CONNECTIVITY CHECK IN 3-CONNECTED PLANAR GRAPHS WITH OBSTACLES

M. M. KANTÉ¹ B. COURCELLE¹ C. GAVOILLE¹ A. TWIGG²

¹Université Bordeaux 1, LaBRI, CNRS.

²Computer Laboratory, Cambridge University.

Topological and Geometric Graph Theory (Paris) May 21 2008

FORBIDDEN-SET ROUTING

- [Goal] Route informations from point *u* to point *v* and each node must act locally.
- We have to be aware of failures that can happen at any time.
- [Question] Is *u* and *v* connected in the network with failures ? How to check the connectivity of *u* and *v* locally ?
- [Solution] Assign each node a label that must be computed once.
- But we cannot represent the whole graph in each node (space constraints).
- [Optimistic] We want "short" labels (say of (poly)logarithmic size) in each node.

OUTLINE

2 Plane Graphs

3 Representation by Unary Functions

<回と < 回と < 回と

- Let $P(x_1, \ldots, x_p, Y_1, \ldots, Y_q)$ be a graph property.
- An f(n)-labeling scheme for property P in a class C of n-vertex graphs is a pair of algorithms (A, B) such that:
 - ▶ For all $G \in C$, A constructs a labeling $J : V(G) \rightarrow \{0, 1\}^*$ such that $|J(x)| \leq f(n)$ for each $x \in V(G)$.
 - ▶ B checks whether G satisfies $P(a_1, ..., a_p, U_1, ..., U_q)$ by using $J(a_1), ..., J(a_p), J(U_1), ..., J(U_q)$ where $J(U) = \{J(x) \mid x \in U\}$.

(日)

EXAMPLES

• A 2 log(*n*)-labeling scheme for adjacency in the class of forests.

3

EXAMPLES

з

• The construction can be extended to planar graphs (union of 3 forests).

э

< ロ > < 同 > < 回 > < 回 > .

- The construction can be extended to planar graphs (union of 3 forests).
- We let d(x, y, X) denote the distance between x and y in the graph $G \setminus X$ (subgraph of G induced by V(G) X).
- Courcelle and Twigg have proved that d(x, y, X) admits an O(log²(n))-labeling scheme in the class of graphs of bounded clique-width (STACS'07).
- Any property expressible in monadic second order logic admits an O(log(n))-labeling scheme in the class of graphs of bounded clique-width (Courcelle and Vanicat 2003).
- Any property expressible in first order logic with set arguments admits an O(log(n))-labeling scheme in the class of graphs that are locally tree-decomposable (Courcelle et al. 2008).

(日)

CONNECTIVITY QUERY

CONNECTIVITY QUERY

• For $u, v \in V(G)$, $X \subseteq V(G) - \{u, v\}$ we let Conn(u, v, X) mean: u and v are in the same connected component in $G \setminus X$.

MAIN THEOREM

There exists an O(log(n))-labeling scheme for Conn(u, v, X) in the class of 3-connected planar graphs.

CONNECTIVITY QUERY

CONNECTIVITY QUERY

• For $u, v \in V(G)$, $X \subseteq V(G) - \{u, v\}$ we let Conn(u, v, X) mean: u and v are in the same connected component in $G \setminus X$.

MAIN THEOREM

There exists an O(log(n))-labeling scheme for Conn(u, v, X) in the class of 3-connected planar graphs.

REMARK

We have extented the main theorem to all planar graphs, but we will only give the proof for 3-connected planar graphs.

・ 同 ト ・ ヨ ト ・ ヨ ト

OUTLINE

3 Representation by Unary Functions

・ 同 ト ・ ヨ ト ・ ヨ ト

RADIAL GRAPH

Plane Graph G = (V, E, F)

3) J

ヘロン ヘロン ヘビン

RADIAL GRAPH

(LaBRI, Cambridge)

BARRIER WITH RESPECT TO EMBEDDING

(LaBRI, Cambridge)

BARRIER WITH RESPECT TO EMBEDDING

Let $\mathcal{E}^+ = (p, s)$ be an embedding of G^+ . We let

$$Bar(X, \mathcal{E}^+) = \{s(e) \mid e \in Bar(X)\}$$

where Bar(X) is the set $\{\{f, x\} \in E' \mid x \in X \text{ and there exists } y \in X \text{ such that } \{f, y\} \in E'\}$.

Remark

In the sequel, We let \mathcal{E}^+ be a straight-line embedding in order to use geometric tools.

< 同 > < 三 > < 三 >

OVERVIEW OF THE ALGORITHMS

・ロット (四)・ (日)・ (日)・

PROPOSITION 1

Let $\mathcal{E}^+ = (p, s)$ be an embedding of G^+ . For every $X \subseteq V$ and $u, v \in V - X$, u and v are separated by X if and only if p(u) and p(v) are separated by $Bar(X, \mathcal{E}^+)$.

PROOF SKETCH

(LaBRI, Cambridge)

æ

PROOF SKETCH

(LaBRI, Cambridge)

æ

・ロ・・ (日・・ モ・・ ・ モ・・

PROOF SKETCH

Red lines $=Bar(X,\mathcal{E}^+),\ X=\{x,y,z\}$ and separates u and v

11 / 27

3

- Each connectivity request is composed of two vertices
 x, y ∈ V(G) and of a set of vertices X ⊆ V(G) to be removed.
- By Proposition 1, x and y are separated by X iff p(x) and p(y) are separated by Bar(X, E⁺).
- We cannot store in the labels of each vertex all the possible barriers.
- To have a chance to get an O(log(n))-labeling scheme, we will specify Bar(X, E⁺) in the labels of vertices in X.

4 周 2 4 3 2 4 3 2 5 1

OUTLINE

3 Representation by Unary Functions

(LaBRI, Cambridge)

Connectivity Check

< 回 > < 回 > < 回 >

REPRESENTATION OF ADJACENCY BY UNARY FUNCTIONS

Lemma 1 (Folklore)

There exists a $4 \log(n)$ -labeling scheme for adjacency in planar graphs.

PROOF.

- Edge set E(G) can be partitioned into 3 forests E_1, E_2 and E_3 .
- For each forest *E_i* there exists a 2 log(*n*)-labeling scheme for adjacency (each vertex *x* has label (*x*, *g_i(x*)) Forests).
- for each x we let $J(x) = (x, g_1(x), g_2(x), g_3(x))$ (of size $4 \log(n)$).
- Then x and y are adjacent in G iff

$$x \neq y \land \left(\bigvee_{1 \leq i \leq 3} x = g_i(y) \lor y = g_i(x) \right)$$

SAME FACE PROPERTY

SAME FACE PROPERTY

Let G = (V, E, F) be a plane graph. Two vertices x and y satisfy the same face property if there exists at least one face incident with x and y.

SAME FACE PROPERTY

Let G = (V, E, F) be a plane graph. Two vertices x and y satisfy the same face property if there exists at least one face incident with x and y.

PROPOSITION 2

There exists a $15 \log(n)$ -labeling scheme for same face property in connected plane graphs.

PROOF OF PROPOSITION 2(1)

- We let g_i^+ for i = 1, 2, 3 be the 3 partial functions representing adjacency in G^+ .
- x and y respects the same-face property iff:

$$\bigvee_{1\leqslant i,j\leqslant 3}g_i^+(x)=g_j^+(y)\in F$$
 (1a)

$$\vee \bigvee_{1\leqslant i,j\leqslant 3} g_i^+(x)\in F\wedge g_j^+(g_i^+(x))=y$$
 (1b)

$$\vee \bigvee_{1\leqslant i,j\leqslant 3} g_i^+(y) \in F \wedge g_j^+(g_i^+(y)) = x$$
 (1c)

$$\forall \exists f \in F. \Big(\bigvee_{1 \leqslant i, j \leqslant 3} g_i^+(f) = x \land g_j^+(f) = y\Big). \tag{1d}$$

▲ 同 ▶ ▲ 三 ▶

PROOF OF PROPOSITION 2(2)

CONDITION (1A)

 $g_i^+(x) \in F$ is replaced by

 $g_i'(x) =$ if $g_i^+(x) \in F$ then $g_i^+(x)$ else undefined.

・ロ・・ (日・・ (日・・)

PROOF OF PROPOSITION 2(2)

CONDITION (1A)

 $g_i^+(x) \in F$ is replaced by

 $g_i'(x) =$ if $g_i^+(x) \in F$ then $g_i^+(x)$ else undefined.

CONDITION (1B)-(1C)

$$g_i^+(x) \in F \land g_j^+(g_i^+(x)) = y$$
 is replaced by:
 $g_{i,j}' = \inf g_i^+(x) \in F$ and $g_j^+(g_i^+(x))$ is defined then $g_j^+(g_i^+(x))$
else undefined.

PROOF OF PROPOSITION $2(3) \Rightarrow (1D)$

CONDITION (1D)

$$\exists f \in F\Big(igvee_{1\leqslant i,j\leqslant 3}g_i^+(f)=x \wedge g_j^+(f)=y\Big)$$

(LaBRI, Cambridge)

з

<ロ> <回> <回> <回> < 回> < 回>

PROOF OF PROPOSITION $2(3) \Rightarrow (1D)$

CONDITION (1D)

$$\exists f \in \mathcal{F}\Big(igvee_{1\leqslant i,j\leqslant 3}g_i^+(f)=x\wedge g_j^+(f)=y\Big)$$

ELIMINATION OF THE EXISTENTIAL QUANTIFICATION

- Let H = (V(G), E(H)) where $xy \in E(H)$ iff $g_i^+(f) = x$ and $g_i^+(f) = y$ for some $i, j \in [3]$.
- *H* is planar because we can draw such an edge in a drawing of *G* by adding to each face of *G* at most 3 edges.
- Let h_1 , h_2 and h_3 be the adjacency functions of H (Lemma 1).
- It is clear that (1d) can be replaced by

$$\bigvee_{\leqslant i\leqslant 3}h_i(x)=y\vee h_i(y)=x.$$

(LaBRI, Cambridge)

Connectivity Check

LABEL OF X

• For each x we let

$$J(x) = \left((g'_i(x))_{i \in [3]}, (h_i(x))_{i \in [3]}, (g'_{i,j}(x))_{i,j \in [3]}
ight).$$

- It is clear that $|J(x)| \le 15 \log(n)$.
- By Equation (1) we can answer adjacency and same face property between *x* and *y* just by looking at labels *J*(*x*) and *J*(*y*).

LABELING SCHEME FOR FACE SELECTION

FACE SELECTION PROBLEM

Let G = (V, E, F) be a 3-connected plane graph. For every $x, y \in V$ we let Faces(x, y) mean the selection of the at most two faces incident with x and y. We call it the face selection problem.

FACE SELECTION PROBLEM

Let G = (V, E, F) be a 3-connected plane graph. For every $x, y \in V$ we let Faces(x, y) mean the selection of the at most two faces incident with x and y. We call it the face selection problem.

PROPOSITION 3

There exists a $27 \log(n)$ -labeling scheme for face selection problem in 3-connected plane graphs.

< 回 > < 回 > < 回 >

PROOF OF PROPOSITION 3(1)

- We let g_i^+ for i = 1, 2, 3 be the 3 partial functions representing adjacency in G^+ .
- x and y respects the same-face property iff:

$$\bigvee_{1 \le i, j \le 3} g_i^+(x) = g_j^+(y) \in F \tag{1a}$$

$$\vee \bigvee_{1 \leqslant i, j \leqslant 3} g_i^+(x) \in \mathcal{F} \land g_j^+(g_i^+(x)) = y \tag{1b}$$

$$\vee \bigvee_{1 \leqslant i, j \leqslant 3} g_i^+(y) \in \mathcal{F} \land g_j^+(g_i^+(y)) = x \tag{1c}$$

$$\forall \exists f \in \mathcal{F}.\Big(\bigvee_{1 \leqslant i, j \leqslant 3} g_i^+(f) = x \land g_j^+(f) = y\Big)$$
(1*d*).

< ロ > < 同 > < 回 > < 回 > .

PROOF OF PROPOSITION 3(2)

- Either the two faces incident with x and y verify conditions (1a)-(1c).
- Then we are done since we can select them by Proposition 2 with labels of size 15 log(n).
- Or at least one verifies condition (1d).
- Hence either $h_i(x) = y$ or $h_i(y) = x$ (6 cases mutually exclusive). We let:

 $h_{i,j}^+(x) = Face_j(x, h_i(x))$ if $h_i(x)$ and $Face_j(x, h_i(x))$ are defined. $h_{i,j}^-(x) = Face_j(h_i(x), x)$ similarly.

・ロット (四) (日) (日) (日)

PROOF OF PROPOSITION 3(3)

• It is clear that a face f satisfy (1d) if and only if

$$\bigvee_{i,j} f = h_{i,j}^+(x) \land y = h_i(x) \lor \bigvee_{i,j} f = h_{i,j}^-(y) \land x = h_i(y).$$

For each x we let J(x) be the label computed by Proposition 2.
 We let

$$L(x) = (J(x), h_{i,j}^+(x), h_{i,j}^-(x)).$$

 It is clear that L(x) and L(y) allow to select the at most two faces incident with x and y.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Let G = (V, E) be a 3-connected planar graph.
- Construct an embedding of *G* (unique up to homeomorphism).
- Let G^+ be the radial graph obtained from G = (V, E, F).
- Let $\mathcal{E}^+ = (\rho, s)$ be a straight-line embedding of G^+ .
- Since each component of the label in *L*(*x*), *x* ∈ *V*, is a vertex of *G*⁺ (a vertex of *G* or a face-vertex of *G*), we can assume that they are represented by their coordinates in *E*⁺.
- For each x we let:

$$D(x) = (p(x), L(x))$$

< 同 > < 回 > < 回 > -

- Given D(u) and D(v), recover p(u) and p(v).
- By Proposition 3, if x and y in X respects the same face property we can recover the at most two faces which are adjacent to them by using L(x) and L(y).
- Since \mathcal{E}^+ is a straight-line embedding, we can thus construct $Bar(X, \mathcal{E}^+)$.
- By Proposition 1, u and v are separated by X iff p(u) and p(v) are separated by Bar(X, E⁺).
- How to decide if p(u) and p(v) are separated by $Bar(X, \mathcal{E}^+)$? By using geometric tools.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

What we want is:

Given $Bar(X, \mathcal{E}^+)$, a set of straight-line segments, say if p(u) and p(v) are separated by $Bar(X, \mathcal{E}^+)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

What we want is:

Given $Bar(X, \mathcal{E}^+)$, a set of straight-line segments, say if p(u) and p(v) are separated by $Bar(X, \mathcal{E}^+)$.

THEOREM 2 (TARJAN ET AL.)

Let *Y* be a set of *m* straight-line segments. One can construct in time $O(m\log(m))$ a data structure of size O(m) and given any points *u* and *v* in the plane test in $O(\log(m))$ if *u* and *v* are separated by $\cup Y$.

・ 同 ト ・ ヨ ト ・ ヨ ト

CONCLUSION

- We can extend the construction to deletions of edges by subdividing each edge of *G* and by letting for each edge *e* = *uv* D(*e*) = (D(*u*), D(*v*)).
- Proposition 3 can be extended to graphs such that each pair of vertices is incident with a bounded number of faces.
- By using logical tools from Courcelle and Vanicat-O(log(n))-labeling scheme for MSO queries in trees- we can construct an O(log(n))-labeling scheme for Conn(u, v, X) on planar graphs.
- Can we do the same for bounded-genus graphs ?
- What about solving d(u, v, X) (distance with failures) in planar graphs ?

< 同 > < 回 > < 回 > -