
J Comb Optim (2011) 21: 19–46
DOI 10.1007/s10878-009-9260-7

Compact labelings for efficient first-order
model-checking

Bruno Courcelle · Cyril Gavoille ·
Mamadou Moustapha Kanté

Published online: 27 August 2009
© Springer Science+Business Media, LLC 2009

Abstract We consider graph properties that can be checked from labels, i.e., bit se-
quences, of logarithmic length attached to vertices. We prove that there exists such
a labeling for checking a first-order formula with free set variables in the graphs of
every class that is nicely locally clique-width-decomposable. This notion generalizes
that of a nicely locally tree-decomposable class. The graphs of such classes can be
covered by graphs of bounded clique-width with limited overlaps. We also consider
such labelings for bounded first-order formulas on graph classes of bounded expan-
sion. Some of these results are extended to counting queries.

Keywords First-order logic · Labeling scheme · Local clique-width · Local
tree-width · Locally bounded clique-width

1 Introduction

The model-checking problem for a class of structures C and a logical language L
consists in deciding for a given pair (S,ϕ) where S ∈ C and ϕ ∈ L if S satisfies
the property expressed by ϕ. More generally, if ϕ is a formula with free variables
x1, . . . , xm, one may ask whether S satisfies ϕ(a1, . . . , am) where a1, . . . , am are val-

Supported by the GRAAL project of “Agence Nationale pour la Recherche”.

B. Courcelle is a member of “Institut Universitaire de France”.

M.M. Kanté, Université Blaise Pascal, Clermont-Ferrand 2, LIMOS, France, on leave from LaBRI.

B. Courcelle · C. Gavoille · M.M. Kanté (�)
LaBRI, CNRS, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France
e-mail: mamadou.kante@isima.fr

B. Courcelle
e-mail: courcell@labri.fr

C. Gavoille
e-mail: gavoille@labri.fr

mailto:mamadou.kante@isima.fr
mailto:courcell@labri.fr
mailto:gavoille@labri.fr

20 J Comb Optim (2011) 21: 19–46

ues given to x1, . . . , xm. One may also wish to list the set of m-tuples (a1, . . . , am)

that satisfy ϕ in S, or simply count them.
Polynomial time algorithms for these problems (for fixed ϕ) exist for certain

classes of structures and certain logical languages. In this sense, graphs of bounded
degree “fit” with first-order logic (Durand and Grandjean 2007; Seese 1996) and
graphs of bounded tree-width or clique-width “fit” with monadic second-order logic
(Arnborg et al. 1991; Courcelle et al. 2000). Frick (2004), Frick and Grohe (2001),
and Grohe (2007) have defined Fixed-Parameter Tractable algorithms for first-order
model-checking problems on classes of graphs that may have unbounded degree and
tree-width (definitions and examples are given in Sect. 4), and our results will con-
cern such classes. We will also use graph classes of bounded expansion, a notion
introduced by Nešetřil and Ossona de Mendez (2006).

We will use similar tools for the following labeling problem. Given a class of
graphs C and a property P(x1, . . . , xm,Y1, . . . , Yq) of vertices x1, . . . , xm and of sets
of vertices Y1, . . . , Yq of graphs in C , the aim is to design two algorithms: an al-
gorithm A that attaches to each vertex x of a given graph of C a label L(x), de-
fined as a sequence of 0’s and 1’s, and an algorithm B that checks the property
P(x1, . . . , xm,Y1, . . . , Yq) by using the labels and no other information about the
considered graph. This latter algorithm takes as input the labels L(x1), . . . ,L(xm)

and the sets of labels1 L(Y1), . . . ,L(Yq) and tells whether P(x1, . . . , xm,Y1, . . . , Yq)

is true. An f -labeling scheme for a class of structures C is a pair (A, B) of algorithms
solving the labeling problem and using labels of length at most f (n) for the graphs
of C with n vertices. Results of this type have been established for monadic second-
order logic by Courcelle and Vanicat (2003), and for particular properties (connec-
tivity queries, that are expressible in monadic second-order logic) by Courcelle and
Twigg (2009) and by Courcelle et al. (2008).

Let us review the motivations for looking for compact labelings. By compact, we
mean that labels have length of order less than O(n), where n is the number of ver-
tices of the graph, hence in particular of length logO(1)(n). In distributed computing
over a communication network with underlying graph G, nodes must act according to
their local knowledge only. This knowledge can be updated by message passing. Due
to space constraints on the local memory of each node, and on the sizes of messages,
a distributed task cannot be performed by representing the whole graph G in each
node or in each message. It must rather manipulate compact representations of G,
distributed in a balanced way over the graph. For an example, the routing task may
use routing tables that are sublinear in the size of G (preferably of poly-logarithmic
size), and short addresses transmitted in the headers of messages (of poly-logarithmic
size too). As surveyed in Gavoille and Peleg (2003) many distributed tasks can be op-
timized by the use of labels attached to vertices. Such labels should be usable even
when the network has node or link crashes. They can be constructed by forbidden-set
labeling schemes as defined in Courcelle and Twigg (2009). In this framework, the
local information can be updated by transmitting to all surviving nodes the list of
(short) labels of all defected nodes and links, so that the surviving nodes can update
their local information, e.g., their routing tables.

1Distinct vertices have distinct labels. We let L(Y) be the set {L(x) | x ∈ Y }.

J Comb Optim (2011) 21: 19–46 21

Let us comment about using set arguments. The forbidden (or defective) parts of
a network are handled as sets of vertices passed to a query as an argument. This
means that the algorithm A computes the labels once and for all, independently
of the possible forbidden parts of the network. In other words the labeling sup-
ports node deletions from the given network. (Edge deletions are supported in the
labelings of Courcelle et al. 2008 and Courcelle and Twigg 2009.) If the network
is augmented with new nodes and links, the labels must be recomputed. We leave
this incremental extension as a topic for future research. Set arguments can be used
to handle deletions, but also constraints or queries like: “what are the nodes that
are at distance at most 3 of X and Y ” where X and Y are two specified sets of
nodes.

This article is organized as follows. In Sect. 2 we give some definitions regarding
first-order logic and we define the notions of clique-width and of labeling schemes.
Section 3 deals with first-order logic and the locality of first-order properties. In
Sect. 4 we define the notions of local bounded clique-width and of nicely locally
cwd-decomposable class of graphs (cwd abbreviates “clique-width”). We give some
examples and preliminary results. Section 5 is devoted to the proofs of the main re-
sults. In Sect. 6 we extend some results to counting queries.

2 Definitions

Our results concern graph properties expressed by logical formulas, which assumes
that graphs are defined as (or represented by) relational structures. All graphs and re-
lational structures will be finite. We refer to Diestel (2005) for our graph terminology.

A relational signature is a finite set R := {R,R′, . . .} of relation symbols, each
of which given with an arity ar(R) ≥ 1. A finite relational R-structure S is defined
as 〈DS, (RS)R∈R〉 where RS ⊆ D

ar(R)
S . The set DS is called the domain of S. A re-

lational signature R is binary if ar(R) ≤ 2 for all R ∈ R. A relational structure is
binary if it is an R-structure for some binary signature R. We let Ri be the set of
symbols of arity i.

We now define first-order logic and monadic second-order logic on relational
structures. Let R be a relational signature. Atomic formulas over R are x = y, x ∈ X

and R(x1, . . . , xar(R)) for all relations R in R. A first-order formula (FO formula
for short) over R is a formula formed from atomic formulas over R with Boolean
connectives ∧,∨,¬,⇒ and first-order quantifications ∃x and ∀x. We may have free
set variables. Monadic second-order formulas (MSO formulas for short) over R are
formed as FO formulas over R by using also set quantifications ∃X,∀X. By formulas
(FO or MSO) we mean formulas written with the signature appropriate for the con-
sidered relational structures. If the free variables of a formula ϕ are among x1, . . . , xm

and Y1, . . . , Yq , we will write this formula ϕ(x1, . . . , xm,Y1, . . . , Yq). A sentence is
a formula without free variables. We write S |= ϕ to mean that the sentence ϕ is
satisfied by the relational structure S.

Our results will only concern binary relational structures because they correspond
to colored graphs. We will be able to use notions like clique-width that do not apply
to general relational structures.

22 J Comb Optim (2011) 21: 19–46

Let R be a binary relational signature with R1 := {pa | a ∈ C1}, R2 := {edga | a ∈
C2} and C1 ∩ C2 = ∅ (without loss of generality). A (C1,C2)-graph G (we will say
a colored graph if we need not specify (C1,C2)) is a directed graph such that every
vertex has a possibly empty set of colors from C1, every edge has a color in C2, and
no two edges from x to y (for any two vertices x and y) have the same color. Such a
graph is identified with the R-structure 〈VG, (edgaG)a∈C2 , (paG)a∈C1〉 where VG is
the set of vertices, paG(x) holds if and only if x has color a and edgaG(x, y) holds if
and only if an edge from x to y is colored by a.2 Every R-structure corresponds in
this way to a (C1,C2)-graph.

We will also use undirected graphs as tools to describe properties of (C1,C2)-
graphs. If G is a colored graph, we let und(G) be the simple loop-free undirected
graph such that Vund(G) := VG, and two distinct vertices x and y in Vund(G) are adja-
cent in und(G) if and only if they are adjacent in G.

The distance of x and y in G, denoted by dG(x, y), is defined as their dis-
tance in und(G), i.e., as the number of edges of a shortest (undirected) path linking
them. If X is a subset of VG and t a positive integer, we denote by Nt

G(X) the set
{y ∈ VG | dG(x, y) ≤ t for some x in X}. (Clearly, X ⊆ Nt

G(X) for every t .) We de-
note by G[X] the induced subgraph of G with vertex set X and colors inherited from
G in the obvious way. We also denote by G − X the graph G[VG\X] and by G − x

the graph G[VG\{x}] when x is a vertex of G. If m ≥ 1, we denote by und(G)m the
simple loop-free undirected graph with vertex set VG, and two distinct vertices x and
y are adjacent if and only if dG(x, y) ≤ m.

A graph G has arboricity at most k if und(G) is the union of k edge-disjoint
forests. Hence, this notion does not depend on loops, colors and edge directions.
A class of graphs has arboricity at most k if each graph has arboricity at most k.

The tree-width (Bodlaender 1996) of a graph G depends only on und(G). Tree-
width is a graph parameter that yields many algorithmic properties surveyed by
Grohe (2007) and Kreutzer (2008). The survey by Bodlaender (2007) presents
tree-width and recent developments about this notion. Clique-width (Courcelle and
Olariu 2000) is another graph parameter that yields interesting algorithmic re-
sults. It is sensitive to colors and directions of edges. The original definition of
clique-width in Courcelle and Olariu (2000) concerns only uncolored graphs. How-
ever, it can be easily extended to colored graphs (Blumensath and Courcelle 2006;
Fisher et al. 2008).

Definition 2.1 (Clique-width of colored graphs) We let C be the pair (C1,C2) of sets
of colors for vertices and edges. In order to construct (C1,C2)-graphs, we will use
the set [k] := {1,2, . . . , k}, for k ≥ 1, to color also vertices, with one and only one
color for each vertex.3 A k-C-graph (or k-graph if C1 = ∅, |C2| = 1) G is defined as
〈VG, (edgaG)a∈C2 , (paG)a∈C1 , labG〉 where labG : VG → [k] is a total function and
the other components are as defined above. We define several operations on k-C-
graphs.

2We allow multiple edges with different colors.
3We assume that (C1 ∪ C2) ∩ [k] = ∅.

J Comb Optim (2011) 21: 19–46 23

1. For k-C-graphs G and H such that VG ∩ VH = ∅, we define G ⊕ H as the k-C-
graph K := 〈VG ∪ VH , (edgaK)a∈C2, (paK)a∈C1 , labK 〉 where

paK(x) :=
{

paG(x) if x ∈ VG,

paH (x) if x ∈ VH ,
for all a ∈ C1,

edgaK(x, y) :=
{

edgaG(x, y) if x, y ∈ VG,

edgaH (x, y) if x, y ∈ VH ,
for all a ∈ C2,

labK(x) :=
{

labG(x) if x ∈ VG,

labH (x) if x ∈ VH .

If VG∩VH �= ∅, we replace H by an isomorphic copy H ′ such that VH ∩VH ′ = ∅.
The graph G⊕H is well-defined up to isomorphism. We call G⊕H the disjoint
union of G and H .

(2) For a k-C-graph G, for a color b in C2, and for distinct i, j ∈ [k], we define
ηb

i,j (G) as the k-C-graph K := 〈VG, (edgaK)a∈C2, (paG)a∈C1 , labG〉 where

edgaK :=

⎧⎪⎨
⎪⎩

edgaG if a �= b,

edgbG ∪ {(x, y) | x, y ∈ VG, x �= y and

labG(x) = i, labG(y) = j} if a = b.

This operation adds b-colored edges from each vertex colored by i to each vertex
colored by j . But, no such edge is added when it already exists.

(3) For a k-C-graph G, and for distinct i, j ∈ [k], we define ρi→j (G) as the k-C-
graph K := 〈VG, (edgaG)a∈C2 , (paG)a∈C1 , labK 〉 where

labK(x) :=
{

j if labG(x) = i,

labG(x) otherwise.

This operation changes each color i into j .
(4) For each i ∈ [k] and each A ⊆ C1 ∪ C2, the constant symbol iA denotes a k-C-

graph with a single vertex x with labiA(x) = i and such that paiA(x) holds if and
only if a ∈ A ∩ C1, and edgaiA(x, x) holds if and only if a ∈ A∩ C2. We let CC,k

be the set {iA | i ∈ [k],A ⊆ C1 ∪ C2}.
We let FC,k be the set {⊕, ηa

i,j , ρi→j | i, j ∈ [k], a ∈ C2}. Each term t in T (FC,k,CC,k)

has a value val(t): it is the k-C-graph obtained by evaluating t according to clauses
(1)–(4). The clique-width of a (colored) graph G, denoted by cwd(G), is the mini-
mum k such that G is isomorphic to val(t) for some term t in T (FC,k,CC,k). We
write Fk and Ck if C1 = ∅ and |C2| = 1.

We recall three statements that are easy adaptations of similar results proved in
Courcelle and Olariu (2000). We denote by twd(G) the tree-width of a graph G.

Fact 2.2 (Courcelle and Olariu 2000) Let (C1,C2) be a pair of sets of colors and let
G and H be two (C1,C2)-graphs.

24 J Comb Optim (2011) 21: 19–46

(i) If H is an induced subgraph of G, then cwd(H) ≤ cwd(G).
(ii) If G and H are disjoint, then cwd(G ⊕ H) = max{cwd(G), cwd(H)}.

(iii) If twd(G) = k, then cwd(G) ≤ f (k, |C2|) for some function f .

One cannot exchange twd and cwd in Fact 2.2(iii) because cliques have clique-
width 2 and unbounded tree-width. For fixed k, there exists a cubic-time algorithm
that given an undirected graph G, either outputs that it has clique-width at least k + 1
or outputs a term t in T (Fk′ ,Ck′) that defines G with k′ = 2k+1 −1 (Hliněný and Oum
2008; Oum and Seymour 2006). This algorithm can be adapted to colored graphs
with k′ = g(k) for some function g (Kanté 2008). Also, every property expressible
in MSO logic can be checked in cubic-time for colored graphs in classes of bounded
clique-width by combining the results of Courcelle et al. (2000) and of Hliněný and
Oum (2008), Kanté (2008), Oum and Seymour (2006). The survey by Kamiński et
al. (2008) presents recent results on clique-width.

We now define the notion of bounded expansion (Nešetřil and Ossona de Mendez
2006). As tree-width, it is independent of colors of vertices and/or edges. Graph
classes with bounded expansion have several equivalent characterizations. We will
use the following one.

Definition 2.3 (Bounded expansion) A class C of colored graphs has bounded ex-
pansion if for every integer p, there exists a constant N such that for every colored
graph in C , one can partition its vertex set in at most N parts such that any i parts, for
i ≤ p, induce a subgraph of tree-width at most i − 1. We will denote N by N(C,p).

The case i = 1 of Definition 2.3 implies that each part is an independent set (no
two distinct vertices are adjacent), hence the corresponding partition can be seen as
a proper vertex-coloring. We finish these preliminary definitions by introducing the
notion of labeling scheme.

Definition 2.4 (Labeling scheme) Let R be a relational signature and S an
R-structure. A labeling of S is an injective mapping J : DS → {0,1}∗ (or into some
more convenient set, like �∗ where � is a finite alphabet). If Y is a subset of DS , we
let J (Y) be the set {J (y) | y ∈ Y }. Hence, J (Y) �= J (Y ′) if Y �= Y ′.

Let ϕ(x̄, Y) be an MSO formula over R where x̄ is an m-tuple of FO variables
and Y a q-tuple of set variables. Let C be a class of R-structures and f : N → N an
increasing function. An f -labeling scheme supporting the query defined by ϕ in the
R-structures of C is a pair (A, B) of algorithms doing the following:

(1) A constructs for each S in C , a labeling J of S such that |J (a)| = O(f (n)) for
every a ∈ DS , where n = |DS |.

(2) B takes as input an (m + q)-tuple (J (a1), . . . , J (am), J (W1), . . . , J (Wq)) and
says correctly whether S |= ϕ(ā,W).

If we have constructed f -labelings J1, . . . , Jp for formulas ϕ1, . . . , ϕp , then J (x)

defined as (J1(x), . . . , Jp(x)) is an f -labeling that supports ϕ1, ϕ2, . . . , ϕp , and
clearly, any Boolean combination of these formulas.

Labeling schemes based on logical descriptions of queries by MSO formulas have
been first defined by Courcelle and Vanicat (2003) for graphs of bounded clique-

J Comb Optim (2011) 21: 19–46 25

width (whence also of bounded tree-width). We recall this result. If W is a q-tuple of
sets, we let |W | = |W1|+ · · ·+ |Wq | and if ā is an m-tuple of vertices, we let |ā| = m.

Theorem 2.5 Let k be a positive integer and (C1,C2) a pair of disjoint sets. For
every MSO formula ϕ(x1, . . . , xm,Y1, . . . , Yq) over the binary signature correspond-
ing to (C1,C2), there exists a log-labeling scheme (A, B) for ϕ on the class of
(C1,C2)-graphs of clique-width at most k. Moreover, if the input (C1,C2)-graph has
n vertices, the algorithm A computes the labels J (x) of all vertices x in time O(n3)

or in time O(n · log(n)) if the clique-width expression of the graph is given. Given
J (a1), . . . , J (am) and J (W1), . . . , J (Wq), the algorithm B checks whether ϕ(ā,W)

holds in time O(log(n) · (|W | + 1)). For n-vertex (C1,C2)-graphs of tree-width at
most k, a variant of algorithm A can build the labelings in time O(n · log(n)).

The proof of Theorem 2.5 combines the construction of Courcelle and Vanicat
(2003) that works for graphs given with their decompositions, and the parsing results
by Bodlaender (1996) for tree-width, and by Hliněný and Oum (2008), Oum and Sey-
mour (2006) and Kanté (2008) for clique-width (discussed above). Labeling schemes
for distance and connectivity queries in graphs of bounded clique-width and in planar
graphs have been given respectively by Courcelle and Twigg (2009) and by Courcelle
et al. (2008).

In the present article, we consider graph classes of unbounded clique-width, and in
particular, graph classes that are locally decomposable (Frick 2004; Frick and Grohe
2001) and graph classes of bounded expansion (Nešetřil and Ossona de Mendez
2006). So, MSO logic is out of reach for such classes and we will consider FO logic
over colored graphs, i.e., binary relational structures.

3 Bounded and local first-order formulas

The definitions given below concern binary relational structures called, from now on,
graphs since they correspond to colored graphs as explained in Sect. 2. Formulas are
written over fixed binary relational signatures that we do not specify all the time.

We still call sentence an FO formula without free FO variables, but that can have
free set variables. These set variables will be used in a particular way and will be
called parameters.

We are interested in on-line checking properties of networks in case of (reported)
failures of some nodes (nodes are vertices of the associated graphs). Hence, for each
property of interest, defined by a formula ϕ(x1, . . . , xm), we are not only interested in
checking if G |= ϕ(a1, . . . , am) by using J (a1), . . . , J (am) for a1, . . . , am ∈ VG, but
also in checking if G − W |= ϕ(a1, . . . , am) by using J (a1), . . . , J (am) and J (W)

where W is a subset of VG\{a1, . . . , am}. We handle this formally as follows. We let
⊥ be a new vertex color. If W ⊆ VG, we let GW be the graph G equipped with an
additional vertex-color ⊥, i.e., as the structure G expanded with a unary relation p⊥
such that p⊥GW

(z) holds if and only if z ∈ W . The property G−W |= ϕ(a1, . . . , am),
for an FO formula ϕ(x1, . . . , xm), is equivalent to G |= ϕ′(a1, . . . , am,W) and to
GW |= ϕ′′(a1, . . . , am) for FO formulas ϕ′(x1, . . . , xm,Y) and ϕ′′(x1, . . . , xm) that
are easy to write.

26 J Comb Optim (2011) 21: 19–46

Definition 3.1 (Bounded formulas) An FO formula ϕ(x1, . . . , xm,Y1, . . . , Yq) is a
basic bounded formula if, for some positive integer p, called a bound on the quantifi-
cation space, we have the following equivalence for all graphs G, all a1, . . . , am ∈ VG

and all W1, . . . ,Wq ⊆ VG:

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if

there exists X ⊆ VG with |X| ≤ p such that a1, . . . , am ∈ X and

G[X] |= ϕ(a1, . . . , am,W1 ∩ X, . . . ,Wq ∩ X).

An FO formula is bounded if it is a Boolean combination of basic bounded for-
mulas.

If ϕ(x1, . . . , xm,Y1, . . . , Yq) is a basic bounded formula and G[Z] |= ϕ(a1, . . . , am,

W1 ∩ Z, . . . ,Wq ∩ Z), then G[Y] |= ϕ(a1, . . . , am,W1 ∩ Y, . . . ,Wq ∩ Y) for every
Y ⊇ Z.

The negation of a basic bounded formula is not (in general) basic bounded, but it
is bounded. The property that a graph has a subgraph isomorphic to a fixed graph H

is expressible by a bounded formula.

Definition 3.2 (Local formulas) An FO formula ϕ(x1, . . . , xm,Y1, . . . , Yq) is t-local
around (x1, . . . , xm) if for every graph G, for all a1, . . . , am in VG, and for all subsets
W1, . . . ,Wq of VG,

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if

G[N] |= ϕ(a1, . . . , am,W1 ∩ N, . . . ,Wq ∩ N)

where N := Nt
G({a1, . . . , am}).

An FO sentence ϕ(Y1, . . . , Yq) is basic (t, s)-local if it is equivalent to a sentence
of the form

∃x1 . . .∃xs

(∧
1≤i<j≤s

d(xi, xj) > 2t ∧
∧

1≤i≤s

ψ(xi, Y1, . . . , Yq)

)

where ψ(x,Y1, . . . , Yq) is t-local around its unique free variable x.

Remark 3.3 The property d(x, y) ≤ r is basic bounded (for p := r+1) and t-local for
t := �r/2�. Its negation d(x, y) > r is t-local and bounded (but not basic bounded).

We now recall a decomposition of FO formulas into t-local and basic (t ′, s)-local
formulas due to Gaifman (1982).

Theorem 3.4 (Gaifman 1982; Libkin 2004) Every FO formula ϕ(x̄, Y) is log-
ically equivalent to a Boolean combination B(ϕ1(u1, Y), . . . , ϕp(up,Y),ψ1(Y),

. . . ,ψh(Y)) where:

• each formula ϕi is a t-local formula around some sub-sequence ui of x̄,
• each sentence ψi is a basic (t ′, s)-local sentence.

J Comb Optim (2011) 21: 19–46 27

Moreover, B,ϕ1, . . . , ϕp and ψ1, . . . ,ψq can be computed effectively from ϕ, and the
integers t, t ′ and s can be bounded in terms of |x̄| and of the quantifier-rank of ϕ.

This theorem is usually stated and proved for FO formulas without free set vari-
ables. However, in an FO formula a set variable Yi occurs in atomic formulas of
the form “y ∈ Yi”. This is equivalent to “Ri(y)” if Ri is a unary relation represent-
ing Yi . We denote by ϕ′(x̄) the formula obtained from ϕ(x̄, Y1, . . . , Yq) by replac-
ing every subformula “y ∈ Yi” by “Ri(y)”. In order to prove that two FO formulas
ϕ(x̄, Y1, . . . , Yq) and ψ(x̄, Y1, . . . , Yq) are equivalent in every relational structure of
a class C of R-structures, it is enough to prove that the corresponding formulas ϕ′(x̄)

and ψ ′(x̄) are equivalent in every structure S′ that is an expansion of a structure S in
C by unary relations R1, . . . ,Rq . Hence, Theorem 3.4 follows from its usual formu-
lation for FO formulas without free set variables. The same holds for Theorem 3.5
below.

We will use a stronger form of Theorem 3.4 from Frick (2004) that decomposes
t-local formulas. Let m, t ≥ 1. The t-distance type of an m-tuple ā of elements of a
structure S is the undirected graph �(ā) := ([m], edg�(ā)) where edg�(ā)(i, j) holds
if and only if dS(ai, aj) ≤ 2t + 1. For each undirected graph �, the property that an
m-tuple ā satisfies �(ā) := � can be expressed by a t-local formula ρt,�(x1, . . . , xm)

equivalent to: ∧
(i,j)∈edg�

d(xi, xj) ≤ 2t + 1 ∧
∧

(i,j)/∈edg�

d(xi, xj) > 2t + 1.

Theorem 3.5 (Frick 2004) Let ϕ(x̄, Y) be t-local around the m-tuple x̄ (where
m ≥ 1), and with Y := (Y1, . . . , Yq). For each undirected graph � with vertex set
equal to [m] and connected components �1, . . . ,�p , one can compute a Boolean
combination F t,�(ϕ1,1, . . . , ϕ1,j1 , . . . , ϕp,1, . . . , ϕp,jp) of formulas ϕi,j with free

variables in x̄ and in Y such that:

• the free FO variables of each ϕi,j belong to x̄ � �i ,4

• ϕi,j is t-local around x̄ � �i ,
• for each m-tuple ā and each q-tuple of sets W , G |= ρt,�(ā)∧ϕ(ā,W) if and only

if G |= ρt,�(ā) ∧ F t,�(. . . , ϕi,j (ā � �i,W), . . .).

A query is defined by a formula ϕ(x1, . . . , xm) without set variables. A parame-
trized query is defined by a formula ϕ(x1, . . . , xm,Y1, . . . , Yq) where Y1, . . . , Yq are
the parameters.

4 Locally decomposable classes

We generalize notions defined by Frick and Grohe and we will use the same notations
as in Frick (2004), Frick and Grohe (2001). Definition 4.1 is analogous to (Frick and
Grohe 2001, Definition 5.1).

4If x̄ := (x1, . . . , xm) and {i1, . . . , ir } is the vertex set of �i with i1 < i2 < · · · < ir , then x̄ � �i :=
(xi1 , . . . , xir).

28 J Comb Optim (2011) 21: 19–46

Definition 4.1 (Local clique-width)

1. The local clique-width of a graph G is the function lcwdG : N → N defined by
lcwdG(t) := max{cwd(G[Nt

G(a)]) | a ∈ VG}.
2. A class C of graphs has bounded local clique-width if there is a function f : N →

N such that lcwdG(t) ≤ f (t) for every G ∈ C and t ∈ N.

Examples of graphs of bounded local clique-width

(1) Every class of graphs of bounded clique-width has also bounded local clique-
width since cwd(G[A]) ≤ cwd(G) for every A ⊆ VG (Fact 2.2(i)).

(2) The classes of graphs of bounded local tree-width have bounded local clique-
width since the clique-width of a graph is bounded by a function of its tree-
width (Fact 2.2(iii)). Bounded degree graph classes and minor-closed classes of
graphs that exclude some apex-graph5 as a minor are examples of graph classes
of bounded local tree-width (see Frick 2004; Frick and Grohe 2001).

(3) Let m be a positive integer and C a class of graphs of bounded local clique-width.
Then Cm := {Gm | G ∈ C} has bounded local clique-width. Let us sketch the
proof. Let G be a graph in C . For every vertex x of G and every positive integer
r , we have Nr

Gm(x) = Nrm
G (x). Let us verify that Gm[Nr

Gm(x)] = G′[Nrm
G (x)]

where G′ := (G[N(r+1)m
G (x)])m. Since G′ ⊆ Gm, we have Gm[Nr

Gm(x)] ⊇
G′[Nrm

G (x)]. For the other inclusion, consider y and z in Nr
Gm(x) such that

dG(y, z) ≤ m. Any path of length at most m that links them is in G[N(r+1)m
G (x)],

hence y and z are adjacent in G′ := (G[N(r+1)m
G (x)])m, which gives the desired

equality. It is proved in Suchan and Todinca (2007)6 that if a graph H has clique-
width k, then Hm has clique-width at most 4 · (m + 1)k . Hence, for every graph
G in C and every positive integer r, lcwdGm

(r) ≤ 4 · (m + 1)f (r(m+1)) where f is
the function that bounds the local clique-width of graphs in C .

(4) If G is a graph, we denote by K := Line(G) the line graph of G defined as
the undirected graph with vertex set equal to the set of edges of G and such that
edgK(e, e′) holds if and only if the edges e and e′ are incident in G. We claim that
if a class C of graphs has bounded local tree-width, then Line(C) := {Line(G) |
G ∈ C} has bounded local clique-width. Let G be a graph in C and let K be its
line graph. For every e and e′ in EG = VK , we have dG(x, y) ≤ dK(e, e′) + 1 if
x is any end vertex of e and y is any end vertex of e′.

Let e be an edge of G with end vertex x and H := Line(G[Nr+1
G (x)]). Since

H ⊆ K , we have dK(e, e′) ≤ dH (e, e′) for every e′ ∈ VH , hence Nr
H (e) ⊆ Nr

K(e).
Conversely, if dK(e, e′) ≤ r and (e, e1, e2, . . . , er ′) is a path in G with r ′ ≤ r

and er ′ = e′, then dG(y, z) ≤ r + 1 for any two distinct vertices y and z on this
path. Hence, e1, . . . , er ′ are edges of G[Nr+1

G (x)], dH (e, e′) ≤ r and e′ ∈ Nr
H (e),

hence Nr
H (e) = Nr

K(e). It follows that H [Nr
H (e)] ⊆ K[Nr

K(e)]. Now, if e′ and e′′

5An apex-graph is a graph G such that G\u is planar for some vertex u.
6The proof is done is terms of the parameter nlcw(G) such that nlcw(G) ≤ cwd(G) ≤ 2 · nlcw(G), see
Gurski and Wanke (2007).

J Comb Optim (2011) 21: 19–46 29

belong to Nr
K(e) and share a vertex, then they are edges of G[Nr+1

G (x)], hence
are adjacent vertices of H . Hence, H [Nr

H (e)] = K[Nr
K(e)].

If C has bounded local tree-width, then twd(G[Nr+1
G (x)]) ≤ f (r + 1) where

f is the function that bounds the local tree-width of the graphs in C . It is proved
in Gurski and Wanke (2007) that if a graph has tree-width k, then its line graph
has clique-width at most g(k) for some function g. Hence, the clique-width of
H is bounded by g(f (r + 1)). Since K[Nr

K(e)] is an induced subgraph of H ,
its clique-width is bounded by g(f (r + 1)) (Fact 2.2(i)). Therefore, Line(C) has
bounded local clique-width.

(5) Cliques have clique-width 2. Their line graphs have unbounded clique-width
(Gurski and Wanke 2007) and diameter 2, hence unbounded local clique-width.

(6) An interval graph is a graph that has an intersection model consisting of intervals
on a straight line. The class of interval graphs has not bounded local clique-width.
Otherwise, interval graphs would have bounded clique-width, because if we add
to an interval graph a new vertex adjacent to all, we obtain an interval graph of
diameter 2.

In order to obtain a log-labeling scheme for certain graph classes of bounded lo-
cal clique-width, we will cover their graphs, as in Frick (2004), Frick and Grohe
(2001), by graphs of bounded clique-width. In Frick (2004) a notion of nicely locally
tree-decomposable class of structures was introduced. We will define a slightly more
general notion.

Definition 4.2 (Intersection graph) Let V be a finite set and T a subset of P (V). The
intersection graph of T is the undirected graph I(T) where VI(T) := T , and U and
V in T are adjacent in I(T) if and only if U �= V and U ∩ V �= ∅.

Definition 4.3 (Clique-width covers) Let r, � and g be positive integers. An (r, �, g)-
cwd cover of a graph G is a family T of subsets of VG such that:

(1) for every x ∈ VG, there exists a set U ∈ T such that Nr
G(x) ⊆ U ,

(2) the graph I(T) has maximum degree at most �,
(3) for each U ∈ T , we have cwd(G[U]) ≤ g.

Let now g : N → N be a mapping. A nice (r, �, g)-cwd cover is a family T as
above such that Condition (3) is replaced by Condition (3′) below:

(3′) for all q ≥ 1 and all U1, . . . ,Uq ∈ T , cwd(G[U1 ∪ · · · ∪ Uq]) ≤ g(q).

A class C of graphs is (nicely) locally cwd-decomposable if every graph G in C
has, for each r ≥ 1, a (nice) (r, �, g)-cwd cover for some � and g depending on r (but
not on G).

The notion of (nicely) locally cwd-decomposable is the same as in (Frick and
Grohe 2001; Frick 2004) where we substitute clique-width to tree-width, except that
our definition requires nothing about the time necessary to compute covers.

30 J Comb Optim (2011) 21: 19–46

Fig. 1 Inclusion diagram indicating which results apply to which classes. An arrow means an inclusion
of classes. Bold boxes are used in this paper

Examples of (nicely) locally cwd-decomposable graph classes

(1) Every nicely locally cwd-decomposable class is locally cwd-decomposable and
the converse does not seem to be true. But, we do not have a counterexample.

(2) Each class of nicely locally tree-decomposable graphs is nicely locally cwd-
decomposable.

(3) We do not know if every graph class of bounded local clique-width is locally
cwd-decomposable. We conjecture that there exists a graph class of bounded
local clique-width which is not locally cwd-decomposable.

(4) Figure 1 shows inclusion relations between the many classes defined in Sects. 3
and 4.

We give an example of a nicely locally cwd-decomposable class of graphs which
is not locally tree-decomposable. A unit-interval graph is an interval graph that has
an intersection model in which every interval has unit length.

J Comb Optim (2011) 21: 19–46 31

Fig. 2 The graph H4,4. Each Vi

for 1 ≤ i ≤ 4, induces a clique

Fact 4.4 The class of unit-interval graphs is nicely locally cwd-decomposable.

Proof We will use a result by Lozin (2008). We let Hn,m be the graph 〈V1 ∪ · · · ∪
Vn,E

1 ∪ E2〉 with nm vertices such that:

Vi := {vi,1, . . . , vi,m},
E1 :=

⋃
1≤i≤n

{vi,j vi,� | j, � ≤ m,j �= �},

E2 :=
⋃

1≤i≤n−1

{vi,j vi+1,� | j ≤ � ≤ m}.

Each subgraph induced by Vi is a complete graph. Figure 2 shows the graph H4,4.
It is proved in Lozin (2008) that the clique-width of Hn,m is at most 3n. Moreover,
every unit-interval graph with n vertices is an induced subgraph of Hn,n (Lozin 2008).
These two properties will be used.

We first prove that unit-interval graphs have bounded local clique-width. Let G

be a unit-interval graph with n vertices. Then for every positive integer r and every
vertex x of G, the subgraph G[Nr

G(x)] is isomorphic to an induced subgraph of Hr,n.
Thus, for every vertex x of G and every positive integer r , G[Nr

G(x)] has clique-
width at most 3r . (Bagan 2009 gives another proof stating that unit-interval graphs
have bounded local clique-width.)

We now prove that the class of unit-interval graphs is nicely locally cwd-
decomposable. Let G be a unit-interval graph with n vertices. Hence, it is a subgraph
of Hn,n := 〈V1 ∪ · · · ∪ Vn,E

1,E2〉. Without loss of generality, we may assume G

connected. We can also assume that VG = ⋃
1≤i≤n V ′

i where V ′
i = {vi,i1, . . . , vi,i�}

with 1 ≤ i1 ≤ i2 ≤ · · · ≤ i� ≤ n. For each 1 ≤ i ≤ n, we let Ui := Nr+1
G (vi,i1). We let

g : N → N be defined by g(q) := 3 · q · (r + 1). We claim that {Ui | 1 ≤ i ≤ n} is a
nice (r,2r + 3, g)-cwd cover. It is clear by construction that for every 1 ≤ i ≤ n and
every vertex v in V ′

i , the set Nr
G(v) is a subset of Ui .

32 J Comb Optim (2011) 21: 19–46

We now prove that for every positive integer q , if we take q subsets Uj1, . . . ,Ujq ,
then the subgraph G[Uj1 ∪ · · · ∪ Ujq] has clique-width at most 3 · q · (r + 1). As-
sume that j1 ≤ j2 ≤ · · · ≤ jq and let G1, . . . ,Gp be the connected components of
G[Uj1 ∪ · · · ∪ Ujq]. By Fact 2.2(ii), we need only prove the claim for each connected
component. Let G1 be one of them. It is of the form, without loss of generality,
G[Uj1 ∪ · · · ∪ Uj�1

] with the property that j1 ≤ · · · ≤ j�1 . Thus, G1 is an induced
subgraph of Hj�1 ·(r+1),n, hence has clique-width at most 3 · �1 · (r + 1). Hence, the
clique-width of G[Uj1 ∪ · · · ∪ Ujq] is at most 3 · q · (r + 1).

Let v be a vertex in V ′
i for 1 ≤ i ≤ n. By construction, v can only be

in Ui,Ui−1, . . . ,Ui−(r+1),Ui+1, . . . ,Ui+(r+1). Thus, v is in at most 2(r + 1) + 1
sets Ui . This concludes the proof. �

The lemma below is an easy adaptation of the results in Frick and Grohe (2001).

Lemma 4.5 Let C be a class of graphs of bounded local clique-width and let ϕ be
a basic (t, s)-local sentence without set variables. For every graph G in C , we can
check in time O(|VG|4) whether G satisfies ϕ.

Proof Sketch Let G be in a class C of graphs of bounded local clique-width and let f

be the function that bounds the local clique-width of the graphs in C . Let ϕ be a basic
(t, s)-local sentence, equivalent to

∃x1 . . .∃xs

(∧
1≤i<j≤s

d(xi, xj) > 2t ∧
∧

1≤i≤s

ψ(xi)

)

where ψ(x) is t-local around its unique free variable x.
For each vertex a in G, we can compute the set Nt

G(a) of size at most |VG|, in total
time O(|VG|2). Since cwd(G[Nt

G(a)]) ≤ f (t), we can verify in time O(|VG|3) if G

satisfies ψ(a) by combining the results of Hliněný and Oum (2008) and of Courcelle
et al. (2000). We can thus compute in time O(|VG|4) the set P := {a ∈ VG | G |=
ψ(a)}. The formula ϕ is valid in G if and only if there exist a1, . . . , as in P such that
d(ai, aj) > 2t for any 1 ≤ i < j ≤ s. It is proved in Grohe (2007) that we can verify
their existence in time O(|VG|3). �

5 Labeling schemes for first-order queries

Our results concern four types of graph classes (see Fig. 1) and five types of FO
queries. We now state the main theorem of the paper. We denote by n the number
of vertices of each input graph, and each query is denoted by ϕ(x̄, Y). We denote by
ā an |x̄|-tuple of vertices and by W a |Y |-tuple of sets of vertices of the considered
graph.

Theorem 5.1 (First main theorem) There exist log-labeling schemes (A, B) for the
following queries and graph classes.

J Comb Optim (2011) 21: 19–46 33

(1) Quantifier-free parametrized queries in graphs of bounded arboricity: the algo-
rithm A constructs a labeling in time O(n), and the algorithm B gives the answer
in time O(log(n) · (|W |+ |ā|+ 1)) for all tuples ā and W ; the same labeling can
be used to check any quantifier-free query.7

(2) Bounded parametrized FO queries for each class of graphs of bounded expan-
sion: the algorithm A constructs a labeling in time O(n · log(n)), and the algo-
rithm B gives the answer in time O(log(n) · (|W | + 1)) for all tuples ā and W .

(3) FO queries in locally cwd-decomposable classes: the algorithm A constructs a
labeling in time O(f (n) + n4) where f (n) is the time taken to construct a cwd-
cover for given r , and the algorithm B gives the answer in time O(log(n)) for all
tuples ā.

(4) FO parametrized queries in nicely locally cwd-decomposable classes: the algo-
rithm A constructs a labeling in time O(f (n)+n4) where f (n) is the time taken
to construct a nice cwd-cover for given r , and the algorithm B gives the answer
in time O(log(n) · (|W | + 1)) for all tuples ā and W .

Each statement is proved separately.

Proof of Theorem 5.1(1) Let G be a colored graph with n vertices, represented by
the relational structure 〈VG, (edgaG)a∈C2 , (paG)a∈C1〉 and of arboricity at most k.

Assume first that und(G), the simple loop-free graph obtained from G by forget-
ting loops, edge directions, colors of vertices and of edges, and fusing the parallel
undirected edges, is a forest. Let R be a subset of VG that contains one and only one
vertex of each connected component, which is a tree, of G. For each color c in C2,
we let f +

c , f −
c : VG → VG be partial functions such that:

− f +
c (u) := v if edgcG(u, v) holds and v is on the unique undirected path between

u and some vertex of R,
− f −

c (u) := v if edgcG(v,u) holds and v is on the unique undirected path between
u and some vertex of R.

For every two distinct vertices u and v of G,

edgcG(u, v) holds ⇐⇒ v = f +
c (u) ∨ u = f −

c (v). (1)

If und(G) is the union of k edge-disjoint forests F1, . . . ,Fk , we take the pairs
(f +

i,c, f
−
i,c), for each forest und(Fi). For every two distinct vertices u and v of G,

edgcG(u, v) is defined in a similar way as in (1) with 2k unary functions by letting

edgcG(u, v) holds ⇐⇒
∨
i∈[k]

(
v = f +

i,c(u) ∨ u = f −
i,c(v)

)
. (2)

We let C1 := {d1, . . . , dp} and C2 := {c1, . . . , c�}. For each vertex x of G, we let
−→
bx

be the Boolean vector (b1, . . . , bp, b′
1, . . . , b

′
�) such that bi := 1 if and only if pdiG(x)

7The time bound is valid even if W = (∅, . . . ,∅) because |W | + 1 �= 0.

34 J Comb Optim (2011) 21: 19–46

holds, and b′
j := 1 if and only if edgcj G(x, x) holds. If vertices are numbered from 1

to n and �x� is the bit representation of the index of x, then we let

J (x) := (
�x�,�f +

1,c1
(x)�,�f −

1,c1
(x)�, . . . ,�f +

k,c�
(x)�,�f −

k,c�
(x)�,

−→
bx

)
.

(Since the vertices are numbered from 1 to n, the value 0 can be used for f +
c (u) if it

is undefined.) It is clear that |J (x)| = O(log(n)).
We now explain how to check any quantifier-free formula by using this label-

ing. Let ϕ(x1, . . . , xm,Y1, . . . , Yq) be a quantifier-free formula. For all m-tuples
ā := (a1, . . . , am) of VG and all q-tuples W := (W1, . . . ,Wq) of subsets of VG,
we can determine the induced subgraph G[{a1, . . . , am} ∪ W1 ∪ · · · ∪ Wq] from
J (a1), . . . , J (am) and J (W1), . . . , J (Wq), and check whether ϕ(ā,W) holds, be-
cause G |= ϕ(ā,W) if and only if G[{a1, . . . , am} ∪ W1 ∪ · · · ∪ Wq] |= ϕ(ā,W).

If the input graph has n vertices and n′ edges, then it is clear that our algo-
rithm constructs the labels in time O(n + n′).8 But, if G has arboricity at most
k, the number of edges is at most 2k · |C2| · n. Therefore, the labels are con-
structed in linear-time. We now examine the time taken to check whether G satis-
fies ϕ(a1, . . . , am,W1, . . . ,Wq). For each z ∈ {a1, . . . , am}, it takes constant time to

check whether pdiG(z) or edgcj G(z, z) holds by using the
−→
bz part of J (z). For every

z and t in W1 ∪ · · · ∪ Wq ∪ {a1, . . . , am} and every c in C2, it takes time O(log(n))

to check whether edgcG(z, t) holds and it takes time O(|Wi | · log(n)) to check if z

is in Wi . Therefore, we can check the validity of ϕ(a1, . . . , am,W1, . . . ,Wq) in time
O(log(n) · (|W | + m + 1)) since a quantifier-free formula is a Boolean combination
of atomic formulas. Note that m and q are not fixed because the same labeling can be
used for all quantifier-free formulas. �

Proof of Theorem 5.1(2) Let C be a class of graphs of bounded expansion and
let G in C be a graph with n vertices, represented by the relational structure
〈VG, (edgaG)a∈C2 , (paG)a∈C1〉. Let ϕ(x1, . . . , xm,Y1, . . . , Yq) with m ≥ 1 be a ba-
sic bounded formula with bound p on the quantification space (see Definition 3.1).
We partition VG into V1 � V2 � · · · � VN as in Definition 2.3 with each Vi nonempty
and N ≤ N(C,p). (We denote by � the disjoint union of sets.)

For every α ⊆ [N] of cardinality p, we let Vα := ⋃
i∈α Vi so that the tree-width

of G[Vα] is at most p − 1. Each vertex x belongs to less than (N − 1)p−1 sets Vα .
Hence, the basic bounded formula ϕ(ā,W) is true in G if and only if it is true in
some subgraph G[X] with |X| ≤ p, hence in some G[Vα] such that a1, . . . , am ∈ Vα

where ā := (a1, . . . , am). For each α, we construct a labeling Jα of G[Vα] (this graph
has tree-width at most p − 1) supporting query ϕ by using Theorem 2.5. We let
J (x) := (�x�, ((�α�, Jα(x)) | x ∈ Vα)). We have |J (x)| = O(log(n)).

Given ā ∈ (VG)m and W ∈ P (VG)q , we now explain how to decide the valid-
ity of ϕ(ā,W) by using J (a1), . . . , J (am) and J (W1), . . . , J (Wq). From J (a1),

. . . , J (am), we can determine those sets α such that Vα contains a1, . . . , am. Using

8If no covering of G by k forests is known, one can construct a covering by 2k−1 forests in time O(n+n′)
by Eppstein (1994).

J Comb Optim (2011) 21: 19–46 35

the components Jα(·) of J (a1), . . . , J (am) and the labels in J (W1), . . . , J (Wq), we
can determine whether for some α, we have G[Vα] |= ϕ(a1, . . . , am,W1 ∩ Vα, . . . ,

Wq ∩ Vα), hence whether G |= ϕ(a1, . . . , am,W1, . . . ,Wq).
It remains to consider the case of a basic bounded formula of the form ϕ(Y1, . . . , Yq)

i.e., the case where m = 0. We define the labelings Jα from ϕ as in the first case. For
each α, we determine the truth value bα of ϕ(∅, . . . ,∅) in G[Vα]. The family of pairs
(α, bα) is of fixed size (depending on p) and is appended (as a sequence of bits) to
J (x) defined as above.

From J (W1), . . . , J (Wq), we can determine D := {α | Vα ∩ (W1 ∪ · · · ∪ Wq)

�= ∅}. By using the Jα(·) components of the labels in J (W1) ∪ · · · ∪ J (Wq), we can
determine if for some α ∈ D, we have G[Vα] |= ϕ(W1 ∩ Vα, . . . ,Wq ∩ Vα). If one
is found, we can conclude positively. Otherwise, we look for some β /∈ D such that
bβ = TRUE. The final answer is positive if such β is found.

For a Boolean combination of basic bounded formulas ϕ1, . . . , ϕt with associ-
ated labelings J1, . . . , Jt , we take as label of x the concatenation of the labels
J1(x), J2(x), . . . , Jt (x). This label is of size O(log(n)) and gives the desired result.

Nešetřil and Ossona de Mendez (2006) describe a linear-time algorithm that com-
putes the partition {V1, . . . , VN }. The number of sets Vα where α is a subset of [N] of
size p is bounded by Np , hence so is the number of graphs G[Vα]. Then the labeling
J is constructed in time O(n · log(n)) since each labeling Jα is constructed in time
O(n · log(n)) by Theorem 2.5.

We now examine the time taken to check whether G satisfies ϕ(a1, . . . , am,

W1, . . . ,Wq). Each vertex x is in less than (N − 1)p−1 sets Vα . By compar-
ing the sets that contain all the ai ’s with the sets that contain a1, we can de-
termine in time O(log(n)) the sets Vα that contain a1, . . . , am. For each Vα and
each Wi , we can determine in time O(log(n) · |Wi |) the set Wi ∩ Vα . By Theo-
rem 2.5, we can verify in time O(log(n) · (|W | + 1)), for each α, whether G[Vα]
satisfies ϕ(a1, . . . , am,W1 ∩ Vα, . . . ,Wq ∩ Vα). Therefore, B checks the validity of
ϕ(a1, . . . , am,W1, . . . ,Wq) in time O(log(n) · (|W | + 1)). �

Before continuing, we prove a lemma necessary for the proofs of Theorem 5.1(3)–
(4) that concerns parametrized local queries.

Lemma 5.2 For every parametrized local query, there exists a log-labeling scheme
(A, B) on locally cwd-decomposable classes of graphs. Moreover, the algorithm A
constructs a labeling in time O(f (n)+n4) where f (n) is the time taken to construct
a cwd-cover for given r , and the algorithm B gives the answer in time O(log(n) ·
(|W | + 1)) for all tuples ā and W .

Proof of Lemma 5.2 Let C be a locally cwd-decomposable class of graphs and
let G = 〈VG, (edgaG)a∈C2 , (paG)a∈C1〉 in C be a graph with n vertices. Let
ϕ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ := (x1, . . . , xm), m ≥ 1. Then
G |= ϕ(ā,W1, . . . ,Wq) if and only if G[Nt

G(ā)] |= ϕ(ā,W1 ∩ Nt
G(ā), . . . ,

Wq ∩ Nt
G(ā)). Let � be a t-distance type with connected components �1, . . . ,�p .

By Theorem 3.5, G |= ρt,�(ā) ∧ ϕ(ā,W1, . . . ,Wq) if and only if G |= ρt,�(ā) ∧
F t,�(ϕ1,1(ā � �1,W1, . . . ,Wq), . . . , ϕp,jp (ā � �p,W1, . . . ,Wq)).

36 J Comb Optim (2011) 21: 19–46

We let T be an (r, �, g)-cwd cover of G where r := m(2t + 1). We use this
value of r to guarantee that if � = �(a1, . . . , am) and i1, . . . , ik in [m] belong to
a connected component of �, then Nt

G({ai1, . . . , aik }) ⊆ U for some U in T . This
is so because dG(ai1, aik′) ≤ (m − 1) · (2t + 1) for every k′ = 2, . . . , k, hence if
a ∈ Nt

G({ai1, . . . , aik }), we have dG(ai1, a) ≤ t + (m − 1) · (2t + 1) < r . Hence,
Nt

G({ai1, . . . , aik }) ⊆ Nr
G(ai1) ⊆ U for some U in T . For each vertex x, there ex-

ist less than � many sets V in T such that x ∈ V . We assume that each set U in T has
an index encoded as a bit string denoted by �U�. There are at most n · � sets in T .
Hence, �U� has length O(log(n)).

For each set U in T , we label each vertex in G[U] by LU(x) of length O(log(n))

in order to decide from LU(x) and LU(y) whether dG[U](x, y) ≤ 2t + 1 (Theo-
rem 2.5).9 For each vertex x of G, we let

L(x) :=
(
�x�,

{(
�U�,LU(x)

) | N2t+1
G (x) ⊆ U

}
,{(

�U�,LU(x)
) | x ∈ U,N2t+1

G (x) � U
})

.

(Recall that x ∈ N2t+1
G (x).) It is clear that |L(x)| = O(log(n)).

By Theorem 2.5, for each formula ϕi,j (x̄ � �i,Y1, . . . , Yq), arising from The-
orem 3.5, and each U ∈ T , we can label each vertex x ∈ U by some label
J�

i,j,U (x) of length O(log(n)) so that we can decide if ϕi,j (ā � �i,W1, . . . ,Wq)

holds in G[U] by using (J�
i,j,U (b))b∈ā|�i

and J�
i,j,U (W1 ∩ U), . . . , J�

i,j,U (Wq ∩ U).
For each vertex x of G, we let J�(x) be the concatenation of the tuples (�U�,

J�
1,1,U (x), . . . , J�

1,j1,U
(x), . . . , J�

p,1,U (x), . . . , J�
p,jp,U (x)) for all U ∈ T such that

Nt
G(x) ⊆ U .
It is clear that |J�(x)| = O(log(n)) since each vertex x is in less than � many

sets U in T . There exist at most 2m(m−1)/2 t-distance types; we enumerate them
as �1, . . . ,�k′

for some k′ ≤ 2m(m−1)/2. For each vertex x of G, we let J (x) :=
(L(x), J�1(x), . . . , J

�k′ (x)). It is clear that J (x) is of length O(log(n)).
By hypothesis, the cover T is computed in time f (n) for G in C with n vertices.

By Theorem 2.5, the labelings LU and J�
i,j,U can be constructed in cubic-time. There-

fore, the labeling J can be constructed in total time O(f (n)+n4) since there are less
than n · � sets U in T .

We now explain how to decide whether G |= ϕ(a1, . . . , am,W1, . . . ,Wq) by using
J (a1), . . . , J (am) and J (W1), . . . , J (Wq).

From the labels L(x), we can determine the set {�U� | U ∈ T , x ∈ U}, hence the
family of sets U ∈ T such that W ∩ U �= ∅, where W ⊆ VG is a set argument.

Since for each vertex x of G, there exists a set U in T such that Nr
G(x) ⊆ U , for

each pair of vertices {x, y}, we have dG(x, y) ≤ 2t + 1 if and only if dG[U](x, y) ≤
2t + 1. Hence, by using the components L(a1), . . . ,L(am) of J (a1), . . . , J (am), we
can construct the t-distance type � of (a1, . . . , am); let �1, . . . ,�p be the connected
components of �. From each J (ai), we can recover J�(ai). For each tuple ā � �i ,
there exists at least one U ∈ T such that Nt

G(ā � �i) ⊆ U . We let Ui be any of

9For checking if dG(x, y) ≤ 2t + 1, an (r ′, �′, g′)-cwd cover suffices with r ′ := 2t + 1.

J Comb Optim (2011) 21: 19–46 37

them. It can be determined by using the component L(b) of the label J (b) for each
b ∈ ā � �i . One can determine (by using J (W1), . . . , J (Wq)) the sets Wi ∩Uj . Hence,
one can check if G[Ui] |= ϕi,j (ā � �i,W1 ∩ Ui, . . .Wq ∩ Up) for each j ∈ [ji].
We can now decide whether G |= F t,�(ϕ1,1(ā � �1,W1 ∩ U1, . . . ,Wq ∩ U1), . . . ,

ϕp,jp (ā � �p,W1 ∩ Up, . . . ,Wq ∩ Up)) for the chosen (U1, . . . ,Up). This is suffi-
cient by Theorem 3.5.

We now examine the time taken to check ϕ(ā,W). For each couple (ai, aj), it
takes time O(log(n)) to check if d(ai, aj) ≤ 2t + 1. Since there are at most m2

couples, we construct the graph � in time O(log(n)). For each connected com-
ponent ā � �, we can determine the sets U that contain it in time O(log(n)) (be-
cause there are less than � such sets). By Theorem 2.5, we can check each ϕi,j in
time O(log(n) · (|W | + 1)). Therefore, B checks the validity of ϕ(ā,W) in time
O(log(n) · (|W | + 1)). �

We can now prove Theorem 5.1(3)–(4).

Proof of Theorem 5.1(3) Let C be a locally cwd-decomposable class of graphs
and let G = 〈VG, (edgaG)a∈C2 , (paG)a∈C1〉 in C be a graph with n vertices. Let
ϕ(x1, . . . , xm) be an FO formula without set arguments. By Theorem 3.4, this for-
mula is equivalent to a Boolean combination B(ϕ1(x̄), . . . , ϕp(x̄),ψ1, . . . ,ψh) where
each ϕi is t-local and each ψi is a basic (t ′, s)-local sentence without set variables,
for some t, t ′ and s depending only on ϕ.

By Lemma 4.5, one can decide in time O(n4) the validity of each sentence ψi .
Let

−→
b := (b1, . . . , bh) where bi := 1 if G satisfies ψi and 0 otherwise. For each 1 ≤

i ≤ p, we construct a labeling Ji supporting the query ϕi by Lemma 5.2 (G belongs
to a locally cwd-decomposable class and ϕi is a t-local formula around x̄). For each
vertex x of G, we let J (x) := (�x�, J1(x), . . . , Jp(x),

−→
b).10 It is clear that |J (x)| =

O(log(n)) since |Ji(x)| = O(log(n)). We now explain how to decide whether G |=
ϕ(a1, . . . , am) by using J (a1), . . . , J (am).

From the Boolean vector
−→
b , we can recover the truth value of each sentence ψi .

By using Ji(ā), we can check if ϕi(ā) holds. Then we can check if B(ϕ1(x̄), . . . ,

ϕp(x̄),ψ1, . . . ,ψh) holds, hence if ϕ(ā) holds.
By Lemma 4.5, the validity of each sentence ψi is checked in time O(n4). And by

Lemma 5.2, each labeling Ji is constructed in time O(f (n) + n4) where f (n) is the
time taken for constructing an (r, �, g)-cwd cover. Hence, the labeling J can be con-
structed in time O(f (n)+ n4). The time taken to check the validity of ϕ(a1, . . . , am)

is O(log(n)) by Lemma 5.2. �

Before proving Theorem 5.1(4), we introduce some definitions and facts. Let m

be a positive integer. A distance-m coloring of a graph H is a proper coloring of
und(H)m (see Sect. 2 for the definition of und(H)m). Then in a distance-m coloring,
vertices at distance at most m have different colors. A graph admits a proper (d + 1)-
coloring if d is its maximum degree. If T is an (r, �, g)-cwd cover of a graph G,

10We must put
−→
b in each label because the algorithm B (cf. Definition 2.4) does not know anything about

the considered graph G. All informations about it must be in the vertex labels.

38 J Comb Optim (2011) 21: 19–46

then I(T) has maximum degree at most �. Hence, I(T) has a distance-m coloring
with �O(m) colors since I(T)m has maximum degree at most � · (1 + (� − 1) + · · · +
(� − 1)m−1). If U is a subset of VG and t ≥ 1, we let Kt

G(U) be the set {x ∈ U |
Nt

G(x) ⊆ U}. We call it the t-kernel of U .
We say that two sets of vertices W and W ′ of a graph G touch if W ∩ W ′ �= ∅ or

there exists an edge between a vertex of W and one of W ′. It is clear that if W :=⋃
1≤i≤p Wi ⊆ VG and Wi,Wj pairwise do not touch, then G[W] is the disjoint union

of the graphs G[Wi]. It follows that cwd(G[W]) = max{cwd(G[Wi]) | 1 ≤ i ≤ p},
by Fact 2.2(ii).

Proof of Theorem 5.1(4) Let C be a nicely locally cwd-decomposable class of graphs
and let G = 〈VG, (edgaG)a∈C2 , (paG)a∈C1〉 in C be a graph with n vertices. We want a
labeling for a parametrized FO query. By Theorem 3.4 and Lemma 5.2, it is sufficient
to define a labeling for FO formulas ϕ(Y1, . . . , Yq) of the form (they are the sentences
ψ1, . . . ,ψh of Theorem 3.4):

∃x1 . . .∃xm

(∧
1≤i<j≤m

d(xi, xj) > 2t ∧
∧

1≤i≤m

ψ(xi, Y1, . . . , Yq)

)

where ψ(x,Y1, . . . , Yq) is t-local around x. We show how to check such formulas by
means of log-labelings.

We first consider for the sake of clarity the particular case where m = 2. Let T be
a nice (r, �, g)-cwd cover of G where r := 2t + 1 and let γ be a distance-3 coloring
of I(T), the intersection graph of T . For every two colors i and j , we let Gi,j be
the graph induced by the union of the sets U in T that are colored by i or j (we may
have i = j).

Claim 5.3 cwd(Gi,j) ≤ g(2).

Proof of Claim 5.3 Let T 2 := {U ∪ U ′ | U,U ′ ∈ T ,U ∩ U ′ �= ∅}. The vertex set of
the graph Gi,j is a union of sets in T ∪ T 2. No two sets of this union touch: if a set
U ∪ U ′ is such that U ∩ U ′ �= ∅ and meets some U ′′ ∈ T with U ′′ �= U and U ′′ �= U ′,
then we have γ (U) = i, γ (U ′) = j �= i and U ′′ meets U or U ′. It can have neither
color i nor color j because γ is a distance-3 coloring and U,U ′ and U ′′ are pairwise
at distance at most 2. Now, if there exists an edge between a vertex x in U ∪ U ′ and
a vertex y in U ′′ ∈ T , then there exists a set W ∈ T such that x and y are in W .
Hence, U ′′ and U are at distance at most 3, similarly for U ′′ and U ′. Thus, U ′′ can
have neither color i nor color j . We can then conclude that Gi,j is a disjoint union
of graphs G[U ∪ U ′] with U ∪ U ′ ∈ T 2 and of graphs G[U] for U ∈ T that do not
touch pairwise. Since cwd(G[U ∪ U ′]) ≤ g(2), we are done (by Fact 2.2(ii)). �

Claim 5.4 Let x ∈ K2t
G (U) and y ∈ K2t

G (U ′) for some sets U and U ′ in T . Then
dG(x, y) > 2t if and only if dG[U∪U ′](x, y) > 2t .

Proof of Claim 5.4. It is clear that if dG(x, y) > 2t , then dG[U∪U ′](x, y) > 2t

since dG(x, y) ≤ dG[U∪U ′](x, y). For proving the converse direction, assume that

J Comb Optim (2011) 21: 19–46 39

dG(x, y) ≤ 2t . Then there exists in G a path of length at most 2t from x to y. This
path is also in G[U] since x ∈ K2t

G (U). Hence, it is also in G[U ∪ U ′]. Therefore,
dG[U∪U ′] ≤ 2t . �

Let us now give to each vertex x of G the smallest color i such that x ∈ K2t
G (U)

and γ (U) = i. Hence, each vertex has one and only one color. We express this by
the validity of pi(x) where pi is a new unary relation. The number of relations pi

does not depend on the graph G. For each pair (i, j) (possibly i = j), we consider
the formula

ψi,j := ∃x, y
(
d(x, y) > 2t ∧ ψ(x,Y1, . . . , Yq)

∧ ψ(y,Y1, . . . , Yq) ∧ pi(x) ∧ pj (y)
)
.

By Theorem 2.5, we can construct a log-labeling Ji,j for the formula ψi,j in the
graph Gi,j (because vertex colors, i.e., additional unary relations, do not modify the
clique-width). We compute the truth value bi,j of ψi,j (∅, . . . ,∅) in Gi,j ; we get a

Boolean vector
−→
b of fixed length. We also label each vertex x by its color γ (x).

We concatenate that
−→
b and the labels Ji,j (x), for each x in VGi,j

, giving J (x). The
coloring γ uses O(�3) colors. Then the number of graphs Gi,j is bounded by O(�6).
Therefore, |J (x)| = O(log(n)).

From J (W1), . . . , J (Wq), we can determine those graphs Gi,j such that VGi,j
∩

(W1 ∪· · ·∪Wq) �= ∅ and check if for one of them, Gi,j |= ψi,j (W1, . . . ,Wq). If one is
found, we are done. Otherwise, we use the Booleans bi,j to look for graphs Gi,j such
that Gi,j |= ψi,j (∅, . . . ,∅) and (W1 ∪ · · · ∪ Wq) ∩ VGi,j

= ∅. This gives the correct
answers because of the following facts:

• If x and y satisfy the formula ϕ, then x ∈ K2t
G (U), y ∈ K2t

G (U ′) (possibly U = U ′)
and dG(x, y) > 2t implies dGi,j

(x, y) > 2t , hence Gi,j |= ψi,j (W1, . . . ,Wq) where
i = γ (U) and j = γ (U ′).

• If Gi,j |= ψi,j (W1, . . . ,Wq), then we get G |= ϕ(W1, . . . ,Wq) by a similar argu-
ment (in particular dGi,j

(x, y) > 2t implies dG[U∪U ′](x, y) > 2t which implies that
dG(x, y) > 2t by Claim 5.4).

For m = 1, the proof is similar by using a distance-2 coloring γ and the graphs
Gi,i instead of the graphs Gi,j .

For the case m > 2, the proof is similar. One takes for γ a distance-(m + 1) col-
oring of the intersection graph I(T) and considers the graphs Gi1,...,im defined as the
unions of pairwise non touching sets U1 ∪ · · · ∪ Um′ for m′ ≤ m and U1, . . . ,Um′ in
T , of respective colors i1, . . . , im′ . Thus, we have cwd(G[U1 ∪ · · · ∪ Um′]) ≤ g(m)

and cwd(Gi1,...,im) ≤ g(m).
By hypothesis, the cover T is computed in time f (n) for an n-vertex graph G

in C . In each graph Gi1,...,im , the labeling Ji1,...,im is constructed in cubic-time by
Theorem 2.5. The coloring γ uses �O(m) colors. Then the number of graphs Gi1,...,im

is bounded by �O(m2). Hence, the labeling J can be computed in time O(f (n)+n3).
We now examine the time taken to check the validity of ϕ(W). For each Gi1,...,im

and each Wi , it takes time O(log(n) · |Wi |) to determine Wi ∩ VGi1,...,im
. By The-

40 J Comb Optim (2011) 21: 19–46

orem 2.5, it takes time O(log(n) · (|W | + 1)) to check in Gi1,...,im the validity of
ϕ(W). This concludes the proof of Theorem 5.1. �

Let us ask a very general question: what can be done with labels of size O(log(n))?
Here is a fact that limits the extension of these results.

Let ϕ0(x, y) be the t-local and bounded FO formula telling us whether two distinct
vertices x and y are connected by a path of length 2:

x �= y ∧ ∃z (z �= x ∧ z �= y ∧ edg(x, z) ∧ edg(z, y)) .

The adjacency query is the query defined by edg(x, y) ∨ edg(y, x) for a graph
without edge colors. The following proposition uses a reduction from the case of
adjacency queries in arbitrary graphs. We recall that the adjacency query has a log-
labeling scheme in graphs of bounded arboricity (Theorem 5.1(1)).

Proposition 5.5 Every labeling scheme supporting ϕ0 on graphs with n vertices and

of arboricity at most 2 requires labels of length at least
√

n
2 − 1 for some graphs.

Proof We first define a construction to be used in a reduction between problems. With
every simple, loop-free and undirected graph G, we associate the graph G̃ obtained
by inserting a vertex zxy on each edge xy.

VG̃ := VG ∪ {zxy | x, y ∈ VG and xy ∈ EG},
EG̃ := {xzxy | xy ∈ EG}.

The following properties hold.

(1) VG ⊆ VG̃ and |VG̃| = |VG| + |EG|.
(2) For all x and y in VG, the edge xy is in EG if and only if G̃ |= ϕ0(x, y).
(3) G̃ has arboricity at most 2.

The first two points are clear. For the third one, we orient each edge e of G and we
get a directed graph, that we denote by �G. We let:

F1 := {xzxy | (x, y) ∈ E �G},
F2 := {zxyy | (x, y) ∈ E �G}.

Neither F1 nor F2 has a cycle in G̃. Then G̃ has arboricity at most 2 since (F1,F2)

is a bipartition of EG̃.
Let k : N → N be a mapping and D a class of undirected graphs. If for every graph

H ∈ D with n vertices, we can label its vertices with a bit sequence of size k(n) and
check the adjacency query by using these bit sequences, then the number of non
isomorphic graphs of size n in D is bounded by 2n·k(n). Since the number of simple
undirected graphs with n vertices is 2n·(n−1)/2, any labeling scheme supporting the
adjacency query in simple undirected graphs with n vertices requires some labels
of size at least (n − 1)/2. Hence, the adjacency query requires labels of size �n/2�
in some graphs. Using (2) above, we conclude that any labeling scheme for ϕ0 on

J Comb Optim (2011) 21: 19–46 41

the graph family Fn := {G̃ | G has n vertices} requires labels of size at least �n
2 �.

Let G̃ be in Fn and let ñ := |VG̃|. Using (1), we have ñ = n + |EG| ≤ n(n+1)
2 , i.e.,

n ≥ √
2ñ − 1. Hence, any labeling scheme for ϕ0 on Fn requires for some graphs

with ñ vertices labels of size at least �
√

2ñ−1
2 � >

√
ñ
2 − 1. �

6 Extension to counting queries

By a graph, we still mean a (C1,C2)-graph, i.e., a binary relational structure. The
results do not depend on (C1,C2). We will not specify this pair at each time. We now
consider an extension to counting queries.

Definition 6.1 (Counting query) Let ϕ(x1, . . . , xm,Y1, . . . , Yq) be an MSO formula
and let G be a (colored) graph. For W1, . . . ,Wq ⊆ VG, we let

#Gϕ(W1, . . . ,Wq) := ∣∣{(a1, . . . , am) ∈ (VG)m | G |= ϕ(a1, . . . , am,W1, . . . ,Wq)
}∣∣.

The counting query of ϕ consists in determining #Gϕ(W1, . . . ,Wq) for given
(W1, . . . ,Wq).11 If s ≥ 2, the counting query of ϕ modulo s consists in determin-
ing #Gϕ(W1, . . . ,Wq) modulo s for given (W1, . . . ,Wq).

The following theorem is an easy extension of Theorem 2.5.

Theorem 6.2 Let k be a positive integer, ϕ(x1, . . . , xm,Y1, . . . , Yq) an MSO formula
over graphs and s ≥ 2. There exists a log2-labeling scheme (resp. a log-labeling
scheme) (A, B) on the class of graphs of clique-width at most k for the counting
query of ϕ (resp. the counting query of ϕ modulo s). Moreover, if the input graph
has n vertices, the algorithm A constructs the labels in time O(n3) or in time
O(n · log(n)) if the clique-width expression is given, and the algorithm B computes
#Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W | + 1)) (resp. O(log(n) · (|W | + 1))).

Proof sketch The proof of Theorem 2.5 given in Courcelle and Vanicat (2003) builds
labels that are sequences of states of an automaton on terms representing graphs,
constructed from the MSO formula ϕ. An extension of this construction, that is given
in Courcelle and Vanicat (2003), makes it possible to compute

max{|U | | U ⊆ VG and G |= ϕ(U,W1, . . . ,Wq)}
where ϕ(X,Y1, . . . , Yq) is an MSO formula and W1, . . . ,Wq are given sets of ver-
tices. Instead of sequences of states, the labels consist of sequences of mappings from
the set of states to [|VG|]. It follows that the size of these labels is O(log2(n)) instead

11In order to simplify the notation, we let Y1, . . . , Yq be set variables. This is not a loss of generality
because a first-order variable y can be replaced by a set variable Y subject to the condition that its value is
a singleton.

42 J Comb Optim (2011) 21: 19–46

of O(log(n)). For a counting query, a similar technique can be used, with mappings
from the set of states to [|VG|]m. Since m is fixed, labels have still size O(log2(n)).

If we wish to count answers modulo an integer s, we need only mappings from
the set of states to {0, . . . , s − 1}m and the labels have size O(log(n)). �

We will prove a similar theorem for nicely locally cwd-decomposable classes of
graphs and FO formulas.

Theorem 6.3 (Second main theorem) Let ϕ(x1, . . . , xm,Y1, . . . , Yq) be an FO for-
mula and let s ≥ 2. There exists a log2-labeling scheme (resp. a log-labeling scheme)
(A, B) for the counting query of ϕ (resp. the counting query of ϕ modulo s) on nicely
locally cwd-decomposable classes. Moreover, if the input graph has n vertices, the
algorithm A constructs the labels in time O(f (n)+n3) where f (n) is the time taken
to construct a nice cwd-cover, and the algorithm B computes #Gϕ(W1, . . . ,Wq) in
time O(log2(n) · (|W | + 1)) (resp. O(log(n) · (|W | + 1))).

We will first prove Theorem 6.3 for particular t-local formulas on locally cwd-
decomposable classes.

Definition 6.4 (t-Connected formulas) A formula ϕ(x1, . . . , xm,Y1, . . . , Yq) is
t-connected if for all graphs G, all a1, . . . , am ∈ VG and all W1, . . . ,Wq ⊆ VG,

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if{∧
1≤i<j≤m d(ai, aj) ≤ t and

G[N] |= ϕ(a1, . . . , am,W1 ∩ N, . . . ,Wq ∩ N)

where N := Nt
G({a1, . . . , am}).

Remark 6.5 Let ϕ(x1, . . . , xm,Y1, . . . , Yq) be a t-connected formula. Then for all
W ⊇ Nt

G({a1, . . . , am}), we have

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if

G[W] |= ϕ(a1, . . . , am,W1 ∩ W, . . . ,Wq ∩ W)

and, since Nt
G({a1, . . . , am}) ⊆ N2t

G (a1) we have

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) if and only if

G[N2t
G (a1)] |= ϕ(a1, . . . , am,W1, . . . ,Wq).

Lemma 6.6 Let ϕ(x1, . . . , xm,Y1, . . . , Yq) be a t-connected formula and let s ≥ 2.
There exists a log2-labeling scheme (resp. a log-labeling scheme) (A, B) for the
counting query of ϕ (resp. the counting query of ϕ modulo s) on locally cwd-
decomposable classes of graphs. Moreover, if the input graph has n vertices, the
algorithm A constructs the labels in time O(f (n)+n3) where f (n) is the time taken

J Comb Optim (2011) 21: 19–46 43

to construct a cwd-cover, and the algorithm B computes #Gϕ(W1, . . . ,Wq) in time
O(log2(n) · (|W | + 1)) (resp. O(log(n) · (|W | + 1))).

Proof Let C be a class of locally cwd-decomposable graphs and let G in C be a graph
with n vertices. Let T be a (2t, �, g)-cwd cover of G and γ a distance-2 coloring of
I(T) with colors in [�2 + 1]. �

Claim 6.7 Let x ∈ K2t
G (U) and y ∈ K2t

G (U ′) with γ (U) = γ (U ′),U �= U ′. Then
dG(x, y) > 2t .

Proof of Claim 6.7. If this is not the case, then y ∈ U . Hence, U and U ′ are adjacent
in I(T). This is impossible since they have the same color. �

We color each vertex x of G by i, the smallest γ (U) such that x ∈ K2t
G (U). We

represent this by the validity of pi(x) as in the proof of Theorem 5.1(4). For each
i ∈ [�2 + 1], we let ϕi be the formula:

ϕ(x1, . . . , xm,Y1, . . . , Yq) ∧ pi(x1).

Then the following is clear.

Claim 6.8 #Gϕ(Y1, . . . , Yq) = ∑
i #Gϕi(Y1, . . . , Yq).

We now show that the counting query of ϕ admits a log2-labeling scheme on G.
We let Vi := ⋃

γ (U)=i{U | U ∈ T }.

Claim 6.9 cwd(G[Vi]) ≤ g.

Proof of Claim 6.9 Let U and U ′ in T be subsets of Vi . Since γ is a distance-2
coloring, the sets U and U ′ are disjoint, otherwise they will have different colors.
They do not touch, otherwise there exist a vertex x ∈ U and a vertex y ∈ U ′ such that
xy ∈ EG. Then by construction of T , there exists a set W in T such that x ∈ K2t

G (W).
Therefore, U and U ′ are at distance at most 2 in I(T) and thus have different colors.
A contradiction because γ (U) = γ (U ′) = i. Therefore, G[Vi] is a union of graphs
that pairwise do not touch and have clique-width at most g. We can thus conclude
that cwd(G[Vi]) ≤ g. �

Claim 6.10 #Gϕi(Y1, . . . , Yq) = #G[Vi]ϕi(Y1, . . . , Yq).

Proof of Claim 6.10 If ϕ(a1, . . . , am,W1, . . . ,Wq) holds and pi(a1) holds,
then a1 ∈ K2t

G (U) for some U such that γ (U) = i. Hence, a2, . . . , am ∈ N2t
G (a1)

and G[N2t
G (a1)] |= ϕi(a1, . . . , am,W1, . . . ,Wq). Thus, G[Vi] |= ϕi(a1, . . . , am,

W1, . . . ,Wq).
If G[Vi] |= ϕi(a1, . . . , am,W1, . . . ,Wq), then pi(a1) holds and dG[Vi](al, as) ≤ t

for all l and s in [m]. But, dG(al, as) = dG[Vi](al, as) = dG[U](al, as) where a1 ∈
U and γ (U) = i. And since Nt

G({a1, . . . , am}) ⊆ Vi , we have G |= ϕi(a1, . . . , am,

W1, . . . ,Wq). �

44 J Comb Optim (2011) 21: 19–46

By Theorem 6.2, and Claims 6.9 and 6.10, there exists a log2-labeling Ji for the
counting query of each ϕi . For each x ∈ VG, we let J (x) := (J1(x), . . . , J�2+1(x)).
Hence, J is a log2-labeling for the counting query of ϕ by Claim 6.8. By Theorem 6.2,
labels of size O(log(n)) are sufficient for the counting query of each ϕi modulo s.

By Theorem 6.2, each labeling Ji is constructed in cubic-time. Therefore, the
labeling J is constructed in time O(f (n) + n3) where f (n) is the time taken for
constructing the (2t, �, g)-cwd cover T of G. By Claim 6.8 and Theorem 6.2,
B computes #Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W | + 1)) (resp. O(log(n)

· (|W | + 1))). �

We now prove Theorem 6.3.

Proof of Theorem 6.3 Let ϕ(x̄, Y) be an FO formula with x̄ := (x1, . . . , xm) and
Y := (Y1, . . . , Yq). By Theorem 3.4, ϕ is logically equivalent to a Boolean combina-
tion B of t-local formulas around x̄ and of basic (t ′, s)-local formulas. The Boolean
combination B can be written as a disjunction of mutually exclusive conjunctions
of formulas. Hence, we can reduce the counting query of ϕ to that of finitely many
formulas of the form:

ϕ′(x̄, Y) ∧ ψ(Y)

where ϕ′(x̄, Y) is a t-local formula around x̄, and ψ(Y) is a conjunction of basic
(t ′, s)-local formulas and of negations of basic (t ′, s)-local formulas. We have proved
that each basic (t ′, s)-local formula admits a log-labeling scheme on each nicely lo-
cally cwd-decomposable class of graphs (Theorem 5.1(4)). It remains then to prove
that the counting query of a t-local formula admits a log2-labeling scheme on each
nicely locally cwd-decomposable class of graphs C .

Let ψ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ := (x1, . . . , xm). By Theo-
rem 3.5, we can reduce the counting query of ψ to the counting query of finitely
many formulas of the form ρt,�(x̄) ∧ ϕ′(x̄, Y1, . . . , Yq) that can be expressed as

ϕ′(x̄, Y1, . . . , Yq) :=
∧

1≤i<j≤p

d(x̄ � �i, x̄ � �j)

> 2t + 1 ∧
∧

1≤i≤p

ϕi(x̄ � �i,Y1, . . . , Yq)

where each ϕi is t-local and (m · (2t + 1))-connected. To simplify the writing, we
will assume that ψ is of the form ϕ′(x̄, Y1, . . . , Yq).

Let G with n vertices be in C . Let T be a nice (r, �, g)-cwd cover of G where
r := m · (2t + 1) and let γ be a distance-(m + 1) coloring of I(T), the intersection
graph of T . For every m-tuple of colors (i1, . . . , im), we let Gi1,...,im be the graph
G[V] where V is the union of all sets U ∈ T such that γ (U) ∈ {i1, . . . , im}. We
have cwd(G[V]) ≤ g(m) (by the same arguments as in Claim 5.3 and the proof of
Theorem 5.1(4)). We color each vertex with the smallest color i such that x ∈ Kr

G(U)

and γ (U) = i and we express this by the validity of pi(x). We let ϕ′
i1,...,im

be∧
1≤i<j≤p

d(x̄ � �i, x̄ � �j) > 2t + 1 ∧
∧

1≤�≤p

(
ϕ�(x̄ � ��,Y1, . . . , Yq) ∧ pi�(z�)

)
where z� is the first variable of each tuple x̄ � ��. We have:

J Comb Optim (2011) 21: 19–46 45

Claim 6.11 #Gψ(Y1, . . . , Yq) = ∑
(i1,...,im) #Gϕ′

i1,...,im
(Y1, . . . , Ym).

We let H := Gi1,...,im . By the same arguments as in the proof of Claim 5.4 we
have:

Claim 6.12 dG(x̄ � �i, x̄ � �j) > 2t + 1 if and only if dH (x̄ � �i, x̄ � �j) > 2t + 1.

It follows that:

Claim 6.13 #Gϕ′
i1,...,im

(Y1, . . . , Yq) = #H ϕ′
i1,...,im

(Y1, . . . , Yq).

By Theorem 6.2 and Claims 6.11, 6.12 and 6.13, there exists a log2-labeling
scheme for the counting query of each t-local formula, and a log-labeling scheme
is enough for modulo counting.

By hypothesis, a nice (r, �, g)-cwd cover T of G can be constructed in time
f (n). For each formula ϕi1,...,im , the associated labeling Ji1,...,im is constructed
in time O(n3) by Theorem 6.2. The coloring γ uses �O(m) colors. The number
of graphs Gi1,...,im is bounded by �O(m2). Hence, the labeling J is computed in
time O(f (n) + n3). By Claim 6.11 and Theorem 6.2, the algorithm B computes
#Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W | + 1)) (resp. O(log(n) · (|W | + 1))). This
finishes the proof. �

The constructions of Theorems 6.2 and 6.3 can be adapted so as to produce, for
given sets W1, . . . ,Wq (given as sets of labels) an m-tuple (�a1�, . . . ,�am�) for one
answer ā to the parametrized query ϕ, and �a� is the coding of vertex a. Labels of
length O(log(n)) suffice for that.

7 Conclusion

We conjecture that the results of Theorem 5.1(3–4) extend to classes of graphs that
exclude, or locally exclude a minor (definitions are in Dawar et al. 2007; Grohe 2007).

Question 1 Does there exist a log-labeling scheme for parametrized FO queries on
locally cwd or tree-decomposable classes?

Acknowledgement We thank the referees for many helpful comments.

References

Arnborg S, Lagergren J, Seese D (1991) Easy problems for tree-decomposable graphs. J Algorithms
12(2):308–340

Bagan G (2009) Algorithmes et complexité des problèmes d’énumération pour l’évaluation de requêtes
logiques. PhD Thesis, Université de Caen/Basse Normandie, Caen

Blumensath A, Courcelle B (2006) Recognizability, hypergraph operations and logical types. Inf Comput
204(6):853–919

46 J Comb Optim (2011) 21: 19–46

Bodlaender HL (1996) A linear-time algorithm for finding tree-decompositions of small tree-width. SIAM
J Comput 25(6):1305–1317

Bodlaender HL (2007) Tree-width: structure and algorithms. In: Principe G, Zaks S (eds) Structural infor-
mation and communication complexity (SIROCCO). LNCS, vol 4474. Springer, Berlin, pp 11–25

Courcelle B, Olariu S (2000) Upper bounds to the clique-width of graphs. Discrete Appl Math 101(1–
3):77–114

Courcelle B, Twigg A (2009) Constraint-path labelings on graphs of bounded clique-width. To appear in
Theory Comput Syst. A full version is available at doi:10.1007/s00224-009-9211-9

Courcelle B, Vanicat R (2003) Query efficient implementation of graphs of bounded clique-width. Discrete
Appl Math 131(1):129–150

Courcelle B, Makowsky JA, Rotics U (2000) Linear-time solvable optimization problems on graphs of
bounded clique-width. Theory Comput Syst 33(2):125–150

Courcelle B, Gavoille C, Kanté MM, Twigg A (2008) Optimal labeling for connectivity checking in planar
networks with obstacles. Manuscript, 2008. An extended abstract about 3-connected planar graphs is
published in Electronic Notes in Discrete Mathematics 31:151–155 (2008). The proceedings of the
first Conference Topological and Geometric Graph Theory (TGGT), Paris, 2008

Dawar A, Grohe M, Kreutzer S (2007) Locally excluding a minor. In: 22nd IEEE symposium on logic in
computer science (LICS). IEEE Computer Society, New York, pp 270–279

Diestel R (2005) Graph theory, 3rd edn. Springer, Berlin
Durand A, Grandjean E (2007) First-order queries on structures of bounded degree are computable with

constant delay. ACM Trans Comput Log 8(4)
Eppstein D (1994) Arboricity and bipartite subgraph listing algorithms. Inf Process Lett 51(4):207–211
Fisher E, Makowsky JA, Ravve EV (2008) Counting truth assignments of formulas of bounded tree-width

or clique-width. Discrete Appl Math 156(4):511–529
Frick M (2004) Generalized model-checking over locally tree-decomposable classes. Theory Comput Syst

37(1):157–191
Frick M, Grohe M (2001) Deciding first-order properties of locally tree-decomposable structures. J ACM

48(1):1184–1206
Gaifman H (1982) On local and non-local properties. In: Stern J (ed) Proceedings of the herbrand sympo-

sium, logic colloquium’81. North-Holland, Amsterdam, pp 105–135
Gavoille C, Peleg D, (2003) Compact and localized distributed data structures. Distrib Comput 16(2–

3):111–120
Grohe M (2007) Logic, graphs and algorithms. In: Flum J, Grädel E, Wilke T (eds) Logic, automata,

history and perspectives. Amsterdam University Press, Amsterdam, pp 357–422
Gurski F, Wanke E (2007) Line graphs of bounded clique-width. Discrete Math 307(22):2734–2754
Hliněný P, Oum S (2008) Finding branch-decompositions and rank-decompositions. SIAM J Comput

38(3):1012–1032
Kamiński M, Lozin V, Milanić M (2008) Recent developments on graphs of bounded clique-width. Dis-

crete Appl Math. In press
Kanté MM (2008) Graph structurings: Some algorithmic applications. PhD thesis, Université Bordeaux 1,

Bordeaux
Kreutzer S (2008) Algorithmic meta-theorems. In: Grohe M, Neidermeier R (eds) International workshop

on parameterized and exact computation (IWPEC). LNCS, vol 5018. Springer, Berlin, pp 10–12.
A full version is available at arXiv:0902.3616v1

Libkin L (2004) Elements of finite model theory. Springer, Berlin
Lozin V (2008) From tree-width to clique-width: excluding a unit-interval graph. In: Hong S, Nagamochi

H, Fukunaga T (eds) International symposium on algorithms and computation (ISAAC). LNCS, vol
5369. Springer, Berlin, pp 871–882

Nešetřil J, Ossona de Mendez P (2006) Linear time low tree-width partitions and algorithmic conse-
quences. In: Kleinberg JM (ed) 38th annual ACM symposium on theory of computing (STOC). ACM,
New York, pp 391–400

Oum S, Seymour P (2006) Approximating clique-width and branch-width. J Comb Theory, Ser B
96(4):514–528

Seese D (1996) Linear time computable problems and first-order descriptions. Math Struct Comput Sci
6(6):505–526

Suchan K, Todinca I (2007) On powers of graphs of bounded NLC-width (Clique-Width). Discrete Appl
Math 155(14):1885–1893

http://dx.doi.org/10.1007/s00224-009-9211-9
http://arxiv.org/abs/arXiv:0902.3616v1

	Compact labelings for efficient first-order model-checking
	Abstract
	Introduction
	Definitions
	Bounded and local first-order formulas
	Locally decomposable classes
	Labeling schemes for first-order queries
	Extension to counting queries
	Conclusion
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

