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Abstract—We show that there exists an adjacency labelling
scheme for planar graphs where each vertex of an n-vertex
planar graph G is assigned a (1+ o(1)) log2 n-bit label and
the labels of two vertices u and v are sufficient to determine
if uv is an edge of G. This is optimal up to the lower order
term and is the first such asymptotically optimal result. An
alternative, but equivalent, interpretation of this result is that,
for every positive integer n, there exists a graph Un with
n1+o(1) vertices such that every n-vertex planar graph is an
induced subgraph of Un. These results generalize to a number
of other graph classes, including bounded genus graphs, apex-
minor-free graphs, bounded-degree graphs from minor closed
families, and k-planar graphs.

I. INTRODUCTION

A family G of graphs has an f(n)-bit adjacency labelling
scheme if there exists a function A : ({0, 1}∗)2 → {0, 1}
such that for every n-vertex graph G ∈ G there exists

� : V (G)→ {0, 1}∗ such that |�(v)| � f(n) for each vertex

v of G and such that, for every two vertices v, w of G,

A(�(v), �(w)) =

{
0 if vw �∈ E(G);

1 if vw ∈ E(G).

Let log x := log2 x denote the binary logarithm of x
throughout the paper. In this paper we prove the following

result:
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Theorem 1. The family of planar graphs has a (1 +
o(1)) log n-bit adjacency labelling scheme.

Theorem 1 is optimal up to the lower order term, which

is O (√
log n log logn

)
in our proof. An alternative, but

equivalent, interpretation of Theorem 1 is that, for every

integer n � 1, there exists a graph Un with n1+o(1) vertices

such that every n-vertex planar graph is isomorphic to some

vertex-induced subgraph of Un.1

Note that the proof of Theorem 1 is constructive: it gives

an algorithm producing the labels in O(n log n) time.

A. Previous Work

The current paper is the latest in a series of results dating

back to Kannan, Naor, and Rudich [19], [20] and Muller [24]

who defined adjacency labelling schemes2 and described

O(log n)-bit adjacency labelling schemes for several classes

of graphs, including planar graphs. Since this initial work,

adjacency labelling schemes and, more generally, informa-

tive labelling schemes have remained a very active area of

research [2], [8], [1], [5], [7], [6], [9], [3].

Here we review results most relevant to the current

work, namely results on planar graphs and their support-

ing results on trees and bounded-treewidth graphs. First,

a superficial review: Planar graphs have been shown to

have (c + o(1)) log n-bit adjacency labelling schemes for

successive values of c = 6, 4, 3, 2, 4
3 and finally Theorem 1

1There is a small technicality that the equivalence between adjacency
labelling schemes and universal graphs requires that � : V (G) → {0, 1}∗
be injective. The labelling schemes we discuss satisfy this requirement. For
more details about the connection between labelling schemes and universal
graphs, the reader is directed to Spinrad’s monograph [26, Section 2.1].

2There are some small technical differences between the two definitions
that have to do with the complexity of computing �(·) as a function of G
and A(·, ·).
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gives the optimal3 result c = 1. We now give details of these

results.
Muller’s scheme for planar graphs [24] is based on the fact

that planar graphs are 5-degenerate. This scheme orients the

edges of the graph so that each vertex has 5 outgoing edges,

assigns each vertex v an arbitrary �log n�-bit identifier, and

assigns a label to v consisting of v’s identifier and the

identifiers of the targets of v’s outgoing edges. In this way,

each vertex v is assigned a label of length at most 6�log n�.
Kannan, Naor, and Rudich [20] use a similar approach that

makes use of the fact that planar graphs have arboricity 3

(so their edges can be partitioned into three forests [25])

to devise an adjacency labelling scheme for planar graphs

whose labels have length at most 4�log n�.
A number of (1 + o(1)) log n-bit adjacency labelling

schemes for forests have been devised [12], [9], [4], cul-

minating with a recent (log n + O(1))-bit adjacency la-

belling scheme [4] for forests. Combined with the fact

that planar graphs have arboricity 3, these schemes imply

(3 + o(1)) log n-bit adjacency labelling schemes for planar

graphs.
A further improvement, also based on the idea of par-

titioning the edges of a planar graph into simpler graphs

was obtained by Gavoille and Labourel [18]. Generalizing

the results for forests, they describe a (1 + o(1)) log n-bit

adjacency labelling scheme for n-vertex graphs of bounded

treewidth. As is well known, the edges of a planar graph

can be partitioned into two sets, each of which induces a

bounded treewidth graph. This results in a (2 + o(1)) log n-

bit adjacency labelling scheme for planar graphs.
Very recently, Bonamy, Gavoille, and Pilipczuk [10] de-

scribed a (4/3 + o(1)) log n-bit adjacency labelling scheme

for planar graphs based on a recent graph product structure
theorem of Dujmović et al. [15]. This product structure

theorem states that any planar graph is a subgraph of a strong

product H � P where H is a bounded-treewidth graph and

P is a path. See Figure 1. It is helpful to think of H�P as

a graph whose vertices can be partitioned into h := |V (P )|
rows H1, . . . , Hh, each of which induces a copy of H and

with vertical and diagonal edges joining corresponding and

adjacent vertices between consecutive rows.
The product structure theorem quickly leads to a (1 +

o(1)) log(mh)-bit labelling scheme where m := |V (H)|
and h := |V (P )| by using a (1 + o(1)) logm-bit labelling

scheme for H (a bounded treewidth graph), a �log h�-bit

labelling scheme for P (a path), and a constant number of

bits to locally encode the subgraph of H � P (of constant

arboricity). However, for an n-vertex graph G that is a

subgraph of H � P in the worst case m and h are each

Ω(n), so this offers no immediate improvement over the

existing (2 + o(1)) log n-bit scheme.

3It is easy to see that, in any adjacency labelling scheme for any n-vertex
graph G in which no two vertices have the same neighbourhood, all labels
must be distinct, so some label must have length at least �logn�.

Bonamy, Gavoille, and Pilipczuk improve upon this by

cutting P (and hence G) into subpaths of length n1/3 in such

a way that this corresponds to removing O(n2/3) vertices of

G that have a neighbourhood of size O(n2/3). The resulting

(cut) graph is a subgraph of H ′�P ′ where H ′ has bounded

treewidth, |H ′| � n, and P ′ is a path of length n1/3 so

it has a labelling scheme in which each vertex has a label

of length (1 + o(1)) log(|H ′| · |P ′|) � (4/3 + o(1)) log n.

A slight modification of this scheme allows for the O(n2/3)
boundary vertices adjacent to the cuts to have shorter labels,

of length only (2/3 + o(1)) log n. The cut vertices and

the boundary vertices induce a bounded-treewidth graph of

size O(n2/3). The vertices in this graph receive secondary

labels of length (2/3+o(1)) log n. In this way, every vertex

receives a label of length at most (4/3 + o(1)) log n.

B. New Results

The adjacency labelling scheme described in the current

paper is also based on the product structure theorem for pla-

nar graphs, but it avoids cutting the path P , and thus avoids

boundary vertices that take part in two different labelling

schemes. Instead, it uses a weighted labelling scheme on the

rows H1, . . . , Hh of H�P in which vertices that belong to

Hi receive a label of length (1+o(1)) log n− logWi where

Wi is related to the number of vertices of G contained in

Hi and Hi−1. The vertices of G in row i participate in a

secondary labelling scheme for the subgraph of G contained

in Hi and Hi−1 and the labels in this scheme have length

logWi + o(log n). Thus every vertex receives two labels,

one of length (1+o(1)) log n− logWi and another of length

logWi+o(log n) for a total label length of (1+o(1)) log n.

The key new technique that allows all of this to work

is that the labelling schemes of the rows H1, . . . , Hh are

not independent. All of these labelling schemes are based

on a single balanced binary search tree T that undergoes

insertions and deletions resulting in a sequence of related

binary search trees T1, . . . , Th where each Ti represents all

vertices of G in Hi and Hi−1 and the label assigned to a

vertex of Hi is essentially based on a path from the root of

Ti to some vertex of Ti. By carefully maintaining the binary

search tree T , the trees Ti−1 and Ti are similar enough so

that the label for v in Hi can be obtained, with o(log n)
additional bits from the label for v in Hi−1.

The product structure theorem has been generalized to

a number of additional graph families including bounded-

genus graphs, apex-minor free graphs, bounded-degree

graphs from minor-closed families, k-planar graphs, powers

of bounded-degree bounded genus graphs, and k-nearest

neighbour graphs of points in R
2 [15], [16]. As a side-

effect of designing a labelling scheme to work directly on

subgraphs of a strong product H�P , where H has bounded

treewidth and P is a path, we obtain (1 + o(1)) log n-bit

labelling schemes for all of these graph families. All of these

results are optimal up to the lower order term.
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Figure 1. The strong product H � P of a tree H and a path P .

A graph is apex if it has a vertex whose removal leaves

a planar graph. A graph is k-planar if it has a drawing

in the plane in which each edge is involved in at most k
crossings. Such graphs provide a natural generalisation of

planar graphs, and have been extensively studied [21]. The

definition of k-planar graphs naturally generalises for other

surfaces. A graph G is (g, k)-planar if it has a drawing in

some surface of Euler genus at most g in which each edge

of G is involved in at most k crossings. Note that already

1-planar graphs are not minor closed. The generalization of

Theorem 1 provided by known product structure theorems

is summarized in the following result:

Theorem 2. For every fixed integer t � 1, the family of all
graphs G such that G is a subgraph of H�P for some graph
H of treewidth t and some path P has a (1 + o(1)) log n-
bit adjacency labelling scheme. This includes the following
graph classes:

1) graphs of bounded genus and, more generally, apex-
minor free graphs;

2) bounded degree graphs that exclude a fixed graph as a
minor; and

3) k-planar graphs and, more generally, (g, k)-planar
graphs.

The case of graphs of bounded degree from minor-closed

classes (point 2 in Theorem 2) is particularly interesting

since, prior to the current work, the best known bound for

adjacency labelling schemes in planar graphs of bounded

degree was the same as for general planar graphs, i.e.,

(4/3 + o(1)) log n. On the other hand, our Theorem 2 now

gives an asymptotically optimal bound of (1 + o(1)) log n
for graphs of bounded degree from any proper minor-closed

class.

C. Outline

The remainder of the paper is organized as follows.

Section II reviews some preliminary definitions and easy

results. Section III describes a new type of balanced binary

search tree that has the specific properties needed for our

application. Section IV solves a special case, where G is

an n-vertex subgraph of P1 � P2 where P1 and P2 are

both paths. We include it to highlight the generic idea

behind our adjacency labelling scheme. Section V solves

the general case in which G is an n-vertex subgraph of

H � P where H has bounded treewidth and P is a path.

Section VI concludes with a discussion of the computational

complexity of assigning labels and testing adjacency and

presents directions for future work.

Due to space limitations, most proofs are omitted in this

extended abstract. The full version of the paper is available

on arXiv at https://arxiv.org/abs/2003.04280.

II. PRELIMINARIES

All graphs we consider are finite and simple. The vertex

and edge sets of a graph G are denoted by V (G) and E(G),
respectively. The size of a graph G is denoted by |G| :=
|V (G)|.

For any graph G and any vertex v ∈ V (G), let NG(v) :=
{w ∈ V (G) : vw ∈ E(G)} and NG[v] := NG(v) ∪ {v}
denote the open neighbourhood and closed neighbourhood

of v in G, respectively.

A. Prefix-Free Codes

For a string s = s1, . . . , sk, we use |s| := k to denote

the length of s. A string s1, . . . , sk is a prefix of a string

t1, . . . , t� if k � � and s1, . . . , sk = t1, . . . , tk. A prefix-free
code c : X → {0, 1}∗ is a one-to-one function in which c(x)
is not a prefix of c(y) for any two distinct x, y ∈ X . Let N

denote the set of non-negative integers. The following is a

classic observation4 of Elias from 1975.

Lemma 3 (Elias [17]). There exists a prefix-free code
γ : N → {0, 1}∗ such that, for each i ∈ N, |γ(i)| �
2	log(i+ 1)
+ 1.

In the remainder of the paper, γ (which we call an

Elias encoding) will be used extensively, without referring

systematically to Lemma 3.

B. Labelling Schemes Based on Binary Trees

A binary tree T is a rooted tree in which each node except

the root is either the left or right child of its parent and each

4Observing that if the binary writing of an integer i � 1 is w, where w
is a word of �log i� bits, then the code 0|w|, 1, w, i.e., the length of w in
unary followed by 1 and then i in binary, is prefix-free.
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node has at most one left and at most one right child. For

any node x in T , PT (x) denotes the path from the root of

T to x. The length of a path P is the number of edges

in P , i.e., |P | − 1. The depth, dT (x) of x is the length of

PT (x). The height of T is h(T ) := maxx∈V (T ) dT (x). A

perfectly balanced binary tree is any binary tree T of height

h(T ) = 	log |T |
.
A binary tree is full if each non-leaf node has exactly

two children. For a binary tree T , we let T+ denote the full

binary tree obtained by attaching to each node x of T 2−cx
leaves where cx ∈ {0, 1, 2} is the number of children of x.

We call the leaves of T+ the external nodes of T . (Note that

none of these external nodes are in T .)

A node a in T is a T -ancestor of a node x in T if a ∈
V (PT (x)). If a is a T -ancestor of x then x is a T -descendant
of a. (Note that a node is a T -ancestor and T -descendant of

itself.) For a subset of nodes X ⊆ V (T ), the lowest common
T -ancestor of X is the maximum-depth node a ∈ V (T )
such that a is a T -ancestor of x for each x ∈ X .

Let PT (xr) = x0, . . . , xr be a path from the root x0 of

T to some node xr (possibly r = 0). Then the signature of

xr in T , denoted σT (xr) is a binary string b1, . . . , br where

bi = 0 if and only if xi is the left child of xi−1. Note that

the signature of the root of T is the empty string.

A binary search tree T is a binary tree whose node set

V (T ) consists of distinct real numbers and that has the

binary search tree property: For each node x in T , z < x
for each node z in x’s left subtree and z > x for each node

z in x’s right subtree. For any x ∈ R \ V (T ), the search
path PT (x) in T is the unique root-to-leaf path v0, . . . , vr
in T+ such that adding x as a (left or right, as appropriate)

child of vr−1 in T would result in a binary search tree T ′

with V (T ′) = V (T ) ∪ {x}.
The following observation allows us to compare values in

a binary search tree just given their signatures in the tree.

Observation 4. For any binary search tree T and any
nodes x, y in T , we have x < y if and only if σT (x) is
lexicographically less than σT (y).

Let R
+ denote the set of positive real numbers. The

following is a folklore result about biased binary search

trees.

Lemma 5. For any finite S ⊂ R and any function w : S →
R

+, there exists a binary search tree T with V (T ) = S
such that, for each y ∈ S, dT (y) � log(W/w(y)), where
W :=

∑
y∈S w(y).

The following fact about binary search trees is useful,

for example, in the deletion algorithms for several types

of balanced binary search trees [22, Section 6.2.3], see

Figure 2:

Observation 6. Let T be a binary search tree and let x, y
be nodes in T such that x < y and there is no node z in

x2

y2

x1

y1

Figure 2. An illustration of Observation 6: (1) σT (y1) = 11000 and
σT (x1) = 11000 (2) σT (y2) = 10011 and σT (x2) = 10011.

T such that x < z < y, i.e., x and y are consecutive in the
sorted order of V (T ). Then

1) (if y has no left child) σT (x) is obtained from σT (y)
by removing all trailing 0’s and the last 1; or

2) (if y has a left child) σT (x) is obtained from σT (y) by
appending a 0 followed by dT (y)− dT (x)− 1 1’s.

Therefore, there exists a function D : ({0, 1}∗)2 → {0, 1}∗
such that, for every binary search tree T and for every two
consecutive nodes x, y in the sorted order of V (T ), there
exists δT (y) ∈ {0, 1}∗ with |δT (y)| = O(log h(T )) such
that D(σT (y), δT (y)) = σT (x).

The bitstring δT (y) from Observation 6 is obtained as

follows: It consists of a first bit indicating whether y has a

left child in T or not and, in case y does have a left child,

an Elias encoding γ(s) of the value s := dT (y)−dT (x)−1.

More precisely, δT (y) = 0 or δT (y) = 1, γ(s).
Putting some of the preceding results together we obtain

the following useful coding result.

Lemma 7. There exists a function A : ({0, 1}∗)2 →
{−1, 0, 1,⊥} such that, for any h ∈ N, and any
w : {1, . . . , h} → R

+ there is a prefix-free code
α : {1, . . . , h} → {0, 1}∗ such that

1) for each i ∈ {1, . . . , h}, |α(i)| = logW − logw(i) +
O(log log h), where W :=

∑h
j=1 w(j);

2) for any i, j ∈ {1, . . . , h},

A(α(i), α(j)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if j = i;
1 if j = i+ 1;
−1 if j = i− 1;
⊥ otherwise.

C. Chunked Sets

For non-empty finite sets X,Y ⊂ R and an integer a,

we say that X a-chunks Y if, for any a+ 1-element subset

S ⊆ Y , there exists x ∈ X , such that minS � x � maxS.

Observe that, if X a-chunks Y , then |Y \X| � a(|X|+1) �
2a|X| so |X∪Y | � (2a+1)|X|. A sequence V1, . . . , Vh ⊂ R
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is a-chunking if Vy a-chunks Vy+1 and Vy+1 a-chunks Vy

for each y ∈ {0, . . . , h− 1}.
Lemma 8. For any finite sets S1, . . . , Sh ⊂ R, there exist
sets V1, . . . , Vh ⊂ R such that

1) for each y ∈ {1, . . . , h}, Vy ⊇ Sy;
2) V1, . . . , Vh is 3-chunking;
3)

∑h
y=1 |Vy| � 2

∑h
y=1 |Sy|.

A proof of a much more general version of Lemma 8 (with

larger constants) is implicit in the iterated search structure

of Chazelle and Guibas [11]. For the sake of completeness,

the full version of the paper includes a proof of Lemma 8

that borrows heavily from the amortized analysis of partially

persistent data structures [13, Section 2.3].

D. Product Structure Theorems

The strong product A�B of two graphs A and B is the

graph whose vertex set is the Cartesian product V (A�B) :=
V (A) × V (B) and in which two distinct vertices (x1, y1)
and (x2, y2) are adjacent if and only if:

1) x1x2 ∈ E(A) and y1y2 ∈ E(B); or

2) x1 = x2 and y1y2 ∈ E(B); or

3) x1x2 ∈ E(A) and y1 = y2.

Theorem 9 (Dujmović et al. [15]). Every planar graph G is
a subgraph of a strong product H �P where H is a graph
of treewidth at most 8 and P is a path.

Theorem 9 can be generalized (replacing 8 with a larger

constant) to bounded genus graphs, and more generally to

apex-minor free graphs.

Dujmović, Morin, and Wood [16] gave analogous product

structure theorems for some non-minor closed families of

graphs including k-planar graphs, powers of bounded-degree

planar graphs, and k-nearest-neighbour graphs of points in

R
2. Dujmović, Esperet, Morin, Walczak, and Wood [14]

proved that a similar product structure theorem holds for

graphs of bounded degree from any (fixed) proper minor-

closed class. This is summarized in the following theorem:

Theorem 10 ([15],[14],[16]). Every graph G in each of
the following families of graphs is a subgraph of a strong
product H � P where P is a path and H is a graph of
bounded treewidth:
• graphs of bounded genus and, more generally, apex-

minor free graphs;
• bounded degree graphs that exclude a fixed graph as a

minor;
• k-planar graphs and, more generally, (g, k)-planar

graphs.

III. BULK TREES

Our labelling scheme for a subgraph G of H � P uses

labels that depend in part on the rows (H-coordinates) of

G, where each row corresponds to one vertex of P : Say P

consists of vertices 1, 2, . . . , h in this order, then the i-th
row of G is the subgraph Hi of G induced by the vertex

set {(v, i) ∈ V (G)}. A naive approach to create labels for

each Hi is to use a labelling scheme for bounded treewidth

graphs; roughly, this entails building a specific binary search

tree Ti and mapping each vertex v of Hi onto a node x
of Ti that we call the position of v in Ti. The label of

(v, i) encodes the position of v in Ti plus some small extra

information (see Section V). This way, we can determine if

two vertices (v, i) and (w, i) in the same row are adjacent.
The key problems that we face here though are queries of

the type (v, i) and (w, i + 1): We would like to determine

adjacency on the H-coordinate using Ti or Ti+1. We could

extend the node set of Ti+1 so that it represents all vertices

from Hi. This way we know that both v and w are

represented in Ti+1. However, we still have a major issue:

the label of (v, i) describes the position of v in Ti but not

in Ti+1. In this setup, in order to determine if v and w are

adjacent in H we need to know their respective positions in

the same binary search tree. However, there is in principle

no relation between the position of v in Ti and its position

in Ti+1.
To circumvent this difficulty, we build the binary search

trees T1, . . . , Th one by one, starting with a balanced binary

search tree, in such a way that Ti+1 is obtained from Ti by

performing carefully structured changes. By storing some

small extra information related to these changes in the label

of (v, i), this will allow us to obtain the position of v in Ti+1.

Finally, we also need to guarantee that the binary search trees

in our sequence are balanced so that the labels are of length

log |Ti| plus a lower-order term.
In this section, we introduce three operations on a binary

search tree that will allow us to carry out this plan. These

operations are called bulk insertion, bulk deletion, and re-
balancing. Starting from a perfectly balanced binary search

tree T1, each tree Ti in our sequence T1, . . . , Th will be

obtained from Ti−1 by applying these three operations.

A. Bulk Insertion
The bulk insertion operation, BULKINSERT(I), in which

a finite set I ⊂ R \ V (T ) of new values are inserted

into a binary search tree T , is implemented as follows:

Let z0, . . . , z|T | denote the external nodes of T . For each

i ∈ {0, . . . , |T |}, let Ii consist of all x ∈ I such that PT (x)
ends at zi. For each i ∈ {0, . . . , |T |}, construct a perfectly

balanced binary search tree Ti with vertex set Ii. For each

i ∈ {1, . . . , |T |}, replace zi with Ti in T+. The resulting

tree is the outcome of the operation.

Lemma 11. Let T be any binary search tree and let I be a
finite set of values from R \ V (T ) such that V (T ) 3-chunks
I .5 Apply BULKINSERT(I) to T to obtain T ′. Then T ′ is a

5There is nothing special about the constant 3 here. The data structure
and its analysis work with 3 replaced by any constant a. The constant 3
comes from an application of Lemma 8.
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supergraph of T and h(T ′) � h(T ) + 2.

Lemma 12. Let T be any binary search tree and let I be a
finite set of values from R \ V (T ) such that V (T ) 3-chunks
I . Apply BULKINSERT(I) to T to obtain T ′. Let x be any
node of T and let Tx and T ′x be the subtrees of T and T ′,
respectively, rooted at x. Then |Tx| � |T ′x| � 8|Tx|.
B. Bulk Deletion

The bulk deletion operation, BULKDELETE(D), of a

subset D of nodes of a binary search tree T is implemented

as a series of |D| individual deletions, performed in any

order. For each x ∈ D, the deletion of x is implemented

by running the following recursive algorithm: If x is a leaf,

then simply remove x from T . Otherwise, x has at least one

child. If x has a left child, then recursively delete the largest

value x′ in the subtree of T rooted at the left child of x and

then replace x with x′. Otherwise x has a right child, so

recursively delete the smallest value x′ in the subtree of T
rooted at the right child of x and then replace x with x′.

Lemma 13. Let T be any binary search tree and let D be
a finite set of values from V (T ). Apply BULKDELETE(D)
to T to obtain a new tree T ′. Then, for any node x in T ′,
σT ′(x) is a prefix of σT (x). In particular, h(T ′) � h(T ).

Lemma 14. Let T be any binary search tree and let D be a
finite set of values from V (T ) such that V (T ) \D 3-chunks
D. Apply BULKDELETE(D) to T to obtain a new tree T ′.
Then |T |/8 � |T ′| � |T |.
C. Rebalancing

The rebalancing operation on a binary search tree T uses

several subroutines that we now discuss, beginning with the

most fundamental one: SPLIT(x).
1) SPLIT(x): The argument of SPLIT(x) is a node x in

T and the end result of the subroutine is to split T into two

binary search trees T<x and T>x where V (T<x) = {z ∈
V (T ) : z < x} and V (T>x) = {z ∈ V (T ) : z > x}.
Refer to Figure 3. Let PT (xr) = x0, . . . , xr be the path in

T from the root x0 of T to x = xr. Partition x0, . . . , xr−1

into two subsequences a := a1, . . . , as and b := b1, . . . , bt
where the elements of a are less than x and the elements

of b are greater than x. Note that the properties of a binary

search tree guarantee that

a1 < · · · < as < x < bt < · · · < b1.

Make a binary search tree T0 that has x as root, the path

a1, . . . , as as the left subtree of x and the path b1, . . . , bt as

the right subtree of x. Note that ai+1 is the right child of

ai for each i ∈ {1, . . . , s − 1} and bi+1 is the left child of

bi for each i ∈ {1, . . . , t− 1}.
Next, consider the forest F := T − {x0, . . . , xr}.

This forest consists of r + 2 (possibly empty) trees

A1, . . . , Ar−1, L,R where L and R are the subtrees of T
rooted at the left and right child of x in Tx and, for each

x = x6
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x1

x2

x3

x4

x5

A0

A2

A5

A3

A4
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c2
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⇓
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x0 = a1

x1 = a2

x2 = a3

x3 = b1

x4 = b2

x5 = a4

T<x

T>x

Figure 3. The operation of SPLIT(x).

i ∈ {1, . . . , r − 1}, Ai is the subtree of T rooted at the

child ci �= xi+1 of xi (if such a child exists, otherwise Ai

is empty). Make a binary search tree Tx by replacing each

of the r + 2 external nodes of T+
0 with the corresponding

tree in F . Finally, let T<x be the subtree of Tx rooted at the

left child of x and let T>x be the subtree of Tx rooted at

the right child of x in Tx.

Lemma 15. Let T be any binary search tree, let x be any
node of T , and apply SPLIT(x) to obtain T<x and T>x.
Then h(T<x) � h(T ) and h(T>x) � h(T ).

The following observation shows that there is a simple

relationship between a node’s signature in T before calling

SPLIT(x) and its signature in T<x or T>x.

Observation 16. Let T , x, x0, . . . , xr, A1, . . . , Ar−1, L,R,
a1, . . . , as, and b1, . . . , bt be defined as above. Then

1) for each j ∈ {1, . . . , s} where aj = xi

a) σT<x(aj) = 1j−1, and
b) σT<x(z) = 1j−1, 0, σAi(z) for each z ∈ V (Ai);

2) for each j ∈ {1, . . . , t} where bj = xi

a) σT>x
(bj) = 0j−1, and

b) σT>x
(z) = 0j−1, 1, σAi

(z) for each z ∈ V (Ai);
3) σT<x(z) = 1s, σL(z) for each z ∈ V (L); and
4) σT>x(z) = 0t, σR(z) for each z ∈ V (R).

In particular, for any z ∈ V (T ) \ {x}, σT<x
(z) or σT>x

(z)
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Figure 4. The operation of BALANCE(x, k)

can be obtained from σT (z) by deleting a prefix and
replacing it with one of the 4 · h(T ) strings in Π :=⋃h(T )−1

j=0 {0j , 0j1, 1j , 1j0}.
2) MULTISPLIT(x1, . . . , xc): From the SPLIT(x) opera-

tion we build the MULTISPLIT(x1, . . . , xc) operation that

takes as input a sequence of nodes x1 < · · · < xc of

T . For convenience, define x0 = −∞ and xc+1 = ∞.

The effect of MULTISPLIT(x1, . . . , xc) is to split T into a

sequence of binary search trees T0, . . . , Tc where, for each

i ∈ {0, . . . , c}, V (Ti) = {z ∈ V (T ) : xi < z < xi+1}.
The implementation of MULTISPLIT(x1, . . . , xc)

is straightforward divide-and-conquer: If c = 0,

then there is nothing to do. Otherwise, call

SPLIT(x�c/2�) to obtain T<x�c/2� and T>x�c/2� .

Next, apply MULTISPLIT(x1, . . . , x�c/2�−1) to

T<x�c/2� to obtain T0, . . . , T�c/2�−1 and then apply

MULTISPLIT(x�c/2�+1, . . . , xc) to T>x�c/2� to obtain

T�c/2�, . . . , Tc.

The following lemma is immediate from Lemma 15.

Lemma 17. Let T be any binary search tree and apply
MULTISPLIT(x1, . . . , xc) to T to obtain T0, . . . , Tc. Then
h(Ti) � h(T ) for each i ∈ {0, . . . , c}.

3) BALANCE(x, k): The BALANCE(x, k) operation op-

erates on the subtree Tx of T rooted at some node x in

T . The goal of this operation is to balance the size of all

the subtrees rooted at nodes of depth dT (x) + k + 1 and

contained in Tx. Refer to Figure 4.

If |V (Tx)| < 2k, then this operation simply replaces

Tx with a perfectly balanced binary search tree containing

V (Tx). Otherwise, let Z := {z ∈ V (Tx) : dTx
(z) < k}.

Call the m � 2k − 1 elements of Z z1 < z2 < · · · < zm
and, for convenience, define z0 = −∞ and zm+1 =∞.

Select the nodes X := {x1, . . . , x2k−1} of Tx where each

xj has rank 	j|V (Tx)|/2k
 in V (Tx).
6 The BALANCE(x, k)

operation will turn Tx into a tree with a top part T̂0 that is

a perfectly balanced binary search tree on Z ∪X . We now

describe how this is done.
Tx − Z is a forest consisting of m + 1 � 2k trees

T0, . . . , Tm. (Some of these trees may be empty.) Order

T0, . . . , Tm so that, for each i ∈ {0, . . . ,m} and each

x′ ∈ V (Ti), zi < x′ < zi+1. For each i ∈ {0, . . . ,m},
let {xi,1, . . . , xi,ci} := X ∩ V (Ti) where xi,1 < · · · < xi,ci

and define xi,0 := zi and xi,ci+1 := zi+1. Note that for each

i ∈ {0, . . . ,m}, ci � |X| � 2k − 1.
For each i ∈ {0, . . . ,m}, apply

MULTISPLIT(xi,1, . . . , xi,ci) to the tree Ti. As a result of

these calls, we obtain sequences of trees Ti,0, . . . , Ti,ci

where, for each i ∈ {0, . . . ,m}, each j ∈ {0, . . . , ci}, and

each x′ ∈ V (Ti,j), we have xi,j < x′ < xi,j+1. Note that

if ci = 0 (i.e., if X does not intersect V (Ti)), then the

result of this call is a single tree Ti,0 = Ti. Observe that⋃m
i=0

⋃ci
j=0 V (Ti,j) = V (Tx) \ (Z ∪X).

Let p := |Z ∪X|, let s1 < · · · < sp denote the elements

of Z ∪X and define s0 := −∞ and sp+1 := ∞. For each

� ∈ {0, . . . , p}, let i� := |Z ∩ {s1, . . . , s�}| and j� := � −
max{q ∈ {1, . . . , �} : sq ∈ Z} and let A� := Ti�,j� . Then,

for each � ∈ {0, . . . , p} and each x′ ∈ V (A�), we have

s� < x′ < s�+1.
Now construct a perfectly balanced tree T̂0 with vertex

set V (T̂0) := {s1, . . . , sp} = Z ∪ X . The tree T̂0 has p +
1 external nodes a0, . . . , ap. We obtain a new tree T ′x by

replacing a� with A� for each � ∈ {0, . . . , p} in T̂+
0 . In the

encompassing bulk tree T we replace the subtree Tx with

T ′x.

Lemma 18. Let T be any binary search tree, let x be any
node of T , and apply BALANCE(x, k) to T to obtain a new
tree T ′. Then h(T ′) � h(T ) + 1.

The following statement captures what we win after an

application of BALANCE(x, k) to a binary search tree.

Lemma 19. Let T be any binary search tree, let x be any
node of T , let Tx be the subtree of T rooted at x, and apply
BALANCE(x, k) to T to obtain a new tree T ′. Then, for
each T ′-descendant z of x with dT ′(z) = dT (x) + k + 1,
the subtree of T ′ rooted at z has size at most |Tx|/2k.

4) BULKBALANCE(θ, k): The ultimate restructuring op-

eration in bulk trees is BULKBALANCE(θ, k). It calls BAL-

ANCE(x, k) for each node x of depth θ in T . (Note that

this operation has no effect if there is no such node.)

The following two lemmas are immediate consequences of

Lemma 18 and Lemma 19, respectively.

6For a finite set X ⊂ R, and x ∈ R, the rank of x in S is |{x′ ∈ S :
x′ < x}|.
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Lemma 20. Let T be any binary search tree and apply the
BULKBALANCE(θ, k) operation to obtain a new tree T ′.
Then h(T ′) � h(T ) + 1.

Lemma 21. Let T be any binary search tree and apply the
BULKBALANCE(θ, k) operation to obtain a new tree T ′. Let
x be any node of T of depth θ and let Tx be the subtree
of T rooted at x. Then, for each T ′-descendant z of x with
dT ′(z) = θ + k + 1, the subtree of T ′ rooted at z has size
at most |Tx|/2k.

D. Bulk Tree Sequences

Let k � 7 be an integer7 and let S0, . . . , Sq be a

3-chunking sequence. We define a one-phase k-bulk tree
sequence based on S0, . . . , Sq to be a sequence T0, . . . , Tq

of binary search trees such that T0 is an arbitrary binary

search tree on node set S0 and, for each y ∈ {0, . . . , q−1},
we have h(Ty) > y · (k + 1) and the tree Ty+1 is obtained

from Ty by applying

(i) BULKBALANCE(y · (k + 1), k), then

(ii) BULKINSERT(I) with I := Sy+1 \ Sy , and finally

(iii) BULKDELETE(D) with D := Sy \ Sy+1.

Note that V (Ty) = Sy for each y ∈ {0, . . . , q}. The

sequence is complete if h(Tq) � q · (k + 1).
For k � 7 and a 3-chunking sequence S1, . . . , Sh, we

define a k-bulk tree sequence based on S1, . . . , Sh to be a

sequence T1, . . . , Th of binary search trees satisfying: T1 is a

perfectly balanced binary search tree with V (T1) = S1, and

there exist indices h1, h2, . . . , h� with 1 = h1 < h2 < · · · <
h� = h such that Thj

, Thj+1, . . . , Thj+1
is a complete one-

phase k-bulk tree sequence based on Shj
, Shj+1, . . . , Shj+1

for each j ∈ {1, . . . , �−2}, and Th�−1
, Th�−1+1, . . . , Th�

is a

(non-necessarily complete) one-phase k-bulk tree sequence

based on Sh�−1
, Sh�−1+1, . . . , Sh�

.

Note that if we fix the 3-chunking sequence S1, . . . , Sh,

the integer k � 7, and the starting perfectly balanced binary

search tree T1 with V (T1) = S1, a k-bulk tree sequence

based on S1, . . . , Sh and starting with T1 exists and is

unique. It is obtained by a sequence of one-phase k-bulk

tree sequences, where we start a new one-phase sequence as

soon as the current one is complete.

This will not be needed until the final sections, but it is

helpful to keep in mind that we will ultimately take k =

max

{
7,

⌈√
log n/ log logn

⌉}
when considering a k-bulk

tree sequence built for our n-vertex graph G, so that the

expression O(k+ k−1 log n) (which appears many times in

what follows), is ω(1) and o(log n).

Lemma 22. Let T0, . . . , Tq be a one-phase k-bulk tree
sequence. Then, for each y ∈ {0, . . . , q}

(i) h(Ty) � h(T0) + 3y;

7k � 7 is a technical requirement, to make sure that some inequalities
hold later on.

(ii) each subtree of Ty rooted at a node of depth y · (k+1)
has size at most |T0| · 2−y(k−3).

Corollary 23. Let T0, . . . , Tq be a one-phase k-bulk tree
sequence. Then,

q �
⌈
log |T0|
k−3

⌉
.

Lemma 24. Let T0, . . . , Tq be a complete one-phase k-bulk
tree sequence, and let r0 := h(T0)− log |T0|. Then, for each
y ∈ {0, . . . , q},

(i) |T0|/8y � |Ty|, and thus log |T0| � log |Ty|+ 3y;
(ii) q = O(k−1 log |Ty|);

(iii) h(Ty) = log |Ty|+ r0 +O(k−1 log |Ty|); and
(iv) h(Tq) = log |Tq|+O(k + k−1 log |Tq|).

The following lemma shows that trees in a bulk tree

sequence are balanced at all times:

Lemma 25. Let T1, . . . , Th be a k-bulk tree sequence and
let y ∈ {1, . . . , h}. Then

h(Ty) � log |Ty|+O(k + k−1 log |Ty|).
E. Transition Codes for Nodes

We now arrive at the raison d’être of bulk tree sequences:

For two consecutive trees Ty and Ty+1 in a bulk tree

sequence and any z ∈ V (Ty) ∩ V (Ty+1), the signatures

σTy
(z) and σTy+1

(z) are so closely related that σTy+1
(z) can

be derived from σTy
(z) and a short transition code νy(z).

The following two lemmas make this precise.

Lemma 26. There exists a function B : ({0, 1}∗)2 →
{0, 1}∗ such that, for every binary search tree T , for any
integers θ and k with 1 � θ � h(T ) and k � 1, the following
holds. Let T ′ be the binary search tree obtained by an appli-
cation of BULKBALANCE(θ, k) to T . For each z ∈ V (T ),
there exists ν(z) ∈ {0, 1}∗ with |ν(z)| = O(k log h(T ))
such that B(σT (z), ν(z)) = σT ′(z).

Lemma 27. There exists a function B′ : ({0, 1}∗)2 →
{0, 1}∗ such that, for each k-bulk tree sequence T1, . . . , Th,
each y ∈ {1, . . . , h − 1}, and each z ∈ V (Ty) ∩ V (Ty+1),
there exists νy(z) ∈ {0, 1}∗ with |νy(z)| = O(k log h(Ty))
such that B′(σTy

(z), νy(z)) = σTy+1
(z).

IV. SUBGRAPHS OF P � P

Before continuing, we show that using the techniques

developed thus far, we can already solve a non-trivial special

case. In particular, we consider the case in which G is an n-

vertex subgraph of P1�P2 where P1 is a path on m vertices

and P2 is a path on h vertices. Thus, we identify each vertex

of G with a point (x, y) ∈ {1, . . . ,m} × {1, . . . , h} in the

m× h grid with diagonals, and G is just a subgraph of this

grid, see Figure 5. Obviously, we may assume that m � n
and h � n.

Our motivation for considering this special case is ex-

pository: The vertices of P1 are integers 1, . . . ,m that can
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Figure 5. The special case where G is a subgraph of P1 � P2.

be stored directly in a binary search tree. This makes it

easier to understand the role that bulk tree sequences play

in our solution. The extension of this solution to subgraphs

of H �P , which is the topic of Section V, uses exactly the

same ideas but requires another level of indirection since

there is no natural mapping from the vertices of H onto

real numbers.

A. The Labels

For each y ∈ {1, . . . , h}, we let

Ly = {x : (x, y) ∈ V (G)}, and

L+
y = Ly ∪ {x− 1 : (x, y) ∈ V (G)}.

Note that
∑h

y=1 |Ly| = n and
∑h

y=1 |L+
y | � 2n. Let L+

0 :=
∅.

Let V1, . . . , Vh be the 3-chunking sequence obtained by

applying Lemma 8 to the sequence L+
1 ∪L+

0 , . . . , L
+
h ∪L+

h−1.

Thus for each y ∈ {1, . . . , h}, we have

Vy ⊇ L+
y ∪ L+

y−1, and∑h
y=1 |Vy| � 2

∑h
y=1 |L+

y ∪ L+
y−1| � 8n.

Next, let T1, . . . , Th be a k-bulk tree sequence based on

V1, . . . , Vh (recall that if we fix the starting perfectly bal-

anced binary search tree T1 with vertex set V1, this sequence

exists and is unique). We discuss the asymptotically opti-

mal choice for the value of k at the end of the section.

By Lemma 25, for each y ∈ {1, . . . , h}, we have

h(Ty) = log |Ty|+O(k + k−1 log |Ty|)
� log |Ty|+O(k + k−1 log n).

Let A : ({0, 1}∗)2 → {0, 1}∗ be the function, given by

Lemma 7 such that using the weight function w(y) := |Ty|
for each y ∈ {1, . . . , h}, we have a prefix-free code α :
{1, . . . , h} → {0, 1}∗ such that

|α(y)| = log
(∑h

i=1 |Ti|
)
− log |Ty|+O(log log h)

� log n− log |Ty|+O(log log n),

for each y ∈ {1, . . . , h}, and A(α(i), α(j)) outputs 0, 1,

−1, or ⊥, depending whether the value of j is i, i+1, i−1,

or some other value, respectively.

Let B′ : ({0, 1}∗)2 → {0, 1}∗ be the function, given by

Lemma 27, such that for each y ∈ {1, . . . , h− 1} and each

x ∈ Ly ⊆ V (Ty)∩V (Ty+1), there exists a code νy(x) with

|νy(x)| = O(k log h(Ty)) = O(k log logn + k log k) such

that B′(σTy
(x), νy(x)) = σTy+1

(x).
Let D : ({0, 1}∗)2 → {0, 1}∗ be the function, given by

Observation 6, such that for every binary search tree T ,

and every i such that i − 1 and i are in T , there exists

δT (i) ∈ {0, 1}∗ with |δT (i)| = O(log h(T )) such that

D(σT (i), δT (i)) = σT (i− 1).
Finally, given a vertex v = (x, y) of G, we define an array

a(v) of 8 bits indicating whether each of the edges between

(x, y) and (x ± 1, y ± 1) are present in G. Note that some

of these 8 vertices may not even be present in G in which

case the resulting bit is set to 0 since the edge is not present

in G.

Now, in the labelling scheme for G, each vertex v =
(x, y) ∈ V (G) receives a label that is the concatenation of

the following bitstrings:

(P1) α(y);
(P2) γ(|σTy

(x)|), σTy
(x);

(P3) δTy
(x);

(P4) if y �= h then 1, δTy+1
(x);

if y = h then 0;

(P5) if y �= h then 1, νy(x);
if y = h then 0; and

(P6) a(v).
Two major components of this label are α(y), of length

log n − log |Ty| + O(log log n), and σTy (x), of length

log |Ty| + O(k + k−1 log n). Together they have length

log n + O(k + k−1 log n + log logn). The lengths of the

remaining components are as follows: γ(|σTy
(x)|), δTy

(x),
and δTy+1(x) have length O(log logn + log k), νy(x) has

length O(k log log n + k log k), and a(v) has length O(1).
Thus, in total the label has length log n + O(k log log n +
k log k + k−1 log n).

B. Adjacency Testing

First note that from a given label of v = (x, y) ∈ V (G),
we can decode each block of the label. This is because α(y)
is prefix-free, γ(|σTy (x)|) is prefix-free so when we read it

we know how long is σTy
(x) and we can isolate it as well.

The δ-codes are prefix-free again and νy(x) can be decoded

as outlined in the proof of Lemma 27. Finally, the last 8-bits

correspond to a(v).
Given the labels of two vertices v1 = (x1, y1) and v2 =

(x2, y2) in G we can test if they are adjacent as follows.

Looking up the value of A(α(y1), α(y2)), we determine

which of the following applies:

1) |y1 − y2| � 2: In this case we immediately conclude

that v1 and v2 are not adjacent in G since they are not
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adjacent even in P1 � P2.

2) y1 = y2: In this case, let y := y1 = y2. If the two

bitstrings σTy
(x1), σTy

(x2) are the same, we conclude

that x1 = x2 and y1 = y2, so v1 = v2 and we

should output that they are not adjacent. Otherwise,

we lexicographically compare σTy
(x1) and σTy

(x2).
Without loss of generality, σTy

(x1) is smaller than

σTy
(x2). Therefore, by Observation 4, x1 < x2. Recall

that x2 ∈ Ly and L+
y ⊆ V (Ty), so x2 − 1 ∈ V (Ty).

We compute D(σTy (x2), δTy (x2)) = σTy (x2 − 1). If

σTy
(x2−1) �= σTy

(x1), then we immediately conclude

that x2 < x1 − 1, so v1 and v2 are not adjacent in G,

since they are not adjacent even in P1�P2. Otherwise,

we know that v1 = (x2 − 1, y) and v2 = (x2, y) are

adjacent in P1 � P2. Now we use the relevant bit of

a(v1) (or a(v2)) to determine if v1 and v2 are adjacent

in G.

3) y1 = y2 − 1: In this case, we compute

B′(σTy1
(x1), νy1

(x1)) = σTy2
(x1). Let y := y2. If

the two bitstrings σTy (x1), σTy (x2) are the same,

we conclude that x1 = x2. Thus v1 = (x1, y − 1)
and v2 = (x1, y) are adjacent in P1 � P2. Now

we look up the relevant bit of a(v1) (or a(v2)) to

determine if v1 and v2 are adjacent in G. Otherwise,

we lexicographically compare σTy
(x1) and σTy

(x2). If

σTy (x1) is smaller than σTy (x2), then we conclude that

x1 < x2. Recall that x2 ∈ Ly and L+
y ⊆ V (Ty), so

x2 − 1 ∈ V (Ty). We compute D(σTy
(x2), δTy

(x2)) =
σTy

(x2 − 1). If σTy
(x2 − 1) �= σTy

(x1), then we

immediately conclude that v1 and v2 are not adjacent

in G, since they are not adjacent even in P1 � P2.

Otherwise, we know that v1 = (x2 − 1, y − 1) and

v2 = (x2, y) are adjacent in P1 � P2. Now we use

the relevant bit of a(v1) (or a(v2)) to determine if v1
and v2 are adjacent in G. If σTy

(x1) is larger than

σTy
(x2), then we conclude that x1 > x2. Recall that

x1 ∈ Ly−1 and L+
y−1 ⊆ V (Ty), so x1 − 1 ∈ V (Ty).

We compute D(σTy (x1), δTy (x1)) = σTy (x1 − 1). If

σTy
(x1−1) �= σTy

(x2), then we immediately conclude

that v1 and v2 are not adjacent in G, since they are

not adjacent even in P1�P2. Otherwise, we know that

v1 = (x1, y − 1) and v2 = (x1 − 1, y) are adjacent

in P1 � P2. Now we use the relevant bit of a(v1) (or

a(v2)) to determine if v1 and v2 are adjacent in G.

4) y2 = y1 − 1: In this case, we compute

B′(σTy2
(x2), νy2

(x2)) = σTy1
(x2). Now we proceed

as in the previous case.

This establishes our first result:

Theorem 28. The family G of n-vertex subgraphs of a strong
product P �P where P is a path has a (1+ o(1)) log n-bit
adjacency labelling scheme.

Remark 29. The o(log n) term in the label length of

Theorem 28 is O(k log logn + k log k + k−1 log n). An

asymptotically optimal choice of k is therefore k =

max

{
7,

⌈√
log n/ log logn

⌉}
, yielding labels of length

log n+O (√
log n log logn

)
.

V. SUBGRAPHS OF H � P

In this section we briefly explain how to extend the ideas

of the previous section to subgraphs of H � P where H is

a graph of treewidth t and P is a path.

It is well known that any m-vertex graph H of treewidth

at most t is a subgraph an interval graph of clique number

O(t logm) (i.e. such that any point lies in O(t logm)
intervals). What we will do is consider such an interval

representation of H and store all the endpoints of the

intervals in a bulk tree T . We then map each vertex v of

H onto the deepest node xT (v) in T that contains both of

v’s endpoints in its subtree. Consider an edge vw in H , then

the intervals of v and w intersect and it follows that there

is one root-to-leaf path in T that contains both xT (v) and

xT (w), so σ(xT (v)) is a prefix of σ(xT (w)), or vice-versa.

This is what makes adjacency testing possible.

Recall that we are considering an n-vertex subgraph G
of H � P . This implies as before that the subgraphs of G
induced by two consecutive rows of H � P might be two

different subgraphs of H , and thus the bulk trees storing the

endpoints of the intervals in some interval representation of

these two subgraphs of H could be completely different. As

before we can use Lemma 8 to allow for a smooth transition

between consecutive bulk trees, but a new issue appears.

For a particular vertex v in H , the bulk tree operations may

cause the value of xT (v) to change. By carefully inspecting

the effect of all three bulk tree operations (in particular

rebalancing, which turns out to be quite technical), we can

show that this change can be encoded in o(log n) bits, as

before.

The adjacency testing is now fairly similar as before,

except that when we have identified that two vertices are

in the same row or in two consecutive rows, we have to test

for adjacencies in H . Previously we only had to look at the

coordinates (did they differ by at most 1?) and a constant

number of bits (saying whether the corresponding edge was

really there in G compared to P �P ). We now replace this

by a variant of an adjacency labelling scheme of Gavoille

and Labourel [18] for graphs of bounded treewidth that is

tailored to our use of interval representations and bulk trees.

We obtain the following result.

Theorem 30. For every fixed t ∈ N, the family of all graphs
G such that G is a subgraph of H�P for some t-tree H and
some path P has a (1 + o(1)) log n-bit adjacency labelling
scheme.

Theorem 1 and Theorem 2 are immediate consequences

of Theorem 30, Theorem 9, and Theorem 10.
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VI. CONCLUSION

We conclude with a few remarks on the computational

complexity of our labelling scheme. Given an n-vertex

planar graph G, finding an 8-tree H , a path P , and a

mapping of G into a subgraph of H � P can be done in

O(n log n) time [23]. The process of computing the labels

of V (G) as described in Section IV and Section V has a

straightforward O(n log n) time implementation. Thus, the

adjacency labels described in Theorem 1 are computable in

O(n log n) time for n-vertex planar graphs.

In the discussion on the adjacency test function below,

we focus on the case where t is a constant (which is the

case in all our applications). The adjacency testing function

can then be implemented in time O(k) in the standard

w-bit word RAM model, providing for binary words of

length w = Ω(log n), bitwise logical operations, bitwise

shift operations, and a most-significant-bit operation8. We

note that Theorem 30 holds whenever k ranges from ω(1)
to O(

√
log n/ log logn). This yields a trade-off between ad-

jacency test time and label length complexities. On one side,

by choosing k = ω(1), we have labels of (1+o(1)) log n bits

and an adjacency test running in nearly constant time. On the

other side, by selecting an adjacency test time complexity

of k = O(
√
log n/ log logn), the label length is minimized

and has length log n+O(
√
log n log logn).

The current result leaves two obvious directions for future

work:

1) The precise length of the labels in Theorem 1 and

Theorem 30 is, at best, log n+O(
√
log n log logn). The

only known lower bound is log n + Ω(1). Closing the

gap in the lower-order term remains an open problem.

2) Theorem 30 implies a (1 + o(1)) log n-bit labelling

schemes for any family of graphs that excludes an apex

graph as a minor. Can this be extended to any Kt-minor

free family of graphs?
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