Connectivity Check in 3-Connected Planar Graphs with Obstacles

$\begin{array}{llll}\text { M. M. KANTÉ } & \text { B. Courcelle } & \text { C. GAVOIlle } & \text { A. TWIGG }\end{array}$
${ }^{1}$ Université Bordeaux 1, LaBRI, CNRS.
${ }^{2}$ Computer Laboratory, Cambridge University.

Topological and Geometric Graph Theory (Paris) May 212008

Forbidden-Set Routing

- [Goal] Route informations from point u to point v and each node must act locally.
- We have to be aware of failures that can happen at any time.
- [Question] Is u and v connected in the network with failures ? How to check the connectivity of u and v locally ?
- [Solution] Assign each node a label that must be computed once.
- But we cannot represent the whole graph in each node (space constraints).
- [Optimistic] We want "short" labels (say of (poly)logarithmic size) in each node.

Outline

(1) Preliminaries

2. Plane Graphs

(3) Representation by Unary Functions

Labeling Scheme

- Let $P\left(x_{1}, \ldots, x_{p}, Y_{1}, \ldots, Y_{q}\right)$ be a graph property.
- An $f(n)$-labeling scheme for property P in a class \mathcal{C} of n-vertex graphs is a pair of algorithms $(\mathcal{A}, \mathcal{B})$ such that:
- For all $G \in \mathcal{C}, \mathcal{A}$ constructs a labeling $J: V(G) \rightarrow\{0,1\}^{*}$ such that $|J(x)| \leq f(n)$ for each $x \in V(G)$.
- \mathcal{B} checks whether G satisfies $P\left(a_{1}, \ldots, a_{p}, U_{1}, \ldots, U_{q}\right)$ by using $J\left(a_{1}\right), \ldots, J\left(a_{p}\right), J\left(U_{1}\right), \ldots, J\left(U_{q}\right)$ where $J(U)=\{J(x) \mid x \in U\}$.

EXAMPLES

- A $2 \log (n)$-labeling scheme for adjacency in the class of forests.

EXAMPLES

EXAMPLES

- The construction can be extended to planar graphs (union of 3 forests).

EXAMPLES

- The construction can be extended to planar graphs (union of 3 forests).
- We let $d(x, y, X)$ denote the distance between x and y in the graph $G \backslash X$ (subgraph of G induced by $V(G)-X$).
- Courcelle and Twigg have proved that $d(x, y, X)$ admits an $O\left(\log ^{2}(n)\right)$-labeling scheme in the class of graphs of bounded clique-width (STACS'07).
- Any property expressible in monadic second order logic admits an $O(\log (n)$)-labeling scheme in the class of graphs of bounded clique-width (Courcelle and Vanicat 2003).
- Any property expressible in first order logic with set arguments admits an $O(\log (n))$-labeling scheme in the class of graphs that are locally tree-decomposable (Courcelle et al. 2008).

Connectivity Query

Connectivity Query

- For $u, v \in V(G), X \subseteq V(G)-\{u, v\}$ we let Conn (u, v, X) mean: u and v are in the same connected component in $G \backslash X$.

Main Theorem

There exists an $O(\log (n))$-labeling scheme for $\operatorname{Conn}(u, v, X)$ in the class of 3-connected planar graphs.

Connectivity Query

Connectivity Query

- For $u, v \in V(G), X \subseteq V(G)-\{u, v\}$ we let Conn (u, v, X) mean: u and v are in the same connected component in $G \backslash X$.

Main Theorem

There exists an $O(\log (n))$-labeling scheme for $\operatorname{Conn}(u, v, X)$ in the class of 3 -connected planar graphs.

REMARK

We have extented the main theorem to all planar graphs, but we will only give the proof for 3 -connected planar graphs.

Outline

(1) Preliminaries

(2) Plane Graphs

(3) Representation by Unary Functions

Radial Graph

$$
\text { Plane Graph } G=(V, E, F)
$$

Radial Graph

$$
G^{+}=(V \cup F, E \cup \underbrace{\{\{f, x\} \mid x \in V, f \in F \text { and } x \text { incident with } f\}}_{E^{\prime}})
$$

Barrier With Respect to Embedding

Barrier With Respect to Embedding

Barrier With Respect To Embedding
Let $\mathcal{E}^{+}=(p, s)$ be an embedding of G^{+}. We let

$$
\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)=\{s(e) \mid e \in \operatorname{Bar}(X)\}
$$

where $\operatorname{Bar}(X)$ is the set
$\left\{\{f, x\} \in E^{\prime} \mid x \in X\right.$ and there exists $y \in X$ such that $\left.\{f, y\} \in E^{\prime}\right\}$.

REMARK

In the sequel, We let \mathcal{E}^{+}be a straight-line embedding in order to use geometric tools.

Overview of the Algorithms

Algo \mathcal{A}
$O(n \cdot \log (n))$

Algo \mathcal{B}_{1}
$O(|X| \cdot \log (|X|))$

Algo \mathcal{B}_{2}
$O(\log (|X|))$

Proposition 1

Proposition 1

Let $\mathcal{E}^{+}=(p, s)$ be an embedding of G^{+}. For every $X \subseteq V$ and $u, v \in V-X, u$ and v are separated by X if and only if $p(u)$ and $p(v)$ are separated by $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$.

Proof Sketch

Proof Sketch

Proof Sketch

Red lines $=\operatorname{Bar}\left(X, \mathcal{E}^{+}\right), X=\{x, y, z\}$ and separates u and v

Why labels of vertices in X

- Each connectivity request is composed of two vertices $x, y \in V(G)$ and of a set of vertices $X \subseteq V(G)$ to be removed.
- By Proposition 1, x and y are separated by X iff $p(x)$ and $p(y)$ are separated by $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$.
- We cannot store in the labels of each vertex all the possible barriers.
- To have a chance to get an $O(\log (n))$-labeling scheme, we will specify $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$in the labels of vertices in X.

Outline

(1) Preliminaries

(2) Plane Graphs

(3) Representation by Unary Functions

Representation of adjacency by Unary FUNCTIONS

LEMMA 1 (FOLKLORE)

There exists a $4 \log (n)$-labeling scheme for adjacency in planar graphs.

Proof.

- Edge set $E(G)$ can be partitioned into 3 forests E_{1}, E_{2} and E_{3}.
- For each forest E_{i} there exists a $2 \log (n)$-labeling scheme for adjacency (each vertex x has label $\left(x, g_{i}(x)\right)$ Forests).
- for each x we let $J(x)=\left(x, g_{1}(x), g_{2}(x), g_{3}(x)\right)$ (of size $4 \log (n)$).
- Then x and y are adjacent in G iff

$$
x \neq y \wedge\left(\bigvee_{1 \leqslant i \leqslant 3} x=g_{i}(y) \vee y=g_{i}(x)\right)
$$

Same Face Property

Same Face Property

Let $G=(V, E, F)$ be a plane graph. Two vertices x and y satisfy the same face property if there exists at least one face incident with x and y.

Same Face Property

Same Face Property

Let $G=(V, E, F)$ be a plane graph. Two vertices x and y satisfy the same face property if there exists at least one face incident with x and y.

PROPOSITION 2

There exists a $15 \log (n)$-labeling scheme for same face property in connected plane graphs.

Proof of Proposition 2(1)

- We let g_{i}^{+}for $i=1,2,3$ be the 3 partial functions representing adjacency in G^{+}.
- x and y respects the same-face property iff:

$$
\begin{align*}
& \quad \bigvee_{1 \leqslant i, j \leqslant 3} g_{i}^{+}(x)=g_{j}^{+}(y) \in F \tag{1a}\\
& \vee \bigvee_{1 \leqslant i, j \leqslant 3} g_{i}^{+}(x) \in F \wedge g_{j}^{+}\left(g_{i}^{+}(x)\right)=y \tag{1b}\\
& \vee \bigvee_{1 \leqslant i, j \leqslant 3} g_{i}^{+}(y) \in F \wedge g_{j}^{+}\left(g_{i}^{+}(y)\right)=x \tag{1c}\\
& \vee \exists f \in F \cdot\left(\bigvee_{1 \leqslant i, j \leqslant 3} g_{i}^{+}(f)=x \wedge g_{j}^{+}(f)=y\right) . \tag{1d}
\end{align*}
$$

Proof of Proposition 2(2)

Condition (1A)

$g_{i}^{+}(x) \in F$ is replaced by

$$
g_{i}^{\prime}(x)=\text { if } g_{i}^{+}(x) \in F \text { then } g_{i}^{+}(x) \text { else undefined. }
$$

Proof of Proposition 2(2)

Condition (1 A)

$g_{i}^{+}(x) \in F$ is replaced by

$$
g_{i}^{\prime}(x)=\text { if } g_{i}^{+}(x) \in F \text { then } g_{i}^{+}(x) \text { else undefined. }
$$

Condition (18)-(1C)

$g_{i}^{+}(x) \in F \wedge g_{j}^{+}\left(g_{i}^{+}(x)\right)=y$ is replaced by:

$$
\begin{aligned}
g_{i, j}^{\prime}= & \text { if } g_{i}^{+}(x) \in F \text { and } g_{j}^{+}\left(g_{i}^{+}(x)\right) \text { is defined then } g_{j}^{+}\left(g_{i}^{+}(x)\right) \\
& \text { else undefined. }
\end{aligned}
$$

Proof of Proposition 2(3) => (1D)

Condition (1D)

$$
\exists f \in F\left(\underset{1 \leqslant 1, j \leqslant 3}{ } g_{i}^{+}(f)=x \wedge g_{j}^{+}(f)=y\right)
$$

Proof of Proposition 2(3) => (1D)

Condition (1D)

$$
\exists f \in F\left(\underset{1 \leqslant i, j \leqslant 3}{ } g_{i}^{+}(f)=x \wedge g_{j}^{+}(f)=y\right)
$$

Elimination of the Existential Quantification

- Let $H=(V(G), E(H))$ where $x y \in E(H)$ iff $g_{i}^{+}(f)=x$ and $g_{j}^{+}(f)=y$ for some $i, j \in[3]$.
- H is planar because we can draw such an edge in a drawing of G by adding to each face of G at most 3 edges.
- Let h_{1}, h_{2} and h_{3} be the adjacency functions of H (Lemma 1).
- It is clear that (1d) can be replaced by

$$
\bigvee_{1 \leqslant i \leqslant 3} h_{i}(x)=y \vee h_{i}(y)=x .
$$

Labeling each Vertex

LABEL OF X

- For each x we let

$$
J(x)=\left(\left(g_{i}^{\prime}(x)\right)_{i \in[3]},\left(h_{i}(x)\right)_{i \in[3]},\left(g_{i, j}^{\prime}(x)\right)_{i, j \in[3]}\right) .
$$

- It is clear that $|J(x)| \leq 15 \log (n)$.
- By Equation (1) we can answer adjacency and same face property between x and y just by looking at labels $J(x)$ and $J(y)$.

Labeling Scheme for Face Selection

> Face Selection Problem
> Let $G=(V, E, F)$ be a 3-connected plane graph. For every $x, y \in V$ we let Faces (x, y) mean the selection of the at most two faces incident with x and y. We call it the face selection problem.

Labeling Scheme for Face Selection

> Face Selection Problem
> Let $G=(V, E, F)$ be a 3-connected plane graph. For every $x, y \in V$ we let Faces (x, y) mean the selection of the at most two faces incident with x and y. We call it the face selection problem.

PRoposition 3

There exists a $27 \log (n)$-labeling scheme for face selection problem in 3 -connected plane graphs.

Proof of Proposition 3(1)

- We let g_{i}^{+}for $i=1,2,3$ be the 3 partial functions representing adjacency in G^{+}.
- x and y respects the same-face property iff:

$$
\begin{align*}
& \bigvee_{1 \leqslant i, j \leqslant 3} g_{i}^{+}(x)=g_{j}^{+}(y) \in F \tag{1a}\\
& \vee \bigvee_{1 \leqslant i, j \leqslant 3} g_{i}^{+}(x) \in F \wedge g_{j}^{+}\left(g_{i}^{+}(x)\right)=y \\
& \vee \bigvee_{1 \leqslant i, j \leqslant 3} g_{i}^{+}(y) \in F \wedge g_{j}^{+}\left(g_{i}^{+}(y)\right)=x \tag{1b}\\
& \vee \exists f \in F \cdot\left(\bigvee_{1 \leqslant i, j \leqslant 3} g_{i}^{+}(f)=x \wedge g_{j}^{+}(f)=y\right) \tag{1c}
\end{align*}
$$

Proof of Proposition 3(2)

(1) Either the two faces incident with x and y verify conditions (1a)-(1c).
(0) Then we are done since we can select them by Proposition 2 with labels of size $15 \log (n)$.

- Or at least one verifies condition (1d).
(1) Hence either $h_{i}(x)=y$ or $h_{i}(y)=x$ (6 cases mutually exclusive). We let:
$h_{i, j}^{+}(x)=\operatorname{Face}_{j}\left(x, h_{i}(x)\right)$ if $h_{i}(x)$ and $\operatorname{Face}_{j}\left(x, h_{i}(x)\right)$ are defined,
$h_{i, j}^{-}(x)=$ Face $_{j}\left(h_{i}(x), x\right)$ similarly.

Proof of Proposition 3(3)

- It is clear that a face f satisfy (1d) if and only if

$$
\bigvee_{i, j} f=h_{i, j}^{+}(x) \wedge y=h_{i}(x) \vee \bigvee_{i, j} f=h_{i, j}^{-}(y) \wedge x=h_{i}(y)
$$

- For each x we let $J(x)$ be the label computed by Proposition 2 . We let

$$
L(x)=\left(J(x), h_{i, j}^{+}(x), h_{i, j}^{-}(x)\right)
$$

- It is clear that $L(x)$ and $L(y)$ allow to select the at most two faces incident with x and y.

Proof of the Main Theorem

- Let $G=(V, E)$ be a 3-connected planar graph.
- Construct an embedding of G (unique up to homeomorphism).
- Let G^{+}be the radial graph obtained from $G=(V, E, F)$.
- Let $\mathcal{E}^{+}=(p, s)$ be a straight-line embedding of G^{+}.
- Since each component of the label in $L(x), x \in V$, is a vertex of G^{+}(a vertex of G or a face-vertex of G), we can assume that they are represented by their coordinates in \mathcal{E}^{+}.
- For each x we let:

$$
D(x)=(p(x), L(x))
$$

Correctness

- Given $D(u)$ and $D(v)$, recover $p(u)$ and $p(v)$.
- By Proposition 3, if x and y in X respects the same face property we can recover the at most two faces which are adjacent to them by using $L(x)$ and $L(y)$.
- Since \mathcal{E}^{+}is a straight-line embedding, we can thus construct $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$.
- By Proposition $1, u$ and v are separated by X iff $p(u)$ and $p(v)$ are separated by $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$.
- How to decide if $p(u)$ and $p(v)$ are separated by $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$? By using geometric tools.

Point Location Problem

What we want is:
Given $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$, a set of straight-line segments, say if $p(u)$ and $p(v)$ are separated by $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$.

Point Location Problem

What we want is:
Given $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$, a set of straight-line segments, say if $p(u)$ and $p(v)$ are separated by $\operatorname{Bar}\left(X, \mathcal{E}^{+}\right)$.

Theorem 2 (TARJAN ET AL.)
Let Y be a set of m straight-line segments. One can construct in time $O(m \log (m))$ a data structure of size $O(m)$ and given any points u and v in the plane test in $O(\log (m))$ if u and v are separated by $\cup Y$.

Conclusion

(1) We can extend the construction to deletions of edges by subdividing each edge of G and by letting for each edge $e=u v$ $D(e)=(D(u), D(v))$.
(2) Proposition 3 can be extended to graphs such that each pair of vertices is incident with a bounded number of faces.

- By using logical tools from Courcelle and Vanicat$O(\log (n))$-labeling scheme for MSO queries in trees- we can construct an $O(\log (n))$-labeling scheme for $\operatorname{Conn}(u, v, X)$ on planar graphs.
- Can we do the same for bounded-genus graphs ?
- What about solving $d(u, v, X)$ (distance with failures) in planar graphs?

