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Abstract

In quantum computing, graph states play a crucial role in quantum error correction and
measurement-based quantum computing. Preparing these states efficiently on hardware
with constrained connectivity is a fundamental challenge. In this work, we establish a
universal framework for graph state preparation using only Controlled-Z (CZ) gates along
the edges of a given hardware connectivity graph and local complementation operations.
We prove that any graph state can be prepared using only these operations, providing
a constructive transpilation method that transforms the input circuit into an equivalent
one without increasing the number of entangling gates. Additionally, as our approach
preserves entangling count and depth of the input circuit, we show that this framework
also allows for optimal graph state preparation.

Keywords: Quantum circuit - Graph state - Transpilation.

1 Introduction

Quantum computing holds the potential to deliver exponential speedups over classical com-
puting [JL03, PL23, Sho97, Vid03|, with several demonstrations of such algorithmic advan-
tages using ion trap [FMLT17, WBD"19|, superconducting [HBC*22 RHK™20], photonic
[XLZZ21, ZCL*22|, and Rydberg atom [EKC'22| quantum processors. However, achieving
a universal fault-tolerant quantum computer capable of efficiently solving problems like large
integer factorization would require millions of qubits with low error rates and long coherence
times. Given the current limitations of noisy intermediate-scale quantum (NISQ) computers
|[CCL23, Prel8|, research is focused on overcoming these device limitations, making the de-
sign of efficient quantum circuits crucial. Extensive research has been conducted on quantum
circuit synthesis [AMMR13, DN06, MMN 16|, particularly using restricted gate sets such as
CNOT-, CZ- or Clifford-circuit synthesis [GdBM24, KdG20, KM13, MR18] with the goal of
minimizing the number of entangling gates or the circuit depth.

*This work has been supported by the French ANR project Plan France 2030 (ANR-22-PETQ-0007), and
also ANRT Program.



A key class of quantum states, known as stabilizer states, are particularly significant due to
their properties in quantum error correction [FL11, KKL19|. In this work, we focus on graph
states, a subclass of stabilizer states that can be represented by undirected graphs and that
have been shown to be closely related to the structure of Clifford isometries [GABMV25]. Van
den Nest et al. [VANDDMO04| showed that any stabilizer state can be transformed into a graph
state using single qubit Clifford gates, making the preparation of graph states equivalent to
that of stabilizer states - a topic that has been widely explored [CDLTP11, DW18, KMY25].
Moreover, all local-Clifford equivalent graph states are related through repeated local com-
plementation, a well-studied [AMSDS20, VANDDMO04]| graph operation introduced by Kotzig
[Kot68]. Another challenge in compilation problems is ensuring circuit compliance with hard-
ware constraints. Quantum chip architectures do not always support all-to-all connectivity,
and in practice, one often needs to work with only a connected subgraph of the physical ar-
chitecture that offers sufficiently high fidelity, as error rates across qubit connections may be
degraded. This motivates research on circuit compilation on arbitrary hardware.

Our contribution. Given a n-qubit hardware architecture corresponding to a connected
graph H on n vertices and a graph G on at most n vertices, we show that there exists a circuit
that prepares the graph state |G) by only toggling edges in H (corresponding to applying a
CZ gate) and applying local complementations (corresponding to local Clifford gates on sets
of neighboring qubits).

Our method relies on constructively transforming any H-compliant graph state preparation
circuit C' into a sequence of edge toggling in H and local complementation. Moreover, we show
that the number of edge toggling in this sequence is bounded by the number of entangling
gates in (| since our transpilation either keeps or deletes CZ gates of the original circuit. This
gives a direct bound on both the two-qubit-gate count and depth in our output circuit. In
particular, this entails that given an optimal algorithm to construct a Clifford circuit C that
prepares a given graph state on H, our method gives a circuit that has a CZ-count and depth
bounded by that of C' and prepares the same state.

Remarkably, our result can also be expressed in the language of graph theory: given a
connected graph H on n vertices, any graph G on n vertices can be constructed from the
empty graph on n vertices with only local complementations and toggling edges of H. To the
best of our knowledge, this result was previously unknown. We raise the question of finding a
purely combinatorial proof.

Example. The following is a short example of our method. We give ourselves a circuit that
prepares the complete graph state in CZ depth 3 without connectivity constraint. Here, we
suppose that our hardware graph is a path, thus we rewrite the circuit with a SWAP gate,
translate it to CZ and Hadamard gates and obtain a hardware-compliant circuit with a CZ
depth of 6 (cf. Fig. 1).

Given such a hardware-compliant Clifford circuit that prepares a graph state, our method
gives a explicit construction of the following equivalent circuit that only contains CZ gates
and local Clifford gates arranged in local complementation layers, while preserving CZ depth
and count. This allows the circuit to be read as a sequence of instructions to construct the
desired graph using edge toggling and local complementation, as demonstrated in Fig. 2.

In this example, the CZ depth was reduced to 5, using the Vanishing CZ lemma defined
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Figure 1: Circuit preparing the 3-qubit complete graph state naively transpiled from all-to-all
to LNN architecture.
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Figure 2: Equivalent circuit transpiled using our method, with corresponding graph instruc-
tions. The last layer of Clifford gates stabilizes this graph state (equivalently it can be seen as
two local complementations on ¢;), this can be computed using Bouchet’s algorithm [Bou91].
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later. Notice that our method did not produce the optimal circuit, as it would require only two
CZ gates and one local complementation, which is minimal for any connected architecture.

2 Preliminary notions

A graph state |G) on n qubits is a stabilizer state represented by an undirected graph G. To
prepare |G), one only has to prepare the state |[+)®" = |K,,) and for each edge {u,v} € E(G)
apply a controlled-Z (CZ) operation on the corresponding qubits u and v. This second step of
the process can be done in any order as CZ gates commute. This method allows to prepare |G)
using exactly |E(G)| two-qubit gates, given all-to-all connectivity. Our aim is to replace some



two-qubits gate by emulating them with local Clifford gates acting as local complementations,
while transpiling to any architecture.

2.1 Local complementation

Van den Nest et al. [VANDDMO04] showed that two graph states |G) and |G’) can be trans-
formed into each other by applying only local Clifford gates if and only if the graphs G and
G’ are locally equivalent (denoted by G ~jo G'), i.e., there is a finite sequence of local comple-
mentation operations on G that results into G’. They also show that any of these sequences
is feasible using a bounded number of local Clifford operations. This graph transformation is
particularly convenient to reduce the number of edges of a graph (cf. Fig. 3). For instance,
applying any local complementation on the complete graph on n vertices K,, results in the
star graph K 1, hence K, ~oc K1,n—1. This means that instead of naively preparing |K,,)
using ©(n?) CZ gates, one only has to prepare | K1 ,_1) using O(n) CZ gates then apply the
local Clifford operators corresponding to a local complementation [DKPvdW20]. As reducing
the number of error-prone two-qubits gates is crucial, this shows that allowing local com-
plementation in addition to applying CZ gates along the edges of a hardware graph enables
significant optimizations in graph state preparation. Let us define the simple graph operation
of local complementation and rephrase it as quantum state identity.

U1 U1
G *u
U 2 u
w w
U3 U3
V(u) N (u)

Figure 3: Local complementation of a graph G according to u. v; and v3 are connected in
G * u since the edge v1v3 ¢ E(G), while vjve € E(G) and vaus € E(G).

Definition 1 (Local complementation) Let G be a graph and let u be a vertex of G. The
local complementation of G according to u, written G * u, is a graph which has the same
vertices as G, but all the neighbors vi,ve,... of u are connected in G x u if and only if they
are not connected in G. All other edges are unchanged.

We will use the graph states statement of local complementation from [DP09|. Let us
denote the rotation R,(—m/2) by the \/)TT gate and the rotation R,(7w/2) by the S gate.

Lemma 1 (Van den Nest [VANDDMO4|) Let |G) be a graph state, u a vertex of G and
N (u) the set of neighbors of w in G. Then,

VX gV |Gy = X GHN@) |Gy = |G xu) .
where U®) is applying gate U on the set of qubits S.

Also, note that G x u x u = G. This translates to the following identity.



Proposition 1 (Local complementation, circuit) Let |G) be a graph state, u a vertex of
G and N(u) the set of neighbors of w in G. Performing a local complementation on |G)
according to u s done by:

e adding a \/XT (resp. \/Y) gate on the qubit u,

e adding a S (resp. SV) gate on every qubit corresponding to a vertex in N (u).
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Figure 4: The three states above are equivalent: these identical local complementations ex-
pressed in three different ways can be created from the identity.

We will use this identity throughout our construction to repeatedly reveal two carefully
placed identical local complementations on some set of qubits corresponding to {u, N(u)}
(using the fact that G = G xuxu) by adding local Clifford gates to these qubits in the circuit
that prepares |G), and keeping track of their actions within the graph G itself.

2.2 Graph state preparation on arbitrary hardware

A number of different techniques [WBLW23, Y724, ZHQ"21] can be used to transpile some
given state preparation circuit into an hardware compatible circuit, and more recently by using
discrete constraint optimization [BPBB25|. The most standard approaches rely on inserting
SWAP gates to route qubits along edges of H in order to bring them closer and enable their
interaction. The following proposition simply assumes that we are given such a transpilation
algorithm, and does not require any structure on this algorithm. Since graph state can be
prepared using CZ and Hadamard gates, and since every SWAP can be decomposed using
three CZ gates and Hadamard gates, it is easy to see that the following proposition holds.

Proposition 2 Let H be a connected graph. Suppose we have a quantum hardware whose
connectivity between qubits is exactly described by H. Then any Clifford circuit can be imple-
mented with local Clifford gates and CZ gates only on edges of H.

Using this proposition to produce any H-compliant Clifford circuit C' that prepares a
certain graph state |G), we are able to transpile C' into an equivalent circuit C’ that obeys
the following theorem.

Theorem 1 Let H be a connected graph on n wvertices. Let G be any graph on n wvertices.
The state |G) can be prepared by a circuit consisting of CZ gates along edges of H and local
complementations.

This means that — if we do not have a hard constraint on depth — any hardware can
indistinguishably implement a circuit preparing any graph state using only our two operations.



3 Our construction

Informally, our iterative transpilation method will consist in essentially the same process
repeated for each CZ gate of the input circuit to yield an equivalent circuit constructed with
only CZ along the edges of the hardware graph H and local complementations. Crucially,
each step either keeps or deletes the current CZ. Each step roughly consists of:

e first, extracting some generic local Clifford gates and a CZ gate from the to-be-processed
subcircuit (represented on the right hand side of the figures);

e then, finding a way to weakly commute these local Clifford gates with the CZ, making
heavy use of the local complementation circuit identity;

e finally, absorbing the CZ gate in the processed subcircuit (represented on the left hand
side of the figures) that prepares the target graph state; and

e pulling all the single-qubit gates that cannot be interpreted as local complementations
back into the to-be-processed subcircuit previously mentioned.

First of all, we introduce two handy quantum state identities in Lemma 2 and Lemma 3
that we will use in our construction. Their purpose is to commute specific local Clifford gates
to the other side of a CZ gate (or in the case of Lemma 2, get rid of the CZ entirely) in some
well-defined subcircuit. The proofs of Lemma 2 and Lemma 3 have been moved in Appendix A
and Appendix B respectively.

In the setting of Lemma 2, we consider a CZ gate on qubits v1,ve and the subcircuit
preceding the CZ that prepares a graph state (G;, where v; has no other neighbor than vs in
G; and v9 has at least one other neighbor in GG;. Then in this setting:

Lemma 2 (Vanishing CZ) The two states depicted in Fig. 5 are equivalent.

s Hx anEigEiny

U2 U2

G; c @ c

Figure 5: Vanishing CZ.
In the setting of Lemma 3, we consider a CZ gate on qubits v1,ve and the subcircuit

preceding the CZ that prepares a graph state GG;, where v; has at least one neighbor u that is
not vo in G; and v9 may or may not be already connected to v in G;. Then in this setting:

Lemma 3 (Weak CZ commutation) The two states depicted in Fig. 6 are equivalent.

We are now able to prove to prove Theorem 1 by induction.
Proof of Theorem 1
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Figure 6: Weak CZ commutation, where W = N, \ {v1}, and L, L’ are generic local Clifford
gates.

Given H a connected graph of n vertices, let G be any graph with n vertices.

We define Cy as the set of all Clifford circuits where the qubits correspond to vertices of
H, containing only local Clifford gates and CZ gates along edges of H. Moreover, let us define
Cu,,. as the subset of Cy where all local Clifford gates correspond to local complementations
(see Proposition 1). In the following, we will say that a graph G is locally preparable on H if G
can be constructed from the empty graph on n vertices using only local complementation and
toggling edges of H. Note that a sequence of instructions to locally prepare G on H directly
translates to a circuit in Cg,, that prepares |G).

Let C' be any circuit given by Proposition 2 such that C|0) = |G) and C' € Cy. We will
now show that there exists some circuit C’ such that C’|K,) = C|0) and C’ € Cp,_.

We will proceed by induction on the number of CZ in C. Let the proposition P(i) for
0 < ¢ < m where m is the number of CZ in circuit C' be the following: there exists a graph G
locally preparable on H and C; € Cy such that C;|G;) = C|0) and C; only contains m —i CZ.

P(0) is correct: pick Go = K,, which is trivially locally preparable on H and at the start
Co = CH®™ (if C contains no CZ, then trivially the result of C' is the same on any hardware
with n qubits).

Let us now show that P(i) = P(i+ 1). We now have C;|G;) = C|0) and we would like
to build G;41 locally preparable on H and Cjy; € Cg where Cjy1 has m —i — 1 CZ such that
Cit1|Giv1) = C|0).

Consider any first CZ appearing in the to-be-processed subcircuit C;. In the general case
this CZ gate on vy, v9 two qubits of |G;) is preceded by two local Clifford gates Ly, Ly (possibly
being the identity) acting on vy, ve. Let us denote by C! the circuit obtained by removing L,
Lo and the current CZ gate from C; (cf. Fig. 7).

,1;1 Ll . __L_
cz
=5 Lo |-
G o

Figure 7: Simplified sketch of the i-th step. All other qubits are not shown.

Using Euler decomposition [MV06], we can find a1, b1, ¢1, as, by, ca € Z/AZ such that Ly =



Set \/YTblSal, Ly = 5S¢ \/XTbQS‘l?. Notice that the first S gates in this expression can be
commuted through the CZ and be absorbed back in the to-be-processed subcircuit CJ. Thus,

without loss of generality, we can assume that L; := \/XTblSal, Lo :=+/ XTb2 S92,

Thus for by, by the powers of v X f in the decompositions of L1, Ls, we now have three
cases:

1. Both by and by are even.
2. Only one of by and by is odd.
3. Both b; and by are odd.

We will show case-by-case that P(i + 1) holds.

Case 1. Both by and by are even, then \/7(“’1 = X 01/2 3nd \/7(%2 — X 2/2 31e both Pauli
operators and can be weakly commuted through the CZ gate, inducing another Pauli operator
on the to-be-processed side. Then the last gates S* and S? can be trivially commuted through
CZ. We are left with the CZ followed by two new local Clifford gates L} and L), (cf. Fig. 8).
Thus we can absorb the CZ in G; creating Gj+1 = G; ® {v1v2} which is locally preparable on
H since, by Proposition 2, vjvg is an edge of H. Moreover we define Cj; = C/Li L, € Cy.
Thus, in Case 1, P(i+ 1) holds.

/
o Ly -t-
/
e Ly t-
Gi G

Figure 8: Case 1: after commuting L; and Lg, creating two new local Clifford gates.

Case 2. Only one of by and by is odd, let us suppose it is by without loss of generality,
then Ly can weakly commute through CZ up to local Cliffords on the other side of the CZ.
Likewise, we can always either write L; as v XS or v X TS’ up to a Pauli gate P that we weakly
commute through the CZ, depending on the simplification lemma we want to use. These two
rewriting steps result in a circuit in which there are two local Clifford gates L} and L after
the CZ that can be absorbed back in C} to be treated later (cf. Fig. 9).

We only have to write the remaining S and v X i as byproducts of local complementation
operations on vertices of Gj;.

First, if v; has no neighbor in Gj, then, after applying the S and v X T, qubit vy ends up

in a product state |0). Consequently, the CZ gate can be removed, and S and v X f can be
absorbed in C] to create Cj;.

Otherwise, if v; and ve are each other’s only neighbor in G;, then we can easily rewrite
the subcircuit before C! on the qubits v, vy into a more convenient form, since it is only a



Figure 9: Case 2: after commuting a power of S gate and a Pauli gate of the first qubit and
Lo on the second qubit.

two-qubit Clifford circuit that prepares a stabilizer state. Indeed, [VANDDMO04, Theorem 3|
provides us, in a constructive manner, an equivalent two-qubit subcircuit that first contains 0
or 1 CZ followed by local Clifford gates. If there is a CZ, we absorb it in G to create G 1,
then we absorb the following single-qubit gates back in C/ to create Cjy;.

Else if the only neighbor of v; in G; is vo and vy has at least one neighbor in G;, then we
rewrite L as v XS up to a Pauli gate P that weakly commutes through the CZ and we can
use Lemma 2 to rewrite the circuit without the CZ gate and absorb the leftover local Clifford
gates back into C/.

Else v; has at least one neighbor u in G; that is not v, then we can use Lemma 3 to
rewrite the circuit where the local Clifford gate are after the CZ, then absorb the CZ in G
and the leftover local Cliffords into C/. So in Case 2, P(i + 1) holds.

Case 3. DBoth b; and by are odd. Then we can rewrite L1 and Lo as \/YTS up to Pauli
gates that we commute with the CZ similar to Case 2. W.l.o.g., we will treat the qubit of vy
first.

Now if v; has no neighbor in G; then refer to the analogous sub-case in Case 2.

Else if the only neighbor of v in G; is vo, then treat the qubit of vy first instead. If v
and vy are each other’s only neighbor in GG; then refer to the analogous sub-case in Case 2.

Else v1 has at least one neighbor u in GG; that is not vo. Let us call W the set of all neighbors
of v in G; that are not v;. Now we can use the same method of creating pairs of gates that
simplify to the identity than before to perform the local complementations G, < G;xu, which

in particular absorbs the S gate on wire vy, then G <— G’ x v;, which absorbs the \/)?T gate
on wire v;. The rest of the newly created local Clifford gates can be absorbed in C7, we call
the resulting circuit C (cf. Fig. 10).

S i S g
_>
oy LS VA oy 1
G; C! a cr

Figure 10: Reducing from Case 3 to Case 2.



We can now use the method described in Case 2 on vg using the graph state G} and the
circuit C/ to get G;41 and Cjyq. In this process, we used only local complementations, thus
G is locally preparable on H. Moreover, as we proved in Case 2, only adding gates equivalent
to the identity preserved the result C;|G;) = CV|GY) = Ci;11|Git1). So in Case 3, P(i + 1)
holds.

After all the m CZ gates have been absorbed, we have a circuit that prepares a graph
state G, that is pretty much equivalent to G by construction, but to which we applied many
local complementation. Thus, now that all the two-qubit gates of C' have been processed,
all that remains in C), is a layer of local Clifford gates. As we know that G,, ~ic G,
by [Bou91, VANDDMO4], this layer is equivalent to a sequence of local complementation on
vertices l1,...,ls, thus Gy, xl1 *x--- %l = G is locally preparable on H.

Thus the proposition is true and any graph on n vertices is locally preparable on H. This
completes the proof of Theorem 2. O

We remark that in several cases of the proof (e.g., Case 2 subcases 1 and 2, and also thanks
to Lemma 2) the CZ count and depth may strictly decrease.

4 Universality and optimality

Informally, Theorem 1 states that any graph state can be prepared on any hardware using
only CZ gates and local complementations. Thus this restriction on circuit compilation still
gives a universal formalism for graph states.

This method is implemented by a O(n?*) time constructive algorithm (essentially due to
the complexity of Bouchet’s algorithm [Bou91] to compute the final sequence of local comple-
mentations), that yields an output circuit with a CZ count of at most the CZ count of the
input circuit. This allows us to formulate the following theorem.

Theorem 2 (Optimality) Let |G) be a graph state on at most n qubits and H be a connected
graph on n wvertices. Among the circuits compilable on H that prepare |G) with optimal CZ
count and depth, there exists at least one that consists only of CZ and local complementations.

Proof. Suppose we have an oracle that yields a circuit C' that prepares a given graph state
|G) on our target hardware H such that the CZ count of C is optimal. Our construction
produces a circuit C’ equivalent to C' with at most as many CZ as the original circuit.
Moreover, these CZ appear in the same order and involve the same sets of qubit. Thus, the
optimal CZ count and depth required to prepare any graph state is achieved by circuits using
only CZ gates and local complementation, no matter the architecture. O

Interestingly, our result can also be written solely in the language of graph theory, which
offers new insight on the expressive power of combining local complementation and edge
toggling in graph transformation. Indeed, each CZ gate corresponds to an edge toggling of G
compatible with H, and local Cliffords can be grouped into local complementations over G.
Thus, our output circuit translates into a sequence of graph operations that can be sequentially
applied on the empty graph to produce G. Therefore, we have the following.
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Corollary 1 (Graph statement) Let H be a connected graph on n vertices. Then any graph
on n vertices can be created from the empty graph on n vertices with only local complementa-
tions and edge toggling in H.

Remarkably, the proof of this result uses quantum circuit rewriting at its core, and cannot
be trivially ported to simple graph theoretic operations only.

5 Discussion and conclusion

Numerical results. We implemented our method and applied our transpilation on random
circuits ranging from n = 6 to 16 qubits. We first ran the naive qubit routing heuristic
using SWAP gates to make the random circuit hardware-compliant. Then, we rewrote this
hardware-compliant circuit using our method. Finally, we compared these results to a loop
detection optimization, that recognizes at every step while the graph state is being prepared
if the current graph was previously reached. This allows the deletion of entire subcircuits to
return to an equivalent state and effectively shortcuts the graph state preparation, and/or
terminates early if the target graph state is reached. We averaged the results on 20 random
circuits for each n.

1750 4 —— heuristic
—— after one transpilation
1500 | ——- after loop detection

1250 4

1000

w ~
=} v
o o

average CZ count on 20 random circuits
N
w
o

o
!

T T T T T T T
9 6 8 10 12 14 16
number of qubits

Figure 11: Comparison of the naive heuristic with our method, both with and without the
loop detection optimization.

We notice that in the case of (non-optimal) random circuits as the input, our method
consistently outputs circuits with a lower CZ count on average. In practice, we find that the
loop detection step also allows for CZ count reduction, with the benefit of saving time in
the last step of our construction when Bouchet’s algorithm is called. We also observed that
iterating our method, repeatedly using our transpiled circuit as the input, further reduces the
CZ count and depth. We leave the task of implementing a more profound heuristic on the
basis of our method for future work.

In this work, we have established a universal framework for graph state preparation on
arbitrary quantum hardware constrained by a fixed connectivity graph. By leveraging local
complementation’s ability to emulate up to a quadratic number of CZ gates ultimately in-
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creasing the circuit fidelity, we demonstrated that any graph state can be efficiently prepared
while maintaining an upper bound on the number of entangling gates. This result not only
provides a new perspective on the synthesis of graph states and stabilizer states but also
highlights fundamental graph-theoretic principles underlying quantum state transformations.
Whereas other transpilation methods have studied the overhead in CZ/two-qubit gates count
to produce a hardware-compliant circuit, we presented a framework to simplify such circuits
while preserving the CZ count and depth. We have identified cases where CZ count or depth
strictly decrease. It would be interesting to characterize the circuits where it occurs, and
precisely quantify this effect. An implementation of our method allow us to experimentally
measure the gain in CZ count when given any (not necessarily optimal) input circuit?.

Practically, our findings provide a systematic method for compiling graph states on near-
term quantum devices, ensuring efficient use of limited connectivity. Indeed, graph states can
be used as resources for different frameworks such as measurement-based quantum computing
(MBQC) [RBBO03| or more generally fault-tolerant quantum computing (FTQC) [YR24].

Future work may include finding out whether this result can be further restricted to the use
of toggling edges and using pivot operations (triple local complementation on two neighbors
in the graph), as well as more graph theory oriented topics, such as using our technique to
improve the complexity of Bouchet’s algorithm [Bou91] for efficiently computing local comple-
mentation sequences in our setting. Additionally, an open question remains whether a purely
combinatorial proof of Corollary 1 can be found, further enriching the interplay between graph
theory and quantum computation.

References

[AMMRI13] M. Amy, D. Masrov, M. MoscA, AND M. ROETTELER, A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
32 (2013), p. 818-830. por1: 10.1109/tcad.2013.2244643.

[AMSDS20| J. C. Apcock, S. MORLEY-SHORT, A. DAHLBERG, AND J. W. SILVER-

STONE, Mapping graph state orbits under local complementation, Quantum, 4
(2020), p. 305. por: 10.22331/¢-2020-08-07-305.

[Bou91| A. BOUCHET, An efficient algorithm to recognize locally equivalent graphs,
Combinatorica, 11 (1991), pp. 315-329. por: 10.1007/BF01275668.

[BPBB25| S. BRANDHOFER, I. POLIAN, S. BARZ, AND D. BHATTI, Hardware-efficient
preparation of architecture-specific graph states on near-term quantum comput-
ers, Springer Nature / Scientific Reports, 15 (2025). DOI: 10.1038/s41598-024-
82715-x.

[CCL23]| N.-H. CHia, K.-M. CHUNG, AND C.-Y. LAI, On the need for large quantum
depth, J. ACM, 70 (2023). por: 10.1145/3570637.

LCode available on demand.

12


http://doi.org/10.1109/tcad.2013.2244643
http://doi.org/10.22331/q-2020-08-07-305
http://doi.org/10.1007/BF01275668
http://doi.org/10.1038/s41598-024-82715-x
http://doi.org/10.1038/s41598-024-82715-x
http://doi.org/10.1145/3570637

[CDLTP11]

[DKPvdW20]

[DNO6|

[DP09)

[DW18]

[EKC*22

[FL11]

[FML*17]

[GdBM24]

[GABMV25]

[HBC+22]

[J1.03]

A. CaBELLO, L. E. DANIELSEN, A. J. LOPEZ-TARRIDA, AND J. R. POR-
TILLO, Optimal preparation of graph states, Physical Review A, 83 (2011). DOI:
10.1103 /physreva.83.042314.

R. DUNCAN, A. KISSINGER, S. PERDRIX, AND J. VAN DE WETERING, Graph-

theoretic simplification of quantum circuits with the zz-calculus, Quantum, 4
(2020), p. 279. DOI: 10.22331/q-2020-06-04-279.

C. M. DawsON AND M. A. NIELSEN, The Solovay-Kitaev algorithm, Quantum
Information and Computation, 6 (2006), pp. 81-95. por: 10.26421/QIC6.1-6.

R. DUNCAN AND S. PERDRIX, Graph states and the necessity of euler decom-
position, in Mathematical Theory and Computational Practice, 5th Conference
on Computability in Europe (CiE), vol. 5635 of Lecture Notes in Computer Sci-
ence, Springer, July 2009, pp. 167-177. po1: 10.1007/978-3-642-03073-4 18.

A. DAHLBERG AND S. WEHNER, Transforming graph states using single-qubit
operations, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376 (2018). por: 10.1098 /rsta.2017.0325.

S. EBADI, A. KEESLING, M. CAIN, T. T. WANG, H. LEVINE, ET AL., Quan-

tum optimization of maximum independent set using rydberg atom arrays, Sci-
ence, 376 (2022), pp. 1209-1215. por: 10.1126/science.abo6587.

S. T. FLAMMIA AND Y.-K. Liu, Direct fidelity estimation from few pauli
measurements, Physical Review Letters, 106 (2011). DpoI: 10.1103/phys-
revlett.106.230501.

C. FicearT, D. Masrov, K. A. LANDSMAN, N. M. LINKE, S. DEBNATH,
AND C. MONROE, Complete 3-qubit grover search on a programmable quantum
computer, Nature communications, 8 (2017), p. 1918. por: 10.1038/s41467-
017-01904-7.

T. GOUBAULT DE BRUGIERE AND S. MARTIEL, Shallower cnot circuits on re-

alistic quantum hardware, ACM Transactions on Quantum Computing, (2024).
DOI: 10.1145/3700884.

T. GOUBAULT DE BRUGIERE, S. MARTIEL, AND C. VUILLOT, A graph-state
based synthesis framework for clifford isometries, Quantum, 9 (2025), p. 1589.
DOL: 10.22331/q-2025-01-14-1589.

H.-Y. HuAaNG, M. BROUGHTON, J. COTLER, S. CHEN, J. LI, ET AL., Quan-
tum advantage in learning from experiments, Science, 376 (2022), pp. 1182—
1186. poI: 10.1126/science.abn7293.

R. Jozsa AND N. LINDEN, On the role of entanglement in quantum-
computational speed-up, Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 459 (2003), pp. 2011-2032.
DOL: 10.1098 /rspa.2002.1097.

13


http://doi.org/10.1103/physreva.83.042314
http://doi.org/10.22331/q-2020-06-04-279
http://doi.org/10.26421/QIC6.1-6
http://doi.org/10.1007/978-3-642-03073-4_18
http://doi.org/10.1098/rsta.2017.0325
http://doi.org/10.1126/science.abo6587
http://doi.org/10.1103/physrevlett.106.230501
http://doi.org/10.1103/physrevlett.106.230501
http://doi.org/10.1038/s41467-017-01904-7
http://doi.org/10.1038/s41467-017-01904-7
http://doi.org/10.1145/3700884
http://doi.org/10.22331/q-2025-01-14-1589
http://doi.org/10.1126/science.abn7293
http://doi.org/10.1098/rspa.2002.1097

[KdG20]

[KKL19]

[KM13]

[KMY?25]

[Kot68|

[MMN16]

[MR18]

[MV06]

[PL23]

[Prel8|

[RBBO3]|

[RHK20]

[Sho97]

[VANDDMO04]

[Vid03]

A. KISSINGER AND A. M.-v. DE GRIEND, Cnot circuit extraction for

topologically-constrained quantum memories, Quant. Inf. Comput., 20 (2020),
pp. 581-596. DOI: 10.26421/QIC20.7-8-4.

A. KaLeEv, A. KYRILLIDIS, AND N. M. LINKE, Validating and certifying sta-
bilizer states, Physical Review A, 99 (2019). por: 10.1103/physreva.99.042337.

V. KLIUCHNIKOV AND D. MASLoOV, Optimization of clifford circuits, Physical
Review A, 88 (2013). por: 10.1103/physreva.88.052307.

S. KuMABE, R. MORI, AND Y. YOSHIMURA, Complexity of graph-state prepa-
ration by clifford circuits, 2025. DOL: 10.48550 /arXiv.2402.05874.

A. KoTziG, Eulerian lines in finite 4valent graphs and their transfomations,
Theory of Graphs, (1968), pp. 219-230.

E. A. MARTINEZ, T. MoNz, D. NIGG, P. SCHINDLER, AND R. BLATT,

Compiling quantum algorithms for architectures with multi-qubit gates, New
Journal of Physics, 18 (2016). po1: 10.1088/1367-2630/18/6/063029.

D. MASLOV AND M. ROETTELER, Shorter stabilizer circuits via bruhat decom-
position and quantum circuit transformations, IEEE Transactions on Informa-
tion Theory, 64 (2018), p. 4729-4738. por: 10.1109/tit.2018.2825602.

M. MOTTONEN! AND J. J. VARTIAINEN, Decompositions of general quantum
gates, Trends in quantum computing research, (2006), p. 149.

B. POKHAREL AND D. A. LIDAR, Demonstration of algorithmic quan-
tum speedup, Physical Review Letters, 130 (2023). Dpor: 10.1103/phys-
revlett.130.210602.

J. PRESKILL, Quantum computing in the nisq era and beyond, Quantum, 2
(2018), p. 79. por: 10.22331/¢-2018-08-06-79.

R. RAUSSENDORF, D. E. BROWNE, AND H. J. BRIEGEL, Measurement-based
quantum computation on cluster states, Physical Review A, 68 (2003). DOI:
10.1103/physreva.68.022312.

T. Rovy, S. HazrA, S. KunDu, M. CHAND, M. P. PATANKAR, AND R. VI-

JAY, Programmable superconducting processor with native three-qubit gates,
Physical Review Applied, 14 (2020). por: 10.1103/physrevapplied.14.014072.

P. W. SHOR, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer, STAM Journal on Computing, 26 (1997),
p. 1484-1509. por: 10.1137/s0097539795293172.

M. VAN DEN NEST, J. DEHAENE, AND B. DE MOOR, Graphical description
of the action of local clifford transformations on graph states, Physical Review
A, 69 (2004). por: 10.1103/physreva.69.022316.

G. VIDAL, Efficient classical simulation of slightly entangled quantum computa-
tions, Physical Review Letters, 91 (2003). por: 10.1103/physrevlett.91.147902.

14


http://doi.org/10.26421/QIC20.7-8-4
http://doi.org/10.1103/physreva.99.042337
http://doi.org/10.1103/physreva.88.052307
http://doi.org/10.48550/arXiv.2402.05874
http://doi.org/10.1088/1367-2630/18/6/063029
http://doi.org/10.1109/tit.2018.2825602
http://doi.org/10.1103/physrevlett.130.210602
http://doi.org/10.1103/physrevlett.130.210602
http://doi.org/10.22331/q-2018-08-06-79
http://doi.org/10.1103/physreva.68.022312
http://doi.org/10.1103/physrevapplied.14.014072
http://doi.org/10.1137/s0097539795293172
http://doi.org/10.1103/physreva.69.022316
http://doi.org/10.1103/physrevlett.91.147902

[WBD*19]

[WBLW23|

[XLZZ21]

[YR24]

[YZ24]

[ZCL+22)

[ZHQ*21]

K. WRIGHT, K. M. BECK, S. DEBNATH, J. AMINI, Y. NAM, ET AL., Bench-

marking an 11-qubit quantum computer, Nature Communications, 10 (2019).
DOL: 10.1038/s41467-019-13534-2.

F. WAGNER, A. BARMANN, F. LIERS, AND M. WEISSENBACK, Improving
quantum computation by optimized qubit routing, Journal of Optimization The-
ory and Applications, 197 (2023), p. 1161-1194. por: 10.1007/s10957-023-
02229-w.

Y. XiA, W. L1, Q. ZHUANG, AND Z. ZHANG, Quantum-enhanced data clas-
sification with a vartational entangled sensor network, Physical Review X, 11
(2021). por: 10.1103/physrevx.11.021047.

W. YANG AND P. RALL, Harnessing the power of long-range entanglement
for clifford circuit synthesis, IEEE Transactions on Quantum Engineering, 5

(2024), pp. 1-10. poI: 10.1109/TQE.2024.3402085.

P. YUAN AND S. ZHANG, Full characterization of the depth overhead for

quantum circuit compilation with arbitrary qubit connectivity constraint, arXiv
preprint arXiv:2402.02403, (2024). por: 10.48550 /arXiv.2402.02403.

M.-G. Zuou, X.-Y. Ca0, Y.-S. LU, Y. WANG, Y. BAO, ET AL., Experimen-
tal quantum advantage with quantum coupon collector, Research, 2022 (2022).
DOL: 10.34133/2022/9798679.

C. ZHANG, A. B. Haves, L. Qiu, Y. JIN, Y. CHEN, AND E. Z. ZHANG, Time-
optimal qubit mapping, in 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Association for
Computing Machinery, 2021, p. 360-374. porL: 10.1145/3445814.3446706.

15


http://doi.org/10.1038/s41467-019-13534-2
http://doi.org/10.1007/s10957-023-02229-w
http://doi.org/10.1007/s10957-023-02229-w
http://doi.org/10.1103/physrevx.11.021047
http://doi.org/10.1109/TQE.2024.3402085
http://doi.org/10.48550/arXiv.2402.02403
http://doi.org/10.34133/2022/9798679
http://doi.org/10.1145/3445814.3446706

A Proof of Lemma 2

We will prove Lemma 2 using ZX-calculus rewriting rules from [DKPvdW20].
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Figure 12: Proof of Lemma 2 based on ZX-calculus.

B Proof of Lemma 3

In this setting, v; has at least one neighbor v in G; that is not vs. Let us call W the set
of all neighbors of u in G; that are not v;. W can be the empty set. To reveal a local
complementation, we will create a pair of gates vV X f and v/ X which are equivalent to the
identity on u, along with pairs of gates S and ST that also simplify to the identity on each
qubit corresponding to a vertex of W.

This way we will perform the local complementation G, < G; x u by absorbing the VX f
on the qubit of u and the S gates on the qubits of W. The rest of the newly created local
Clifford gates can be absorbed in C!, we call the resulting circuit C/'. Notice that if vy € W,
power of S gates will be created on the second qubit, but those can be commuted with the
CZ and left to be treated in a future step.

This first part of the process can be ignored if the power a; of the S gate is even: this

would be a Pauli gate that would be commuted with the v/X f and the CZ up to a Pauli
operator.

Then all that remains between the CZ and G} is the v X f on the qubit of v;. We will
reveal a local complementation by creating pairs of gates S and ST that simplify to the
identity on each qubit corresponding to a neighbor of v; in G%. Now we can perform the local

complementation G <— G’ x vy by absorbing the v X T on the qubit of v; and the S gates on
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Figure 13: Revealing a local complementation on u by creating pairs of gates equivalent to
the identity, then revealing a local complementation on v; in the same way.

the qubits of all the neighbors of v;. The rest of the newly created ST gates can be absorbed
in C/ potentially commuting through the CZ gate. We can call the resulting circuit Cj;.
The only step left to do is to absorb the CZ into GY. We can call the resulting graph state
Gi+1 = Gixuxvy @ {v1ve} which is locally preparable on H. Moreover, we only created gates
that simplify to the identity thus C;|G;) = Ci11|Giy1)-
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