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INTRODUCTION

Given a graph property of vertices, assign labels to each vertex for
deciding the property by using only the labels.
A label is a bit sequence and we want it to be “short” (say of size
logO(k)(n), n = number of vertices).
For adjacency we need labels of size at least Ω(n) in general.
Two possible questions:

I Given a property for what classes of graphs can we achieve O(log(n)) ?
I Given a class of graphs for what properties can we achieve O(log(n)) ?
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FORMALLY

LABELING SCHEME

Let P(x1, . . . , xp,Y1, . . . ,Yq) be a graph property (Yi are sets).
An f (n)-labeling scheme for property P of graphs in a class C is a pair of
algorithms (A,B) such that:

I For all G ∈ C, A constructs a labeling J : V (G) → {0, 1}∗ such that
|J(x)| ≤ f (n) for each x ∈ V (G), n = |V (G)|.

I B checks whether G satisfies P(a1, . . . , ap, U1, . . . , Uq) by using
J(a1), . . . , J(ap), J(U1), . . . , J(Uq) where J(U) = {J(x) | x ∈ U}.

NOTE

J(x) determines x .
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SOME RESULTS

[Adjacency] There exist O(log(n))-labeling schemes for the classes:
bounded arboricity (planar, bounded tree-width, ...),
bounded clique-width,
interval graphs (unbounded clique-width and unbounded arboricity).

[Distance (static)] O(n) in general on n-vertex graphs.
O(log2(n)) for trees, bounded-clique-width, bounded tree-width,
between Ω(n1/3) and O(n1/2) for planar graphs,
O(log(n)) for interval graphs.
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CLIQUE-WIDTH

Clique-width is defined in terms of few very simple graph operations.
Graphs are simple, directed or not.
k -graph = each vertex has one and only one color from {1, . . . , k}.
several vertices may have the same color.
One binary operation: ⊕ = disjoint union of k -graphs.
Notice that G ⊕ G 6= G.
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CLIQUE-WIDTH (UNARY OPERATIONS)

addi,j(G) is the (undirected) k -graph where we add to G edges between
vertices colored by i and vertices colored by j .

H = addi,j(G)G
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reni→j(G) is the graph where we relabel every vertex of G colored by i
into j . Then there is no vertex colored by i in reni→j(G).
k -Basic graphs are k -graphs with a single vertex: (i for i ∈ [k ]).
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CLIQUE-WIDTH (UNARY OPERATIONS)

addi,j(G) is the (undirected) k -graph where we add to G edges between
vertices colored by i and vertices colored by j .
reni→j(G) is the graph where we relabel every vertex of G colored by i
into j . Then there is no vertex colored by i in reni→j(G).
k -Basic graphs are k -graphs with a single vertex: (i for i ∈ [k ]).

DEFINITION

The clique-width of a graph G, denoted by cwd(G), is the minimum k such
that G is constructed from k -basic graphs with the operations ⊕,addi,j and
reni→j for i , j ∈ [k ].
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EXAMPLES

Cliques have clique-width 2:

K3

1 1

1

Distance hereditary graphs have clique-width ≤ 3.
cwd(G) ≤ 3 · 2twd(G)−1.
Planar graphs, interval graphs have unbounded clique-width.
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FO LOGIC: EXAMPLES

NOTATIONS

Graph G = 〈V ,E 〉 where V is the set of vertices and E(·, ·) is the
adjacency relation.
ϕ(x1, . . . , xm,Y1, . . . ,Yq): free FO variables in {x1, . . . , xm} and free set
variables in {Y1, . . . ,Yq}.
An FO sentence is an FO formula without free variables.
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FO LOGIC: EXAMPLES

DISTANCE AT MOST t IN G\Y : Dt(x , y , Y )

(x = y) ∨ ∃x1 · · · xt+1 /∈ Y

 ∧
1≤i≤t

E(xi , xi+1) ∧ x = x1 ∧ y = xt+1

 .

COMMON NEIGHBOR OF x AND y IN Y : ϕ(x , y , Y )

∃z ∈ Y
(

E(x , z) ∧ E(y , z)
)
.
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CLIQUE-WIDTH AND MSO LOGIC

MSO LOGIC

MSO logic = FO logic with quantifications over sets of vertices.

THEOREM 1 (COURCELLE AND VANICAT)
Let P(x1, . . . , xm,Y1, . . . ,Yq) be an MSO-definable property and k ∈ N.

There exists an O(f (k) log(n))-labeling scheme (A,B) for graphs of
clique-width at most k .

A computes the labels in O(n3)-time or in O(n log(n))-time if the
decomposition is given.
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MOTIVATION

MOTIVATION

Bounded clique-width is limited but is OK for MSO logic.
MSO logic cannot be OK for unbounded clique-width unless P=NP
(3-colorability is MSO-definable and NP-complete on planar graphs).
Unbounded clique-width may work for FO logic.

EXAMPLES

Planar Graphs, unit-interval graphs, graphs of bounded degree, . . . .
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MOTIVATION : NETWORKS BUILT BY COMBINING

GRAPHS OF VARIOUS TYPES

A,B,C,D have clique-width
≤ k .
Planar Skeleton
Skeleton of bounded
degree (limited overlaps).
Concretely . . .

A

B

C

D

B

A D

C

Skeleton
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LOCALLY CWD-DECOMPOSABLE

CWD-COVER

Let r , ` ≥ 1 and g : N → N. An (r , `,g)-cwd cover of G is a family T of subsets
of VG such that:

1 For every a ∈ VG there exists U ∈ T such that N r
G (a) ⊆ U.

N
r

G
(a)

T

2 For each U ∈ T there exist less than ` many V ∈ T such that U ∩ V 6= ∅.
3 For each U we have cwd(G[U]) ≤ g(1).
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LOCALLY CWD-DECOMPOSABLE

CWD-COVER

Let r , ` ≥ 1 and g : N → N. An (r , `,g)-cwd cover of G is a family T of subsets
of VG such that:

1 For every a ∈ VG there exists U ∈ T such that N r
G (a) ⊆ U.

2 For each U ∈ T there exist less than ` many V ∈ T such that U ∩ V 6= ∅.
3 For each U we have cwd(G[U]) ≤ g(1).

NICE CWD-COVER

An (r , `,g)-cwd cover is nice if condition 3 is replaced by:
For q ≥ 1 and all U1, . . . ,Uq in T we have

cwd(G[U1 ∪ · · · ∪ Uq]) ≤ g(q).
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LOCALLY CWD-DECOMPOSABLE

LOCALLY CWD-DECOMPOSABLE

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given G ∈ C and r ≥ 1,

computes `,g and an (r , `,g)-cwd cover of G where `,g depend only on r .

NICELY LOCALLY CWD-DECOMPOSABLE

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial
time algorithm that given G ∈ C and r ≥ 1,

computes `,g and a nice (r , `,g)-cwd cover of G where `,g depend only on r .
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MAIN RESULTS

MAIN THEOREM

There exist O (log (n))-labeling schemes for the following queries and graph
classes:

1 FO queries without set arguments on locally cwd-decomposable classes.
2 FO queries with set arguments on nicely locally cwd-decomposable.
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MAIN RESULTS

MAIN THEOREM

There exist O (log (n))-labeling schemes for the following queries and graph
classes:

1 FO queries without set arguments on locally cwd-decomposable classes.
2 FO queries with set arguments on nicely locally cwd-decomposable.

USING SET ARGUMENTS

In a network, we may specify the failed or forbidden nodes in the formula by
using set variables.
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FO LOGIC

t -LOCAL FORMULAS

An FO formula ϕ (x1, . . . , xm,Y1, . . . ,Yq) is t-local around (x1, . . . , xm) if for
every G and, every a1, . . . ,am ∈ VG, W1, . . . ,Wq ⊆ VG we have

G |= ϕ (a1, . . . ,am,W1, . . . ,Wq)

iff

G[N] |= ϕ (a1, . . . ,am,W1 ∩ N, . . . ,Wq ∩ N)

where N = N t
G (a1, . . . ,am) = {y ∈ VG | d (y ,ai) ≤ t for some i = 1, . . . ,m}.

REMARK

The query d (x , y) ≤ 2t is t-local.
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FO LOGIC

(t , s)-LOCAL SENTENCES

An FO sentence is basic (t , s)-local if it is equivalent to a sentence of the form

∃x1 · · · ∃xs

 ∧
1≤i<j≤s

d (xi , xj) > 2t ∧
∧

1≤i≤s

ψ[xi/x ]


where ψ (x) is t-local around its unique free variable x .
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GAIFMAN THEOREM

THEOREM 2
Let ϕ(x̄) be a FO formula where x̄ = (x1, . . . , xm). Then ϕ is logically
equivalent to a Boolean combination B (ϕ1(ū1), . . . , ϕp(ūp), ψ1, . . . , ψh) where:

each ϕi is a t-local formula around ūi ⊆ x̄ (sub-tuple).
each ψi is a basic (t ′, s)-local sentence.

B can be computed and, t , t ′ and s can be bounded in terms of m and the
quantifier-rank of ϕ.
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VERIFICATION OF BASIC (t , s)-LOCAL SENTENCES

LEMMA 1
Let G be in a locally cwd-decomposable class. Every basic (t , s)-local
sentence can be decided in polynomial time on G.

PROOF.
Adaptated from Frick and Grohe.
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HOW TO CHECK DISTANCE AT MOST t

A B C

For each x ,N t
G(x) ⊆ A or B or C.

Each A,B,C of clique-width ≤ k .
By Courcelle-Vanicat, labelings JA, JB, JC for d(x , y) ≤ t in
G[A],G[B],G[C] respectively.
L(x) = (JA(x), JB(x), JC(x)) (JA(x) = “undefined” if x /∈ A).
d(x , y) ≤ t iff some pair (JU(x), JU(y)) says dG[U](x , y) ≤ t for
U ∈ {A,B,C}.
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A t -FORMULA AROUND ONE FREE FO VARIABLE

A B C

ϕ(x , Y , Z ) WITH SET VARIABLES Y AND Z
For ϕ(x ,Y ,Z ) apply Courcelle-Vanicat to each U and get a labeling JU .
x may be in many U ∈ {A,B,C} and the same for N t

G(x).
For simplicity, let each x in A,B and C.
L(x) = (JA(x), JB(x), JC(x)).
Given L(x),L(Y ) and L(Z ) determine the U such that N t

G(x) ⊆ U and
recover Y ∩ U and Z ∩ U.
G |= ϕ(x ,Y ,Z ) iff JU(x) says that G[U] |= ϕ(x ,Y ∩ U,Z ∩ U).
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t -LOCAL FORMULAS (STRONGER STATEMENT)

LEMMA 2
There exists an O (log (n))-labeling scheme for t-local formulas with set
arguments on locally cwd-decomposable classes.

PROOF.
We will use a decomposition of t-local formulas by Frick.
Recall that Gaifman Theorem extends to FO formulas with set arguments
(handled as colors of vertices; distances do not depend on colors).
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t -DISTANCE TYPE

DEFINITION 1
Let m, t ≥ 1. The t-distance type of an m-tuple ā is the undirected graph
ε = ([m],edgε) where edgε(i , j) iff d(ai ,aj) ≤ 2t + 1.

a

b

c

d e

a

b

c

d

e

t-distance type

Balls of radius t

M. M. Kanté (LaBRI) FO Labeling 24 / 28



t -DISTANCE TYPE

DEFINITION 1
Let m, t ≥ 1. The t-distance type of an m-tuple ā is the undirected graph
ε = ([m],edgε) where edgε(i , j) iff d(ai ,aj) ≤ 2t + 1.

SATISFACTION

The satisfaction of a t-distance type by an m-tuple can be expressed by a
t-local formula:

ρt,ε(x1, . . . , xm) :=
∧

(i,j)∈edgε

d(xi , xj) ≤ 2t + 1 ∧
∧

(i,j)/∈edgε

d(xi , xj) > 2t + 1.
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DECOMPOSITION OF t -LOCAL FORMULAS

LEMMA 3
Let ϕ(x̄ ,Y1, . . . ,Yq) be a t-local formula around x̄ = (x1, . . . , xm). For each
t-distance type ε with ε1, . . . , εp as connected components, one can compute a
Boolean combination F t,ε(ϕ1,1, . . . , ϕ1,j1 , . . . , ϕp,1, . . . , ϕp,jp) of formulas ϕi,j
such that:

The FO free variables of each ϕi,j are among x̄ | εi (x̄ | εi is the restriction
of x̄ to εi ) and the set arguments remains in {Y1, . . . ,Yq}.
ϕi,j is t-local around x̄ | εi .
For each m-tuple ā, each q-tuple of sets W1, . . . ,Wq :

G |= ρt,ε(ā) ∧ ϕ(ā,W1, . . . ,Wq)

iff

G |= ρt,ε(ā) ∧ F t,ε(. . . , ϕi,j(ā | εi ,W1, . . . ,Wq), . . .).
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PROOF OF LEMMA 2

Let T be an (r , `,g)-cwd cover of G where r = m(2t + 1).
Label each vertex with a label K (x) of length O(log(n)) for deciding if
d(x , y) ≤ 2t + 1 (Distance at most t - Slide 21).
Let ε be a fixed t-distance type and call the algorithm of Frick (Lemma 3).
For each ϕε

i,j , there exists a labeling Jε
i,j,U in G[U] (Courcelle-Vanicat).

For each x we append all these labels Jε
i,j,U in order to get a label Jε.

There exists at most k ′ = 2k(k−1)/2 t-distance types, we let

J(x) = {pxq,K (x), Jε1 , . . . , Jεk′}.

It has length O(log(n)) (Huge Constants).

M. M. Kanté (LaBRI) FO Labeling 26 / 28



PROOF OF LEMMA 2(VALIDITY)

Let J(a1), . . . , J(am) and J(W1), . . . , J(Wq).
By using K (ai) we can construct the t-distance type ε satisfied by
a1, . . . ,am. We can then recover Jε(ai).
We let ε1, . . . , εp be the connected components of ε.
For each ā | εi there exists at least one U ∈ T such that N t

G(ā | εi) ⊆ U.
(There are less than `.)
We can now decide whether G satisfies ϕ by Lemma 3.
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PERSPECTIVES

Sizes of labels: aϕ,T · log(n). Decrease aϕ,T by concrete constructions
avoiding logic.
Better understanding of locally cwd-decomposable classes.
Extension to larger classes of graphs.
Can we extend the logic, or give at least specific constructions for
interesting properties like connectivity ?

Thank you !
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