . . , 4h(Ti)} be a number identifying the string
that this prefix is replaced with during the jth change (here, we use that all the trees in the
sequence have height at most h(Ti)).

Finally, Balance(x ,k) replaces the external nodes of T̂0 with the trees output by

MultiSplit(xi,1, . . . ,xi,ci
). Let z ′ be the external node of T̂0 that is replaced with Ti,a . Therefore,

the signature of z in T ′ is the concatenation of σT (x), σT̂0
(z ′), and σTi,a (z). We define ν (z) in this

case as follows:

ν (z) := γ (θ), 1,γ (k),γ (|σT̂0
(z ′) |),σT̂0

(z ′),γ (b),γ (d1),γ (q1), . . . ,γ (db),γ (qb).

Note that in this case |ν (z) | = O (logθ) + O (logk) + O (k) + O (logk) + O (2k · logh(T)) =
O (k logh(T)). This completes the definition of ν (z).

The function B is defined as expected: Given σT (z) and ν (z), the function B first decodes θ and
checks whether |σT (z) | < θ . If this is the case, then the signatures of z inT andT ′′ are the same, so

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:18 V. Dujmović et al.

B outputs σT (z). If |σT (z) | � θ , then B reads the next bit of ν (z). If it is 0, then this corresponds to
the case where z ∈ Z ∪X described above, and the information encoded after is enough to recover
and output σT ′ (z) = σT (x),σT̂0

(z). If the bit under consideration was 1, then this corresponds to

the case where z � Z ∪X . Recall that the set Z are just all nodes in Tx of depths less than k . Thus,
just removing first θ +k bits of σT (z), the function B obtains σTi

(z) whereTi is the aforementioned
subtree of Tx − Z containing z. The function B then reads the rest of the information ν (z), which
allows it to follow all the changes made to σTi

(z) until it becomes σTi,a (z) of the signature that
are described above. This way again B computes and outputs σT ′ (z) = σT (x),σT̂0

(z ′),σTi,a (z). This

completes the definition of B and the proof of the lemma. �

Lemma 27. There exists a function B′ : ({0, 1}∗)2 → {0, 1}∗ such that, for each k-bulk tree sequence

T1, . . . ,Th , each y ∈ {1, . . . ,h − 1}, and each z ∈ V (Ty) ∩ V (Ty+1), there exists νy (z) ∈ {0, 1}∗ with

|νy (z) | = O (k logh(Ty)) such that B′(σTy
(z),νy (z)) = σTy+1 (z).

Proof. Let T1, . . . ,Th be a k-bulk tree sequence and let y ∈ {1, . . . ,h − 1}. Let I := V (Ty+1) \
V (Ty) and D := V (Ty) \ V (Ty+1). Recall that the transformation of Ty into Ty+1 occurs in three
steps: applying BulkBalance(θ ,k) to Ty with the appropriate value of θ to obtain T ′, applying
BulkInsert(I) to T ′ to obtain T ′′, and applying BulkDelete(D) to T ′′ to obtain Ty+1. Recall that
whenever BulkBalance(θ ,k) is applied in this context, we have θ < h(Ty).

By Lemma 13, Lemma 11, and Lemma 20, we have h(Ty+1) � h(T ′′) � h(T ′) + 2 � h(Ty) + 3.
Thus, the heights of all these trees are O (h(Ty)).

Given a node z appearing in both Ty and Ty+1, we are going to describe νy (z). The transition

code νy (z) consists of two parts νBal
y (z) and νDel

y (z) devoted to different steps of the transformation
from Ty to Ty+1.

The first part νBal
y (z) is simply defined as

νBal
y (z) := γ (|ν (z) |),ν (z),

where ν (z) is given by an application of Lemma 26 with T = Ty .
Recall that the bulk insertion of new nodes inT ′ does not affect the signature of existing nodes

in the tree, since new nodes are inserted at the leaves of T ′.
We next describe νDel

y (z) that serves to reconstruct σTy+1 (z) from σT ′′ (z). This turns out to be

fairly easy. By Lemma 13, we have that σTy+1 (z) is just a prefix of σT ′′ (z). Therefore, it is enough
to define

νDel
y (z) := γ (|σTy+1 (z) |).

Finally, we define νy (z) to be the concatenation of νBal
y (z) and νDel

y (z). It follows that

|νy (z) | = O (k logh(Ty)).
The function B′ is defined as expected: Given σTy

(z) and νy (z), the function B′ first decodes ν (z)
and computes B (σTy

(z),ν (z)) = σT ′ (z) = σT ′′ (z). Then B′ decodes |σTy+1 (z) | and computes a prefix
of this size of σT ′′ (z). As we have seen, the prefix is σTy+1 (z), which is output by B′. �

4 SUBGRAPHS OF P � P

Before continuing, we show that using the techniques developed thus far, we can already solve
a non-trivial special case. In particular, we consider the case in which G is an n-vertex subgraph
of P1 � P2 where P1 is a path on m vertices and P2 is a path on h vertices. Thus, we identify each
vertex of G with a point (x ,y) ∈ {1, . . . ,m} × {1, . . . ,h} in them × h grid with diagonals, and G is
just a subgraph of this grid (see Figure 5). Obviously, we may assume thatm � n and h � n.

Our motivation for considering this special case is expository: The vertices of P1 are integers
1, . . . ,m that can be stored directly in a binary search tree. This makes it easier to understand the

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:19

Fig. 5. The special case where G is a subgraph of P1 � P2.

role that bulk tree sequences play in our solution. The extension of this solution to subgraphs of
H � P , which is the topic of Section 5, uses exactly the same ideas but requires another level of
indirection, since there is no natural mapping from the vertices of H onto real numbers.

4.1 The Labels

For each y ∈ {1, . . . ,h}, we let

Ly = {x : (x ,y) ∈ V (G)}, and

L+y = Ly ∪ {x − 1 : (x ,y) ∈ V (G)}.

Note that
∑h

y=1 |Ly | = n and
∑h

y=1 |L+y | � 2n. Let L+0 := ∅.
Let V1, . . . ,Vh be the 1-chunking sequence obtained by applying Lemma 8 to the sequence

L+1 ∪ L+0 , . . . ,L+h ∪ L
+
h−1

. Thus, for each y ∈ {1, . . . ,h}, we have

Vy ⊇ L+y ∪ L+y−1, and

h∑
y=1

|Vy | � 4

h∑
y=1

|L+y ∪ L+y−1 | � 16n.

Next, let T1, . . . ,Th be a k-bulk tree sequence based on V1, . . . ,Vh (recall that if we fix the start-
ing perfectly balanced binary search tree T1 with vertex set V1, then this sequence exists and is
unique). We discuss the asymptotically optimal choice for the value of k at the end of the section.
By Lemma 25, for each y ∈ {1, . . . ,h}, we have

h(Ty) = log |Ty | + O (k + k−1 log |Ty |)
� log |Ty | + O (k + k−1 logn).

Let A : ({0, 1}∗)2 → {0, 1}∗ be the function, given by Lemma 7 such that using the weight
function w (y) := |Ty | for each y ∈ {1, . . . ,h}, we have a prefix-free code α : {1, . . . ,h} → {0, 1}∗
such that

|α (y) | = log ��
h∑

i=1

|Ti |�	 − log |Ty | + O (log logh)

� logn − log |Ty | + O (log logn),

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:20 V. Dujmović et al.

for each y ∈ {1, . . . ,h}, and A(α (i),α (j)) outputs 0, 1, −1, or ⊥, depending whether the value of j
is i , i + 1, i − 1, or some other value, respectively.

Let B′ : ({0, 1}∗)2 → {0, 1}∗ be the function, given by Lemma 27, such that for each y ∈ {1, . . . ,
h−1} and each x ∈ Ly ⊆ V (Ty)∩V (Ty+1), there exists a code νy (x) with |νy (x) | = O (k logh(Ty)) =
O (k log logn + k logk) such that B′(σTy

(x),νy (x)) = σTy+1 (x).

Let D : ({0, 1}∗)2 → {0, 1}∗ be the function, given by Observation 6, such that for every binary
search tree T , and every i such that i − 1 and i are in T , there exists δT (i) ∈ {0, 1}∗ with |δT (i) | =
O (logh(T)) such that D (σT (i),δT (i)) = σT (i − 1).

Finally, given a vertex v = (x ,y) ofG, we define an array a(v) of 8 bits indicating whether each
of the edges between (x ,y) and (x ± 1,y ± 1) are present in G. Note that some of these 8 vertices
may not even be present in G, in which case the resulting bit is set to 0, since the edge is not
present in G.

Now, in the labelling scheme for G, each vertex v = (x ,y) ∈ V (G) receives a label that is the
concatenation of the following bitstrings:

(P1) α (y);
(P2) γ (|σTy

(x) |), σTy
(x);

(P3) δTy
(x);

(P4) if y � h then 1,δTy+1 (x);
if y = h then 0;

(P5) if y � h then 1,νy (x);
if y = h then 0; and

(P6) a(v).

Two major components of this label are α (y), of length logn− log |Ty |+O (log logn), and σTy
(x), of

length log |Ty |+O (k+k−1 logn). Together they have length logn+O (k+k−1 logn+ log logn). The
lengths of the remaining components are as follows: γ (|σTy

(x) |), δTy
(x), and δTy+1 (x) have length

O (log logn + logk), νy (x) has length O (k log logn + k logk), and a(v) has length O (1). Thus, in

total the label has length logn + O (k log logn + k logk + k−1 logn).

4.2 Adjacency Testing

First note that from a given label of v = (x ,y) ∈ V (G), we can decode each block of the label. This
is because α (y) is prefix-free, γ (|σTy

(x) |) is prefix-free so when we read it, we know how long is
σTy

(x) and we can isolate it as well. The δ -codes are prefix-free again and νy (x) can be decoded
as outlined in the proof of Lemma 27. Finally, the last 8-bits correspond to a(v).

Given the labels of two vertices v1 = (x1,y1) and v2 = (x2,y2) in G, we can test if they are
adjacent as follows:

Looking up the value of A(α (y1),α (y2)), we determine which of the following applies:

(1) |y1 − y2 | � 2: In this case, we immediately conclude that v1 and v2 are not adjacent in G,
since they are not adjacent even in P1 � P2.

(2) y1 = y2: In this case, let y := y1 = y2. If the two bitstrings σTy
(x1), σTy

(x2) are
the same, then we conclude that x1 = x2 and y1 = y2, so v1 = v2 and we should
output that they are not adjacent. Otherwise, we lexicographically compare σTy

(x1) and
σTy

(x2). Without loss of generality, σTy
(x1) is smaller than σTy

(x2). Therefore, by Obser-

vation 4, x1 < x2. Recall that x2 ∈ Ly and L+y ⊆ V (Ty), so x2 − 1 ∈ V (Ty). We com-

pute D (σTy
(x2),δTy

(x2)) = σTy
(x2 − 1). If σTy

(x2 − 1) � σTy
(x1), then we immediately

conclude that x2 < x1−1, sov1 andv2 are not adjacent inG, since they are not adjacent even

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:21

in P1 � P2. Otherwise, we know that v1 = (x2 − 1,y) and v2 = (x2,y) are adjacent in P1 � P2.
Now, we use the relevant bit of a(v1) (or a(v2)) to determine if v1 and v2 are adjacent in G.

(3) y1 = y2 − 1: In this case, we compute B′(σTy1
(x1),νy1 (x1)) = σTy2

(x1). Let y := y2. If the two

bitstrings σTy
(x1), σTy

(x2) are the same, then we conclude that x1 = x2. Thus,v1 = (x1,y−1)
andv2 = (x1,y) are adjacent in P1�P2. Now, we look up the relevant bit of a(v1) (or a(v2)) to
determine if v1 and v2 are adjacent in G. Otherwise, we lexicographically compare σTy

(x1)
and σTy

(x2). If σTy
(x1) is smaller than σTy

(x2), then we conclude that x1 < x2. Recall that

x2 ∈ Ly and L+y ⊆ V (Ty), so x2 − 1 ∈ V (Ty). We compute D (σTy
(x2),δTy

(x2)) = σTy
(x2 − 1).

If σTy
(x2 − 1) � σTy

(x1), then we immediately conclude that v1 and v2 are not adjacent in
G, since they are not adjacent even in P1 � P2. Otherwise, we know that v1 = (x2 − 1,y − 1)
and v2 = (x2,y) are adjacent in P1 � P2. Now, we use the relevant bit of a(v1) (or a(v2)) to
determine if v1 and v2 are adjacent in G. If σTy

(x1) is larger than σTy
(x2), then we conclude

that x1 > x2. Recall that x1 ∈ Ly−1 and L+y−1 ⊆ V (Ty), so x1 − 1 ∈ V (Ty). We compute

D (σTy
(x1),δTy

(x1)) = σTy
(x1 − 1). If σTy

(x1 − 1) � σTy
(x2), then we immediately conclude

that v1 and v2 are not adjacent in G, since they are not adjacent even in P1 � P2. Otherwise,
we know that v1 = (x1,y − 1) and v2 = (x1 − 1,y) are adjacent in P1 � P2. Now, we use the
relevant bit of a(v1) (or a(v2)) to determine if v1 and v2 are adjacent in G.

(4) y2 = y1 − 1: In this case, we compute B′(σTy2
(x2),νy2 (x2)) = σTy1

(x2). Now, we proceed as in
the previous case with the roles of v1 and v2 reversed.

This establishes our first result:

Theorem 28. The family G of n-vertex subgraphs of a strong product P � P where P is a path has

a (1 + o(1)) logn-bit adjacency labelling scheme.

Remark 29. The o(logn) term in the label length of Theorem 28 is O (k log logn + k logk +

k−1 logn). An asymptotically optimal choice ofk is thereforek = max{5, �
√

logn/ log logn�}, yield-

ing labels of length logn + O (
√

logn log logn).

5 SUBGRAPHS OF H � P

In this section, we describe adjacency labelling schemes for graphs G that are subgraphs of H � P
where H is a graph of treewidth t and P is a path.

Let t be a positive integer. A graph H is a t-tree if there is an ordering v1, . . . ,vm of V (H) such
that for every i ∈ {1, . . . ,m}, the neighbors of vi earlier in the order, i.e., NH (vi) ∩ {v1, . . . ,vi−1}
induce a clique of size at most t in H . (Let us emphasize that this is slightly more general than
the usual definition of t-trees from the literature, which requires the neighbors of vi earlier in the
order to be a clique of size exactly min{i − 1, t }; this broader definition will be more convenient
for our purposes.) A vertex-ordering witnessing that H is a t-tree is called an elimination ordering.
Note that if H is a t-tree with a given elimination ordering, then for any subset X of vertices of H ,
the subgraph H [X] of H induced by X is a t-tree and the restriction of the elimination ordering of
H to X is an elimination ordering of H [X]. Every graph of treewidth t is a spanning subgraph of
a t-tree. For this reason, we may restrict ourselves to the case H � P where H is a t-tree, which we
do.

Given a t-tree H , we fix an elimination orderingv1, . . . ,vm . For every i ∈ {1, . . . ,m}, the family

clique CH (vi) is defined as NH [vi] ∩ {v1, . . . ,vi }. Note that vi ∈ CH (vi).

5.1 t-Trees and Interval Graphs

The clique number ω (G) of a graphG is the maximum size of a clique inG. The closed real interval
with endpoints a < b is denoted by [a,b]. For a finite set S of intervals, the interval intersection

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:22 V. Dujmović et al.

Fig. 6. The definition of xT (v).

graph GS of S is the graph with vertex set V (GS) := S and in which there is an edge between two
distinct intervals if and only if the intervals intersect.

The following well-known result states that every m-vertex t-tree is a subgraph of an interval
graph of clique number O (t logm)8:

Lemma 30. For everym-vertex t-tree H , there exists a mapping f assigning to every vertex v in H
an interval f (v) so the following holds: Let S := { f (v) : v ∈ V (H)}. Then,

(1) f (v) intersects f (w), so f (v) f (w) ∈ E (GS), for every edge vw ∈ E (H), and

(2) ω (GS) � (t + 1)	log3 (2m + 1) + 1
.

Furthermore, for every proper (t + 1)-colouring φ ′ : V (H) → {1, . . . , t + 1} of H , there exists a

colouring φ ′′ : V (H) → {1, . . . , 	log3 (2m + 1) + 1
} such that ϕ : V (H) → N2 defined by ϕ (v) :=
(φ ′(v),φ ′′(v)) is a proper colouring of GS .9

In light of Lemma 30, we call an interval representation of H a mapping f assigning to every
vertex v of a graph H an interval f (v) in such a way that f (v) and f (w) intersect for every edge
vw ∈ E (H). (Let us remark that f (v) and f (w) may or may not intersect when v,w are two non-
adjacent vertices, thus H is a subgraph of the intersection graph of the intervals.) We will always
assume that all the endpoints of intervals in the representation are distinct. This can be easily
achieved by local perturbations not changing the intersection graph.

A finite set X ⊂ R stabs a set S of intervals if X ∩ [a,b] � ∅ for every [a,b] ∈ S . Let H be a graph
and f be an interval representation of H . We say that a binary search tree T stabs H if V (T) stabs
the set of intervals { f (v) : v ∈ V (H)}. Forv a vertex in H , we let xT (v) denote the lowest common
T -ancestor of V (T) ∩ f (v) (see Figure 6). For U ⊆ V (H), we let xT (U) := {xT (v) : v ∈ U }.

Lemma 31. Let H be a graph with a fixed interval representation v �→ [av ,bv]. Let T be a binary

search tree that stabs H . Then,

(1) for every vertex v in H , we have xT (v) ∈ [av ,bv]; and

(2) for every clique C in H , the set of nodes xT (C) lie in a single root-to-leaf path in T .

Proof. For the proof of the first item, consider x := xT (v). Either we have x ∈ [av ,bv], in
which case there is nothing to prove, or there are two nodes x1,x2 ∈ V (T) ∩ [av ,bv] such that x1

is in the subtree of T rooted at the left child of x and x2 is in the subtree of T rooted at the right
child of x . By the binary search tree property, x1 < x < x2. But, since x1,x2 ∈ [av ,bv], we have
av � x1 < x < x2 � bv , so x ∈ [av ,bv], as desired.

8The specific value log3 (2m + 1) + 1 in Lemma 30 is obtained by applying a result of Scheffler [28] on the tree underlying

the width-t tree decomposition of H .
9This property is only used when discussing small optimizations in label lengths at the end of the article.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:23

For the proof of the second item, we just show it for C being of size 2, so for a single edge. The
statement for general cliques will follow immediately by induction. Thus, consider two adjacent
vertices u1 and u2 in H and let x1 = xT (u1) and x2 = xT (u2). To get a contradiction, suppose that
x1 and x2 do not lie on a single root-to-leaf path in T . Then there exists x in T such that x1 is in
the left subtree of x and x2 is in the right subtree of x . In particular, x1 < x < x2 by the binary
search tree property. Since u1u2 ∈ E (H) the corresponding intervals [au1 ,bu1], [au2 ,bu2] intersect,
so their union is an interval as well. Since x1,x2 lie in the union and x1 < x < x2, the node x lies in
the union as well. Therefore, x ∈ [au1 ,bu1] or x ∈ [au2 ,bu2]. This contradicts the choice of xT (u1)
or xT (u2) and completes the proof of the second item. �

Note that Lemma 31(1) implies that xT (v) has several alternative definitions:

Corollary 32. Let H be a graph with a fixed interval representation v �→ [av ,bv]. Let T be a

binary search tree that stabs H and let v be any vertex of H .

(1) The node set V (T) ∩ [av ,bv] has a unique node xT (v) of minimum T -depth..

(2) T has a unique node z = xT (v) with the property that z is the only node of PT (z) contained in

[av ,bv].

Proof. By definition xT (v) is the lowest common ancestor of V (T) ∩ [av ,bv] and by
Lemma 31(1), xT (v) ∈ V (T) ∩ [av ,bv] so xT (v) is the unique node of V (T) ∩ [av ,bv] of mini-
mum T -depth. This establishes the first item.

For the second item, observe that the first item implies that xT (v) has the property that xT (v)
is the only node of PT (xT (v)) contained in [av ,bv]. To see that xT (v) is the unique node with this
property consider any z ∈ V (T) ∩ [av ,bv] \ {xT (v)}. By (the original) definition of xT (v), z is in
the subtree of T rooted at xT (v). Since z � xT (v), PT (z) contains xT (v) as an internal node so z is
not the only node of PT (z) contained in [av ,bv]. �

5.2 A Labelling Scheme for t-Trees

We describe a labelling scheme for t-trees that, like our labelling scheme for paths, is based on
a binary search tree. The ideas behind this scheme are not new; this is essentially the labelling
scheme for t-trees described by Gavoille and Labourel [17]. However, we present these ideas in a
manner that makes it natural to generalize the results of Section 4.

We are given a t-tree H on m vertices with an interval representation v �→ [av ,bv] as
in Lemma 30. In particular, the clique number of the resulting interval graph is at most (t +
1)	log3 (2m + 1) + 1
. Since interval graphs are perfect, their clique number coincides with their
chromatic number. Let φ : V (H) → [(t + 1)	log3 (2m + 1) + 1
] be a colouring such that u and v
have distinct colours whenever the intervals of u and v intersect.

The following easy observation shows that a vertex v of H is uniquely identified by φ (v) and
the xT (v) value in a binary search treeT that stabs H . This gives ground for an adjacency labelling
scheme.

Observation 33. Let T be a binary search tree that stabs H . Let v and w be two distinct vertices

in H . Then, xT (v) � xT (w) or φ (v) � φ (w). Consequently, σT (xT (v)) � σT (xT (w)) or φ (v) � φ (w).

Proof. If xT (v) = x = xT (w), then by Lemma 31(1) intervals [av ,bv] and [aw ,bw] each contain
x , so they intersect. Therefore, φ (v) � φ (w). �

LetT be a binary search tree that stabs H and letv be a vertex in H . Fix an elimination ordering
of H . Recall that by Lemma 31(2), for every vertexv in H , all the nodes in xT (CH (v)) lie on a single

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:24 V. Dujmović et al.

root-to-leaf path in T . We define

σH,T (v) := σT (x), where x is the node in xT (CH (v)) of maximum depth in T .

Note thatdT (xT (v)) � |σH,T (v) |, and equality holds only if xT (v) is the deepest node in xT (CH (v)).
Now, we define the label τH,T (v) of a vertex v in H . Let d = |CH (v) | and let u1, . . . ,ud be the

vertices in CH (v), in any order, so v is one of them. Recall that γ is the Elias encoding of natural
numbers. The label τH,T (v) is defined as the concatenation of

(T1) γ (|σH,T (v) |) and σH,T (v);
(T2) γ (φ (v));
(T3) γ (d);
(T4) γ (dT (xT (ui))) for each i ∈ {1, . . . ,d };
(T5) γ (φ (ui)) for each i ∈ {1, . . . ,d }.
Lemma 34. There exists a function F : ({0, 1}∗)2 → {0,−1, 1,⊥} such that for any t-tree H with a

fixed elimination ordering and a fixed interval representation, and a proper colouring φ of the interval

representation, and for any binary search tree T stabbing H , for any two vertices v , w in H , we have

F (τH,T (v),τH,T (w)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if v = w ;

−1 if v and w are adjacent in H , and w ∈ CH (v);

1 if v and w are adjacent in H , and v ∈ CH (w);

⊥ otherwise.

Note that the labels τH,T (v) depend on the choice of elimination ordering and interval rep-
resentation of H but the function F does not. Recall also that dT (xT (u)) � |σH,T (u) | � h(T),
for all vertices u in H . Moreover, |CH (u) | � t + 1 for all vertices u in H . Thus, when H is
an m-vertex t-tree and φ takes values bounded in O (t logm), we get labels τH,T (v) of length
h(T) + O (t · (logh(T) + log t + log logm)). In particular, we can take a perfectly balanced tree
T whose vertex set V (T) is just the set of all endpoints of intervals representing H . Then T stabs
H and h(T) = 	log(2m)
. This way the labels τH,T (v) are of length logm +O (t log logm+ t log t).

Proof of Lemma 34. For the adjacency testing, first note that from a given label τH,T (v) of a
vertex v in H , we can decode each block of the label. This is just because γ , the Elias encoding, is
prefix-free.

Note that from the blocks of τH,T (v), we can determine σT (xT (v)), φ (v), and σT (xT (u)), φ (u),
for all u ∈ CH (v).

Given the labels of two vertices v and w in H , we can test if they are adjacent as follows:

(1) If σT (xT (v)) = σT (xT (w)) and φ (v) = φ (w), then we conclude that v = w (by
Observation 33), so F outputs 0 in this case.

(2) Let d = |CH (v) | and u1, . . . ,ud be the vertices in CH (v). From the label of v , we decode the
values of d , σT (xT (ui)) and φ (ui) for each i ∈ {1, . . . ,d }. If σT (xT (w)) = σT (xT (ui)) and
φ (w) = φ (ui) for some i ∈ {1, . . . ,d }, then we conclude that w = ui (by Observation 33) and
F outputs −1.

(3) Now, let d = |CH (w) | and let u1, . . . ,ud be the vertices inCH (w). From the label ofw , we de-
code the values of d , σT (xT (ui)) and φ (ui) for each i ∈ {1, . . . ,d }. If σT (xT (v)) = σT (xT (ui))
and φ (v) = φ (ui) for some i ∈ {1, . . . ,d }, then we conclude that v = ui (by Observation 33)
and F outputs 1.

(4) Otherwise, v � w , v � CH (w), and w � CH (v). This implies that v and w are not adjacent in
H because each edge in H connects a vertex u with a vertex inCH (u), for some u in H . Thus,
in this case F outputs ⊥. �

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:25

In fact, we can get labels of length logm+O (t log logm) instead of logm+O (t log logm+t log t).
This can be done by improving the length of (T5) from O (t log(t logm)) to O (t log logm), as we
now explain. To achieve this, we need to work with the colouring (φ ′(v),φ ′′(v)) of H given by
Lemma Lemma 30 instead of φ (v). Recall that the image of φ ′ is {1, . . . , t + 1} and the image of
φ ′′ is {1, . . . , 	log3 (2m + 1) + 1
}. Given a vertex v of H , we order the vertices u1, . . . ,ud inCH (v)
according to their φ ′-colours. Now the improved (T5) block of the labelling is an array R of t + 1
entries indexed by φ ′ colours. We set R[φ ′(w)] := φ ′′(w), for each w ∈ CH (v). Note that this may
leave some entries undefined if d < t + 1, in which case, we set these to 0 to distinguish them from
“true” colours {1, . . . , t + 1}. This way only O (t log logm) bits suffice to encode R.

5.3 Interval Transition Labels

We now show that the solution presented in Section 4 generalizes to the current setting.
LetG be an n-vertex subgraph of H �P where H is anm-vertex t-tree and P = 1, . . . ,h is a path.

Clearly, we can assume thatm � n and h � n.
Fix an elimination ordering ofH and an interval representation ofH with clique number at most

(t + 1)	log3 (2m + 1) + 1
 (see Lemma 30). Let φ : V (H) → {1, . . . , (t + 1)	log3 (2m + 1) + 1
} be a
proper colouring of the interval representation of H .

For each y ∈ {1, . . . ,h}, let

Sy = {v ∈ V (H) : (v,y) ∈ V (G)}, and

S+y =
⋃

v ∈Sy
CH (v).

Note that
∑h

y=1 |Sy | = n and
∑h

y=1 |S+y | � (t + 1)n. Let S0 = ∅. For each y ∈ {1, . . . ,h}, let Xy ⊂ R
be the set of all endpoints of intervals representing vertices in S+y ∪ S+y−1. Apply Lemma 8 to the

sequence X1, . . . ,Xh to obtain a 1-chunking sequence V1, . . . ,Vh such that Vy ⊇ Xy for each y ∈
{1, . . . ,h}, and

∑h
y=1 |Vy | � 4

∑h
y=1 |Xy |. LetT1, . . . ,Th be ak-bulk tree sequence based onV1, . . . ,Vh

with k := max{5, �
√

logn/ log logn�} (recall that if we fix the starting perfectly balanced binary
search tree T1 with vertex set V1, then this sequence exists and is unique).

For each y ∈ {1, . . . ,h}, let H+y be the subgraph of H induced by S+y ∪S+y−1. In particular, each H+y
is a t-tree. We fix the elimination ordering of H+y inherited from H . Similarly, we fix the interval

representation of H+y and the proper colouring φ of the interval representation, as the projection
of respective ones for H .

Since Xy ⊆ Vy = V (Ty), we have that Ty stabs H+y .
By construction, we have

h∑
y=1

|Ty | =
h∑

y=1

|Vy | � 4

h∑
y=1

|Xy | � 8

h∑
y=1

|S+y ∪ S+y−1 | � 16(t + 1)n.

By Lemma 25, for each y ∈ {1, . . . ,h}, we have

h(Ty) = log |Ty | + O (k + k−1 log |Ty |)
� log |Ty | + O (k + k−1 logn).

The following lemma, which is analogous to Lemma 27, is the last piece of the puzzle needed
for an adjacency labelling scheme for subgraphs of H � P .

Lemma 35. There exists a function J : ({0, 1}∗)2 → {0, 1}∗ such that, for any H , P , G,

φ, S1, . . . , Sh , X1, . . . ,Xh , and each k-bulk tree sequence T1, . . . ,Th defined as above, for each

y ∈ {1, . . . ,h − 1} and each v ∈ Sy , there exists μy (v) ∈ {0, 1}∗ with |μy (v) | = O (k logh(Ty))
such that J (σH+y ,Ty

(v), μy (v)) = σH+y+1,Ty+1
(v).

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:26 V. Dujmović et al.

Fig. 7. Only a call to Balance(x ,k) on a node x lying on a path described by σH+y ,Ty
(v) can affect σH+y ,T

′ (v).

For strings a and b, let a � b denote that a is a prefix of b and let a ≺ b denote that a � b and
a � b.

Proof. Letv ∈ Sy . First, note thatv is a vertex in H+y and H+y+1. SinceTy stabsH+y andTy+1 stabs

H+y+1, we conclude that σH+y ,Ty
(v), σH+y+1,Ty+1

(v) are well-defined.

As in the proof of Lemma 26 and Lemma 27, we must dig into the details of the three bulk tree
operations that transformTy intoTy+1. Let I := V (Ty+1)\V (Ty) andD := V (Ty)\V (Ty+1). Recall that
the three steps are: applying BulkBalance(θ ,k) to Ty with the appropriate value of θ to obtain
T ′, applying BulkInsert(I) toT ′ to obtainT ′′, and applying BulkDelete(D) toT ′′ to obtainTy+1.
Recall that whenever BulkBalance(θ ,k) is applied in this context, we have θ < h(Ty).

By Lemma 13, Lemma 11, and Lemma 20, we have h(Ty+1) � h(T ′′) � h(T ′) + 2 � h(Ty) + 3.
Thus, the heights of all these trees are O (h(Ty)).

The transition code μy (v) is the concatenation of two parts μBal
y (v) and μDel

y (v) devoted to

different steps of the transformation from Ty to Ty+1. First, the code μBal
y (v) will serve to move

from σH+y ,Ty
(v) to σH+y ,T

′ (v). Next, we will argue that σH+y ,T
′ (v) = σH+y+1,T

′′ (v). Then the code

μDel
y (v) will serve to move from σH+y+1,T

′′ (v) to σH+y+1,Ty+1
(v).

We start with a discussion on rebalancing that leads to the definition of μBal
y (v). The tree Ty

is rebalanced by an application of BulkBalance(θ ,k) with an appropriate value of θ < h(Ty)
and the resulting tree isT ′. Recall that BulkBalance(θ ,k) calls Balance(x ,k) for each node x of
depth-θ inTy . Recall also that the changes made by Balance(x ,k) are limited to the subtree ofTy

rooted at x (see Figure 7). Let Q be the path in Ty encoded by σH+y ,Ty
(v). Thus, Q is the path from

the root ofTy to the deepest node z in xTy
(CH+y (v)). Clearly, if Q is not hitting vertices of depth at

least θ , then σH+y ,Ty
(v) = σH+y ,T

′ (v). Thus, in the case that |σH+y ,Ty
(v) | < θ , we define

μBal
y (v) := γ (θ).

Note that in this case |μBal
y (v) | = O (logθ) = O (logh(Ty)).

Assume now that |σH+y ,Ty
(v) | � θ and let x be the Ty -ancestor of z at depth θ . Let T∗ be the

subtree of Ty rooted at x and let T ′∗ be the new tree obtained after calling Balance(x ,k) on the
root, x , of T∗. (So T∗ is a subtree of Ty and T ′∗ is a subtree of T ′.) Recall that the application of
Balance(x ,k) identifies two sets of nodes Z and X that eventually form a perfectly balanced tree

T̂0 of height at most k that forms the top part ofT ′∗ . Let Q ′ be the path inT ′ encoded by σH+y ,T
′ (v),

so Q ′ is the path from the root of T ′ to the deepest node z ′ in xT ′ (CH+y (v)).

If z ′ ∈ Z ∪ X , then σH+y ,T
′ (v) = σTy

(x),σT̂0
(z ′). In this case, we define

μBal
y (v) := γ (θ), 0,γ (|σT̂0

(z ′) |),σT̂0
(z ′).

Note that in this case |μBal
y (v) | = O (logθ) + O (logk) + O (k) = O (logh(Ty) + k).

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:27

Now, we are left with the case |σH+y ,Ty
(v) | � θ and z ′ � Z ∪ X . Let w ∈ CH+y (v) be a vertex

witnessing z ′ = xT ′ (w). By Corollary 32(2), z ′ is the unique node of Q ′ contained in [aw ,bw], i.e.,
the interval representing w . By the properties of a binary search tree, we conclude that

[aw ,bw] ∩ (Z ∪ X) = ∅.

Consider now the node xTy
(w) inTy . Since [aw ,bw]∩Z = ∅, we know that xTy

(w) lie in one of the
trees, say,Ti , of the forestT∗ −Z . Recall that Balance(x ,k) calls MultiSplit(xi,1, . . . ,xi,ci

) onTi

to obtain a sequence of trees Ti,0, . . . ,Ti,ci
. This, in turn results in zero or more calls to Split(x ′)

for nodes x ′ ∈ V (Ti)∩X . The following claim explains the effect of one individual call to Split(x ′):

Claim 36. LetT be a binary search tree that stabs an interval [aw ,bw], and letT<x andT>x be the

two trees resulting from calling Split(x) on T for some x ∈ V (T). Then, exactly one of the following

is true:

(1) aw � x � bw ;

(2) x < aw , in which case xT>x
(w) = xT (w); or

(3) bw < x , in which case xT<x
(w) = xT (w).

Proof. That the first condition of exactly one of the three cases applies is obvious. Case (1)
has no specific requirements and Cases (2) and (3) are symmetric, so we focus on Case (2), so
x < aw � bw .

By Corollary 32(2), z = xT (v) is the unique node z in T such that the path P from the root to z
has exactly one node in [aw ,bw]. Recall that by construction the path P ′ from the root to z inT>x is
obtained from P by deleting all values less than or equal to x . Therefore, the path P ′ inT>x still has
exactly one node in [aw ,bw], namely, z, so z = xT>x

(w). This completes the proof of Claim 36. �

Since all the calls to Split(x ′) generated by MultiSplit(xi,1, . . . ,xi,ci
) on the subtree Ti are

called with x ′ ∈ X and [aw ,bw] ∩ X = ∅, Claim 36 guarantees that

xTy
(w) = xT ′ (w) = z ′, and

σH+y ,T
′ (v) = σT ′ (z

′).

Finally, by Lemma 26 there exists a function B and a bitstring ν (z ′) of length O (k logh(Ty)) such
that B (σTy

(z ′),ν (z ′)) = σT ′ (z
′).

All this justifies the following definition, in the case that |σH+y ,Ty
(v) | � θ and z ′ � Z ∪ X :

μBal
y (v) := γ (θ), 1,γ (|σTy

(xTy
(w)) |),γ (|ν (xTy

(w)) |),ν (xTy
(w)).

Note that in this case |μBal
y (v) | = O (logθ) + O (logh(Ty)) + O (k logh(Ty)) = O (k logh(Ty)).

Now, we shall argue that

σH+y ,T
′ (v) = σH+y ,T

′′ (v) = σH+y+1,T
′′ (v).

Recall thatT ′′ comes as a result of an application of BulkInsert(I) toT ′ that attaches some small
subtrees to the leaves of T ′. This way, for every u ∈ CH+y (v) = CH (v) ⊆ S+y ⊆ V (H+y), we

have that xT ′ (u) is a T ′′-ancestor of any node x in T ′′ such that x ∈ I and x ∈ [au ,bu]. Hence,
xT ′ (u) = xT ′′ (u) and σT ′ (xT ′ (u)) = σT ′′ (xT ′′ (u)). Therefore, σH+y ,T

′ (v) = σH+y ,T
′′ (v). Recall that

σH+y ,T
′′ (v) andσH+y+1,T

′′ (v) encode paths inT ′′ from the root to the deepest node in xT ′′ (CH+y (v)) and

in xT ′′ (CH+y+1
(v)), respectively. Again, since v ∈ Sy , we have thatCH (v) ⊆ S+y ⊆ V (H+y) ∩V (H+y+1).

Therefore, CH+y (v) = CH (v) = CH+y+1
(v) and σH+y ,T

′′ (v) = σH+y+1,T
′′ (v).

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:28 V. Dujmović et al.

Fig. 8. The effect of a single deletion on xT bef (v).

Next, we describe μDel
y (v). The transition code μDel

y (v) serves to move from σH+y+1,T
′′ (v) to

σH+y+1,Ty+1
(v). An application of BulkDelete(D) to T ′′ results in a sequence of individual dele-

tions. Consider a single deletion of an element x and let T bef and T aft denote the trees before and
after the deletion, respectively.

Claim 37. For every u ∈ S+y , we have

σT aft (xT aft (u)) � σT bef (xT bef (u)).

Proof of Claim 37. See Figure 8. At a global level, the deletion of a value x from T bef involves
finding a sequence of consecutive values x0 < x1 < · · · < xr or x0 > x1 > · · · > xr where x = x0,
xr is a leaf and xi−1 is aT bef-ancestor of xi for each i ∈ {1, . . . , r }. The leaf containing xr is deleted
and, for each i ∈ {0, . . . , r − 1}, the (value of) node xi is replaced with (the value in) node xi+1. The
resulting tree is T aft.

First, we look at the case xT bef (u) = x0. Recall that u ∈ S+y , so Xy+1 contains both endpoints of
the interval representing u, say, [au ,bu]. This means that x0 � au and x0 � bu and both endpoints

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:29

lie in the subtree of T bef rooted at x0. In particular, x0 is not a leaf and r � 1. By Lemma 31(1), we
have au < x0 < bu . Since x1 is the smallest value in the right subtree of x0 or the largest value in
the left subtree of x0, we conclude that au � x1 � bu . Thus, in this case, we have xT aft (u) = x1 and

σT aft (xT aft (u)) = σT aft (x1) = σT bef (x0) = σT bef (xT bef (u)).

If xT bef (u) = xi for some i ∈ {1, . . . , r }, then xT aft (u) = xi (see the interval v1 in Figure 8) and

σT aft (xT aft (u)) = σT aft (xi) = σT bef (xi−1) ≺ σT bef (xi) = σT bef (xT bef (u)).

Finally, if σT bef (xT bef (u)) � σT aft (xT aft (u)) and xT bef (u) � xi for all i ∈ {0, . . . , r }, then the only
possibility is that xT aft (u) = xi for some xi ∈ [au ,bu] (see the interval v2 in Figure 8). This can
only happen if xT bef (u) is a T bef-ancestor of xi and xi is a T aft-ancestor of xT bef (u). The latter is
equivalent with the fact that xi−1 is a T bef-ancestor of xT bef (u). Therefore, we have

σT aft (xT aft (u)) = σT aft (xi) = σT bef (xi−1) ≺ σT bef (xT bef (u)).

This completes the proof of the claim. �

Since BulkDelete(D) is a sequence of individual deletions, by multiple applications of Claim 37,
we get that

σH+y+1,Ty+1
(v) = σTy+1 (xTy+1 (u)) (for some u ∈ CH+y+1

(v) = CH (v))

� σT ′′ (xT ′′ (u)) (by Claim 37)

� σH+y+1,T
′′ (v).

We define

μDel
y (v) := γ (|σH+y+1,Ty+1

(v) |).

Note that |μDel
y (v) | = O (logh(Ty+1)) = O (logh(Ty)).

The function J is defined as expected: Given σH+y ,Ty
(v) and μy (v), the function J first decodes

the value of θ , which is always the first block of μBal
y (v). If |σH+y ,Ty

(v) | < θ , then J concludes

that σH+y ,T
′ (v) = σH+y ,Ty

(v). Otherwise, in the case |σH+y ,Ty
(v) | � θ , the function J reads the next

bit of μy (v). If it is 0, then J decodes the value of σT̂0
(z ′), computes σTy

(x), which is the prefix of

σH+y ,Ty
(v) of length θ , and concludes that σH+y ,T

′ (v) = σTy
(x),σT̂0

(z ′). Otherwise, the bit is 1. In this

case, first J decodes |σTy
(xTy

(w)) | and ν (xTy
(w)). Next, J computesσTy

(xTy
(w)), which is the prefix

of σH+y ,Ty
(v) of length |σTy

(xTy
(w)) |. Next, J computes B (σTy

(xTy
(w)),ν (xTy

(w))) = σT ′ (xT ′ (w))

and in this case J concludes that σH+y ,T
′ (v) = σT ′ (xT ′ (w)).

Thus, in either case J establishes the value of σH+y ,T
′ (v) = σH+y+1,T

′′ (v). Now, J looks up μDel
y (v)

and decodes |σH+y+1,Ty+1
(v) |. The value of σH+y+1,Ty+1

(v) is simply the prefix of σH+y+1,T
′′ (v) of length

|σH+y+1,Ty+1
(v) |.

This completes the proof of the lemma. �

5.4 The Labels

We are ready to combine everything together and devise labels for vertices of G.
Let A : ({0, 1}∗)2 → {0, 1}∗ be the function given by Lemma 7 such that, using the weight

function w (y) := |Ty | for each y ∈ {1, . . . ,h}, we have a prefix-free code α : {1, . . . ,h} → {0, 1}∗

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:30 V. Dujmović et al.

such that

|α (y) | = log ��
h∑

i=1

|Ti |�	 − log |Ty | + O (log logh)

� log
(
16(t + 1)n

)
− log |Ty | + O (log logn)

� logn − log |Ty | + O (log logn + log t),

for each y ∈ {1, . . . ,h}, and A(α (i),α (j)) outputs 0, 1, −1, or ⊥, depending whether the value of j
is i , i + 1, i − 1, or some other value, respectively.

Let F : ({0, 1}∗)2 → {0, 1}∗ be the function given by Lemma 34.
Let J : ({0, 1}∗)2 → {0, 1}∗ be the function given by Lemma 35 such that for eachy ∈ {1, . . . ,h−1}

and each v ∈ Sy , there exists a code μy (v) with |μy (v) | = O (k logh(Ty)) = O (k log logn + k logk)
such that J (σH+y ,Ty

(v), μy (v)) = σH+y+1,Ty+1
(v).

Let z = (v,y) be a vertex in G. Recall that S+y ⊆ V (H+y) and if i � h, then also S+y ⊆ V (H+y+1).

Therefore,CH (v) = CH+y (v) = CH+y+1
(v). Let d = |CH (v) | and letu1, . . . ,ud be the vertices ofCH (v).

Recall that d � t + 1. We define a(z) to be an array of 3d bits indicating whether each of the edges
between (v,y) and (ui ,y + {−1, 0, 1}) are present in G. The label of z = (v,y) is the concatenation
of the following bitstrings:

(L1) α (y);
(L2) γ (|σH+y ,Ty

(v) |) and σH+y ,Ty
(v);

(L3) γ (φ (v));
(L4) γ (d);
(L5) γ (φ (ui)) for each i ∈ {1, . . . ,d };
(L6) γ (dTy

(xTy
(ui))) for each i ∈ {1, . . . ,d };

(L7) if y � h then 1, γ (dTy+1 (xTy+1 (ui))) for each i ∈ {1, . . . ,d };
if y = h then 0;

(L8) if y � h then 1, μy (v);
if y = h then 0; and

(L9) a(z).

The length of the components are as follows: (L1) is of length logn − log |Ty | +O (log logn + log t),
(L2) is of length log |Ty | + O (k + k−1 logn), (L3) is of length O (log t + log logn), (L4) is of length
O (log t), (L5) is of length O (t · (log t+log logn)), (L6) and (L7) are of lengths O (t · (log logn+logk)),
(L8) is of length O (k log logn + k logk), and (L9) is of length O (t). In total, the label length is
logn + O (k log logn + k−1 logn + k logk + t log logn + t logk + t log t). In particular, if t is a fixed
constant, then the label length is logn + O (k log logn + k−1 logn + k logk).

We remark that, using the same trick as described at the end of Section 5.2, we can get the
length of (L5) down to O (t · log logn). Assuming k = o(logn), the total label length then becomes
logn + O ((k + t) log logn + k−1 logn + k logk).

5.5 Adjacency Testing

First note that from a given label of z = (v,y) ∈ V (G), we can decode each block of the label. Note
also that once we decode d = |CH (v) |, σH+y ,Ty

(v), φ (v), and φ (ui), dTy
(xTy

(ui)) for all i ∈ {1, . . . ,d },
by Lemma 31(2), we can determine σH+y ,Ty

(xTy
(w)) for each w ∈ {v,u1, . . . ,ud }.

Given the labels of two vertices z1 := (v1,y1) and z2 := (v2,y2) in G, we test if the vertices are
adjacent as follows: Looking up the value of A(α (y1),α (y2)), we determine which of the following
cases applies:

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

Adjacency Labelling for Planar Graphs (and Beyond) 42:31

(1) |y1 − y2 | � 2: In this case, we immediately conclude that z1 and z2 are not adjacent in G,
since they are not adjacent even in H � P .

(2) y1 = y2: In this case, lety := y1 = y2. Note that (L2), (L3), (L4), (L5), (L7) contain all the pieces
of the labels τH+y ,Ty

(v1) and τH+y ,Ty
(v2) from Lemma 34. We compute F (τH+y ,Ty

(v1),τH+y ,Ty
(v2))

and determine ifv1 andv2 are adjacent in H+y (which is an induced subgraph of H). Ifv1 and

v2 are not adjacent in H+y , then they are not adjacent in H and as a consequence, z1 = (v1,y)
and z2 = (v2,y) are not adjacent in H � P and thus also not adjacent in G. If v1 and v2 are
adjacent in H+y (and thus also in H), then z1 = (v1,y) and z2 = (v2,y) are adjacent in H � P .

If F (τH+y ,Ty
(v1),τH+y ,Ty

(v2)) = 1, then we identify the position of v1 on the list of vertices

in CH (v2) (by its φ-colour) and then, finally, we look up the appropriate bit in a(z2) to see
whether the corresponding edge inH�P is present inG or not. If F (τH+y ,Ty

(v1),τH+y ,Ty
(v2)) =

−1, then we identify the position of v2 on the list of vertices in CH (v1) and then, finally, we
look up the appropriate bit in a(z1) to see whether the corresponding edge inH�P is present
in G or not.

(3) y1 = y2 − 1: In this case, let y = y1. Since v1 ∈ Sy , by Lemma 35, we can compute
J (σH+y ,Ty

(v1), μy (v1)) = σH+y+1,Ty+1
(v1). Now, σH+y+1,Ty+1

(v1) was the only missing piece of

τH+y+1,Ty+1
(v1) and just from the label z2 = (v2,y + 1), we have τH+y+1,Ty+1

(v2). We compute

F (τH+y+1,Ty+1
(v1),τH+y+1,Ty+1

(v2)) to test whether v1 = v2 or v1v2 ∈ E (H+y+1). If v1 � v2 and

v1v2 � E (H+y+1), then z1 and z2 are not adjacent in H � P so they are not adjacent inG either.

If v1 = v2 or v1v2 ∈ E (H+y+1), then we know that z1 and z2 are adjacent in H � P . In this case,

we can now consult the relevant bit of a(z1) or a(z2) to determine if z1 and z2 are adjacent
in G.

(4) y2 = y1−1: This case is symmetric to the preceding case, with the roles of z1 and z2 reversed.

This completes the proof of our main result.

Theorem 38. For every fixed t ∈ N, the family of all graphsG such thatG is a subgraph ofH�P for

some t-treeH and some path P has a (1+o(1)) logn-bit adjacency labelling scheme. More precisely, for

each k ∈ {5, . . . , �
√

logn/ log logn�}, this graph family has an f (n)-bit adjacency labelling scheme

with f (n) = logn + O (k log logn + k−1 logn + k logk).

Theorem 1 and Theorem 2 are immediate consequences of Theorem 38, Theorem 9, and
Theorem 10.

6 CONCLUSION

We conclude with a few remarks on the computational complexity of our labelling scheme. Given
ann-vertex planar graphG, finding an 8-treeH (with mapping f as in Lemma 30 and colouringφ), a
path P , and a mapping ofG into a subgraph ofH�P can be done inO (n logn) time [24]. The process
of computing the labels of V (G) as described in Section 4 and Section 5 has a straightforward
O (n logn) time implementation. Thus, the adjacency labels described in Theorem 1 are computable
in O (n logn) time for n-vertex planar graphs.

In the discussion on the adjacency test function below, we focus on the case where t is a con-
stant (which is the case in all our applications). The adjacency testing function can then be im-
plemented in time O (k) in the standard w-bit word RAM model, providing for binary words of
lengthw = Ω(logn), bitwise logical operations, bitwise shift operations, and a most-significant-bit

operation.10 We note that Theorem 38 holds for a range of k from Ω(1) to O (
√

logn/ log logn).
This yields a tradeoff between adjacency test time and label length complexities. On one side, by

10The only purpose of the most-significant-bit operation is allow decoding of the Elias γ code in constant time.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

42:32 V. Dujmović et al.

choosing k = ω (1), we have labels of (1 + o(1)) logn bits and an adjacency test running in
nearly constant time. On the other side, by selecting an adjacency test time complexity of k =

O (
√

logn/ log logn), the label length is minimized and has length logn + O (
√

logn log logn).
The current result leaves two obvious directions for future work:

(1) The precise length of the labels in Theorem 1 and Theorem 38 is, at best, logn +

O (
√

logn log logn). The only known lower bound is logn + Ω(1). Closing the gap in the
lower-order term remains an open problem.

(2) Theorem 38 implies a (1 + o(1)) logn-bit labelling schemes for any family of graphs that ex-
cludes an apex graph as a minor. Can this be extended to anyKt -minor free family of graphs?

(3) Planar graphs are a monotone family of graphs11 and the number of n-vertex labelled planar

graphs is n!2O (n) [18]. Does every monotone family of labelled graphs containing at most

n!2O (n) n-vertex labelled graphs have a (1+o(1)) logn-bit adjacency labelling scheme? Note
that this includes Kt -minor free graphs [27]. This open problem is a variant of the implicit

graph conjecture, which asserts that any hereditary family of graphs that contains at most

2O (n log n) n-vertex graphs has an O (logn) bit adjacency labelling scheme [21, 29].

ACKNOWLEDGMENTS

Part of this research was conducted during the Eighth Workshop on Geometry and Graphs, held
at the Bellairs Research Institute, January 31–February 7, 2020. We are grateful to the organizers
and participants for providing a stimulating research environment. We are particularly grateful to
Tamara Mchedlidze and David Wood for helpful discussions. We thank the anonymous referees
for their helpful comments.

REFERENCES

[1] Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk Tejs Knudsen, and Morten Stöckel. 2017. Near-

optimal induced universal graphs for bounded degree graphs. In Proceedings of the 44th International Colloquium

on Automata, Languages, and Programming (LIPIcs), Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca

Muscholl (Eds.), Vol. 80. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 128:1–128:14. DOI:https://doi.org/10.

4230/LIPIcs.ICALP.2017.128

[2] David Adjiashvili and Noy Rotbart. 2014. Labeling schemes for bounded degree graphs. In Proceedings of the 41st

International Colloquium on Automata, Languages, and Programming (Lecture Notes in Computer Science), Javier

Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.), Vol. 8573. Springer, 375–386. DOI:https:

//doi.org/10.1007/978-3-662-43951-7_32

[3] Noga Alon. 2017. Asymptotically optimal induced universal graphs. Geom. Funct. Anal. 27, 1 (Feb. 2017), 1–32.

DOI:https://doi.org/10.1007/s00039-017-0396-9

[4] Stephen Alstrup, Søren Dahlgaard, and Mathias Bæk Tejs Knudsen. 2017. Optimal induced universal graphs and ad-

jacency labeling for trees. J. ACM 64, 4 (2017), 27:1–27:22. DOI:https://doi.org/10.1145/3088513

[5] Stephen Alstrup, Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Ely Porat. 2016. Sublinear distance labeling. In

Proceedings of the 24th Annual European Symposium on Algorithms (LIPIcs), Piotr Sankowski and Christos D. Zaroliagis

(Eds.), Vol. 57. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 5:1–5:15. DOI:https://doi.org/10.4230/LIPIcs.ESA.

2016.5

[6] Stephen Alstrup, Cyril Gavoille, Esben Bistrup Halvorsen, and Holger Petersen. 2016. Simpler, faster and shorter

labels for distances in graphs. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, Robert

Krauthgamer (Ed.). SIAM, 338–350. DOI:https://doi.org/10.1137/1.9781611974331.ch25

[7] Stephen Alstrup, Inge Li Gørtz, Esben Bistrup Halvorsen, and Ely Porat. 2016. Distance labeling schemes for trees.

In Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (LIPIcs), Ioannis

Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi (Eds.), Vol. 55. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 132:1–132:16. DOI:https://doi.org/10.4230/LIPIcs.ICALP.2016.132

11A family G of graphs is monotone if, for every G ∈ G and every (not necessarily induced) subgraph G′ ⊆ G , G contains

a graph isomorphic to G′.

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

https://doi.org/10.4230/LIPIcs.ICALP.2017.128
https://doi.org/10.1007/978-3-662-43951-7_32
https://doi.org/10.1007/s00039-017-0396-9
https://doi.org/10.1145/3088513
https://doi.org/10.4230/LIPIcs.ESA.2016.5
https://doi.org/10.1137/1.9781611974331.ch25
https://doi.org/10.4230/LIPIcs.ICALP.2016.132

Adjacency Labelling for Planar Graphs (and Beyond) 42:33

[8] Stephen Alstrup, Haim Kaplan, Mikkel Thorup, and Uri Zwick. 2019. Adjacency labeling schemes and induced-

universal graphs. SIAM J. Discrete Math. 33, 1 (2019), 116–137. DOI:https://doi.org/10.1137/16M1105967

[9] Stephen Alstrup and Theis Rauhe. 2002. Improved labeling scheme for ancestor queries. In Proceedings of the 13th

Annual ACM-SIAM Symposium on Discrete Algorithms, David Eppstein (Ed.). ACM/SIAM, 947–953. Retrieved from

http://dl.acm.org/citation.cfm?id=545381.545504.

[10] Marthe Bonamy, Cyril Gavoille, and Michał Pilipczuk. 2020. Shorter labeling schemes for planar graphs. In Proceedings

of the ACM-SIAM Symposium on Discrete Algorithms, Shuchi Chawla (Ed.). SIAM, 446–462. DOI:https://doi.org/10.

1137/1.9781611975994.27

[11] Bernard Chazelle and Leonidas J. Guibas. 1986. Fractional cascading: I. A data structuring technique. Algorithmica 1,

2 (1986), 133–162. DOI:https://doi.org/10.1007/BF01840440

[12] Fan R. K. Chung. 1990. Universal graphs and induced-universal graphs. J. Graph Theor. 14, 4 (1990), 443–454. DOI:https:

//doi.org/10.1002/jgt.3190140408

[13] Vida Dujmović, Louis Esperet, Pat Morin, Bartosz Walczak, and David R. Wood. 2021. Clustered 3-colouring graphs

of bounded degree. Combin. Prob. Comput. (2021). https://doi.org/10.1017/S0963548321000213

[14] Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R. Wood. 2020. Planar graphs

have bounded queue-number. J. ACM 67, 4 (2020), 22:1–22:38. Retrieved from https://dl.acm.org/doi/10.1145/3385731.

[15] Vida Dujmović, Pat Morin, and David R. Wood. 2019. The structure of k-planar graphs. CoRR abs/1907.05168 (2019).

[16] Peter Elias. 1975. Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theor. 21, 2 (1975),

194–203. DOI:https://doi.org/10.1109/TIT.1975.1055349

[17] Cyril Gavoille and Arnaud Labourel. 2007. Shorter implicit representation for planar graphs and bounded treewidth

graphs. In Proceedings of the 15th Annual European Symposium on Algorithms (Lecture Notes in Computer Science), Lars

Arge, Michael Hoffmann, and Emo Welzl (Eds.), Vol. 4698. Springer, 582–593. DOI:https://doi.org/10.1007/978-3-540-

75520-3_52

[18] Omer Giménez and Marc Noy. 2009. Asymptotic enumeration and limit laws of planar graphs. J. Amer. Math. Societ.

22 (2009), 309–329. DOI:https://doi.org/10.1090/s0894-0347-08-00624-3

[19] Daniel Gonçalves. 2005. Edge partition of planar graphs into two outerplanar graphs. In Proceedings of the 37th Annual

ACM Symposium on Theory of Computing, Harold N. Gabow and Ronald Fagin (Eds.). ACM, 504–512. DOI:https://doi.

org/10.1145/1060590.1060666

[20] Sampath Kannan, Moni Naor, and Steven Rudich. 1988. Implicit representation of graphs. In Proceedings of the 20th

Annual ACM Symposium on Theory of Computing, Janos Simon (Ed.). ACM, 334–343. DOI:https://doi.org/10.1145/

62212.62244

[21] Sampath Kannan, Moni Naor, and Steven Rudich. 1992. Implicit representation of graphs. SIAM J. Discrete Math. 5, 4

(1992), 596–603. DOI:https://doi.org/10.1137/0405049

[22] Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. 2017. An annotated bibliography on 1-planarity.

Comput. Sci. Rev. 25 (2017), 49–67. DOI:https://doi.org/10.1016/j.cosrev.2017.06.002

[23] Pat Morin. 2013. Open Data Structures. Athabasca University Press. Retrieved from https://opendatastructures.org/.

[24] Pat Morin. 2021. A fast algorithm for the product structure of planar graphs. Algorithmica (Jan. 2021). DOI:https:

//doi.org/10.1007/s00453-020-00793-5 arXiv:2004.02530.

[25] John H. Muller. 1988. Local Structure in Graph Classes. Ph.D. Dissertation. School of Information and Computer Science.

[26] C. St. J. A. Nash-Williams. 1961. Edge-disjoint spanning trees of finite graphs. J. London Math. Societ. 36, 1 (1961),

445–450. DOI:https://doi.org/10.1112/jlms/s1-36.1.445

[27] Serguei Norine, Paul Seymour, Robin Thomas, and Paul Wollan. 2006. Proper minor-closed families are small. J. Com-

binat. Theor, Series B 96, 5 (2006), 754–757. DOI:https://doi.org/10.1016/j.jctb.2006.01.006

[28] Petra Scheffler. 1992. Optimal embedding of a tree into an interval graph in linear time. In Proceedings of the 4th

Czechoslovakian Symposium on Combinatorics, Graphs and Complexity (Annals of Discrete Mathematics), Jaroslav

Nešetřil and Miroslav Fiedler (Eds.), Vol. 51. Elsevier, 287–291. DOI:https://doi.org/10.1016/S0167-5060(08)70644-7

[29] Jeremy P. Spinrad. 2003. Efficient Graph Representations. Fields Institute monographs, Vol. 19. American Mathematical

Society. Retrieved from http://www.ams.org/bookstore-getitem/item=fim-19.

Received June 2020; revised February 2021; accepted July 2021

Journal of the ACM, Vol. 68, No. 6, Article 42. Publication date: September 2021.

https://doi.org/10.1137/16M1105967
http://dl.acm.org/citation.cfm?id=545381.545504
https://doi.org/10.1137/1.9781611975994.27
https://doi.org/10.1007/BF01840440
https://doi.org/10.1002/jgt.3190140408
https://doi.org/10.1017/S0963548321000213
https://dl.acm.org/doi/10.1145/3385731
https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1007/978-3-540-75520-3_52
https://doi.org/10.1090/s0894-0347-08-00624-3
https://doi.org/10.1145/1060590.1060666
https://doi.org/10.1145/62212.62244
https://doi.org/10.1137/0405049
https://doi.org/10.1016/j.cosrev.2017.06.002
https://opendatastructures.org/
https://doi.org/10.1007/s00453-020-00793-5
http://arxiv.org/abs/2004.02530
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.1016/j.jctb.2006.01.006
https://doi.org/10.1016/S0167-5060(08)70644-7
http://www.ams.org/bookstore-getitem/item=fim-19

