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FORBIDDEN-SET ROUTING

[Goal] Route informations from point u to point v and each node
must act locally.
We have to be aware of failures that can happen at any time.
[Question] Is u and v connected in the network with failures ?
How to check the connectivity of u and v locally ?
[Solution] Assign each node a label that must be computed once.
But we cannot represent the whole graph in each node (space
constraints).
[Optimistic] We want “short” labels (say of (poly)logarithmic size)
in each node.
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LABELING SCHEME

Let P(x1, . . . , xp, Y1, . . . , Yq) be a graph property.
An f (n)-labeling scheme for property P in a class C of n-vertex
graphs is a pair of algorithms (A,B) such that:

I For all G ∈ C, A constructs a labeling J : V (G) → {0, 1}∗ such that
|J(x)| ≤ f (n) for each x ∈ V (G).

I B checks whether G satisfies P(a1, . . . , ap, U1, . . . , Uq) by using
J(a1), . . . , J(ap), J(U1), . . . , J(Uq) where J(U) = {J(x) | x ∈ U}.
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EXAMPLES

A 2 log(n)-labeling scheme for adjacency in the class of forests.

The construction can be extended to planar graphs (union of 3
forests).
We let d(x , y , X ) denote the distance between x and y in the
graph G\X (subgraph of G induced by V (G)− X ).
Courcelle and Twigg have proved that d(x , y , X ) admits an
O(log2(n))-labeling scheme in the class of graphs of bounded
clique-width (STACS’07).
Any property expressible in monadic second order logic admits an
O(log(n))-labeling scheme in the class of graphs of bounded
clique-width (Courcelle and Vanicat 2003).
Any property expressible in first order logic with set arguments
admits an O(log(n))-labeling scheme in the class of graphs that
are locally tree-decomposable (Courcelle et al. 2008).
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EXAMPLES

root

Each node u store its father p(u)

edg(u,v) iff u=p(v) or v = p(u)
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CONNECTIVITY QUERY

CONNECTIVITY QUERY

For u, v ∈ V (G), X ⊆ V (G)− {u, v} we let Conn(u, v , X ) mean:

u and v are in the same connected component in G\X.

MAIN THEOREM

There exists an O(log(n))-labeling scheme for Conn(u, v , X ) in the
class of 3-connected planar graphs.

REMARK

We have extented the main theorem to all planar graphs, but we will
only give the proof for 3-connected planar graphs.
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RADIAL GRAPH
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Plane Graph G = (V, E, F )
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RADIAL GRAPH
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G+ = (V ∪ F, E ∪ {{f, x} | x ∈ V, f ∈ F and x incident with f}
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BARRIER WITH RESPECT TO EMBEDDING
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X = {x, u}, Bar(X, E+) = Red Lines
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BARRIER WITH RESPECT TO EMBEDDING

BARRIER WITH RESPECT TO EMBEDDING

Let E+ = (p, s) be an embedding of G+. We let

Bar(X , E+) = {s(e) | e ∈ Bar(X )}

where Bar(X ) is the set{
{f , x} ∈ E ′ | x ∈ X and there exists y ∈ X such that {f , y} ∈ E ′

}
.

REMARK

In the sequel, We let E+ be a straight-line embedding in order to use
geometric tools.
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OVERVIEW OF THE ALGORITHMS

G+G {J(x)} Conn(u, v, X) ?

J(u), J(v)J(X)

Bar(X, E+) Data Structure

O(n · log(n))

Algo A

O(|X| · log(|X|))

Algo B1

O(log(|X|))

Algo B2

Straight-line
Embedding

Geometric Tools
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PROPOSITION 1

PROPOSITION 1
Let E+ = (p, s) be an embedding of G+. For every X ⊆ V and
u, v ∈ V − X , u and v are separated by X if and only if p(u) and p(v)
are separated by Bar(X , E+).
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PROOF SKETCH
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PROOF SKETCH

y

u

z

v

x

Red lines = Bar(X,E+), X = {x, y, z} and separates u and v

(LaBRI, Cambridge) Connectivity Check 11 / 27



WHY LABELS OF VERTICES IN X

Each connectivity request is composed of two vertices
x , y ∈ V (G) and of a set of vertices X ⊆ V (G) to be removed.
By Proposition 1, x and y are separated by X iff p(x) and p(y) are
separated by Bar(X , E+).
We cannot store in the labels of each vertex all the possible
barriers.
To have a chance to get an O(log(n))-labeling scheme, we will
specify Bar(X , E+) in the labels of vertices in X .
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REPRESENTATION OF ADJACENCY BY UNARY

FUNCTIONS

LEMMA 1 (FOLKLORE)
There exists a 4 log(n)-labeling scheme for adjacency in planar graphs.

PROOF.
Edge set E(G) can be partitioned into 3 forests E1, E2 and E3.
For each forest Ei there exists a 2 log(n)-labeling scheme for
adjacency (each vertex x has label (x , gi(x)) Forests).
for each x we let J(x) = (x , g1(x), g2(x), g3(x)) (of size 4 log(n)).
Then x and y are adjacent in G iff

x 6= y ∧

 ∨
16i63

x = gi(y) ∨ y = gi(x)

 .
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SAME FACE PROPERTY

SAME FACE PROPERTY

Let G = (V , E , F ) be a plane graph. Two vertices x and y satisfy the
same face property if there exists at least one face incident with x and
y .

PROPOSITION 2
There exists a 15 log(n)-labeling scheme for same face property in
connected plane graphs.
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PROOF OF PROPOSITION 2(1)

We let g+
i for i = 1, 2, 3 be the 3 partial functions representing

adjacency in G+.
x and y respects the same-face property iff:∨

16i,j63

g+
i (x) = g+

j (y) ∈ F (1a)

∨
∨

16i,j63

g+
i (x) ∈ F ∧ g+

j (g+
i (x)) = y (1b)

∨
∨

16i,j63

g+
i (y) ∈ F ∧ g+

j (g+
i (y)) = x (1c)

∨ ∃f ∈ F .
( ∨

16i,j63

g+
i (f ) = x ∧ g+

j (f ) = y
)
. (1d)
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PROOF OF PROPOSITION 2(2)

CONDITION (1A)
g+

i (x) ∈ F is replaced by

g′i (x) = if g+
i (x) ∈ F then g+

i (x) else undefined.

CONDITION (1B)-(1C)
g+

i (x) ∈ F ∧ g+
j (g+

i (x)) = y is replaced by:

g′i,j = if g+
i (x) ∈ F and g+

j (g+
i (x)) is defined then g+

j (g+
i (x))

else undefined.
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PROOF OF PROPOSITION 2(3) => (1D)

CONDITION (1D)

∃f ∈ F
( ∨

16i,j63

g+
i (f ) = x ∧ g+

j (f ) = y
)

ELIMINATION OF THE EXISTENTIAL QUANTIFICATION

Let H = (V (G), E(H)) where xy ∈ E(H) iff g+
i (f ) = x and

g+
j (f ) = y for some i , j ∈ [3].

H is planar because we can draw such an edge in a drawing of G
by adding to each face of G at most 3 edges.
Let h1, h2 and h3 be the adjacency functions of H (Lemma 1).
It is clear that (1d) can be replaced by∨

16i63

hi(x) = y ∨ hi(y) = x .
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LABELING EACH VERTEX

LABEL OF x
For each x we let

J(x) =
(
(g′i (x))i∈[3], (hi(x))i∈[3], (g′i,j(x))i,j∈[3]

)
.

It is clear that |J(x)| ≤ 15 log(n).
By Equation (1) we can answer adjacency and same face property
between x and y just by looking at labels J(x) and J(y).
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LABELING SCHEME FOR FACE SELECTION

FACE SELECTION PROBLEM

Let G = (V , E , F ) be a 3-connected plane graph. For every x , y ∈ V
we let Faces(x , y) mean the selection of the at most two faces incident
with x and y . We call it the face selection problem.

PROPOSITION 3
There exists a 27 log(n)-labeling scheme for face selection problem in
3-connected plane graphs.
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PROOF OF PROPOSITION 3(1)
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PROOF OF PROPOSITION 3(2)

1 Either the two faces incident with x and y verify conditions
(1a)-(1c).

2 Then we are done since we can select them by Proposition 2 with
labels of size 15 log(n).

3 Or at least one verifies condition (1d).
4 Hence either hi(x) = y or hi(y) = x (6 cases mutually exclusive).

We let:

h+
i,j(x) = Facej(x , hi(x)) if hi(x) and Facej(x , hi(x)) are defined,

h−i,j(x) = Facej(hi(x), x) similarly.
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PROOF OF PROPOSITION 3(3)

It is clear that a face f satisfy (1d) if and only if∨
i,j

f = h+
i,j(x) ∧ y = hi(x) ∨

∨
i,j

f = h−i,j(y) ∧ x = hi(y).

For each x we let J(x) be the label computed by Proposition 2.
We let

L(x) =
(

J(x), h+
i,j(x), h−i,j(x)

)
.

It is clear that L(x) and L(y) allow to select the at most two faces
incident with x and y .
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PROOF OF THE MAIN THEOREM

Let G = (V , E) be a 3-connected planar graph.
Construct an embedding of G (unique up to homeomorphism).
Let G+ be the radial graph obtained from G = (V , E , F ).
Let E+ = (p, s) be a straight-line embedding of G+.
Since each component of the label in L(x), x ∈ V , is a vertex of
G+ (a vertex of G or a face-vertex of G), we can assume that they
are represented by their coordinates in E+.
For each x we let:

D(x) = (p(x), L(x))
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CORRECTNESS

Given D(u) and D(v), recover p(u) and p(v).
By Proposition 3, if x and y in X respects the same face property
we can recover the at most two faces which are adjacent to them
by using L(x) and L(y).
Since E+ is a straight-line embedding, we can thus construct
Bar(X , E+).
By Proposition 1, u and v are separated by X iff p(u) and p(v) are
separated by Bar(X , E+).
How to decide if p(u) and p(v) are separated by Bar(X , E+) ?
By using geometric tools.
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POINT LOCATION PROBLEM

What we want is:
Given Bar(X , E+), a set of straight-line segments, say if p(u)
and p(v) are separated by Bar(X , E+).

THEOREM 2 (TARJAN ET AL.)
Let Y be a set of m straight-line segments. One can construct in time
O(m log(m)) a data structure of size O(m) and given any points u and
v in the plane test in O(log(m)) if u and v are separated by ∪Y .
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CONCLUSION

1 We can extend the construction to deletions of edges by
subdividing each edge of G and by letting for each edge e = uv
D(e) = (D(u), D(v)).

2 Proposition 3 can be extended to graphs such that each pair of
vertices is incident with a bounded number of faces.

3 By using logical tools from Courcelle and Vanicat-
O(log(n))-labeling scheme for MSO queries in trees- we can
construct an O(log(n))-labeling scheme for Conn(u, v , X ) on
planar graphs.

4 Can we do the same for bounded-genus graphs ?
5 What about solving d(u, v , X ) (distance with failures) in planar

graphs ?
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