EFFICIENT FIRST-ORDER MODEL CHECKING WITH SHORT LABELS

M. M. KANTÉ B. COURCELLE C. GAVOILLE

Université de Bordeaux, LaBRI, CNRS

Frontiers of Algorithmics Workshop June 19, 2008

- Given a graph property of vertices, assign labels to each vertex for deciding the property by using only the labels.
- A label is a bit sequence and we want it to be "short" (say of size log^{O(k)}(n), n = number of vertices).
- For adjacency we need labels of size at least $\Omega(n)$ in general.
- Two possible questions:
 - Given a property for what classes of graphs can we achieve O(log(n)) ?
 - Given a class of graphs for what properties can we achieve O(log(n)) ?

FO Labeling

< □ > < □ > < □ > < □ > < □ > < □ >

FORMALLY

LABELING SCHEME

- Let $P(x_1, \ldots, x_p, Y_1, \ldots, Y_q)$ be a graph property (Y_i are sets).
- An f(n)-labeling scheme for property P of graphs in a class C is a pair of algorithms (A, B) such that:
 - For all $G \in C$, A constructs a labeling $J : V(G) \to \{0, 1\}^*$ such that $|J(x)| \le f(n)$ for each $x \in V(G)$, n = |V(G)|. B checks whether G satisfies $P(a_1, \ldots, a_p, U_1, \ldots, U_q)$ by using

 $J(a_1), \dots, J(a_p), J(U_1), \dots, J(U_q)$ where $J(U) = \{J(x) \mid x \in U\}$.

NOTE

J(x) determines x.

<ロト < 回 > < 回 > < 回 > < 回 > < 三

- [Adjacency] There exist O(log(n))-labeling schemes for the classes: bounded arboricity (planar, bounded tree-width, ...), bounded clique-width, interval graphs (unbounded clique-width and unbounded arboricity).
- [Distance (static)] O(n) in general on *n*-vertex graphs.

 $O(\log^2(n))$ for trees, bounded-clique-width, bounded tree-width, between $\Omega(n^{1/3})$ and $O(n^{1/2})$ for planar graphs, $O(\log(n))$ for interval graphs.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

OUTLINE

CLIQUE-WIDTH

2 Logic

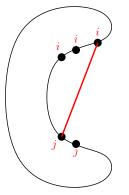
- 3 Locally Decomposable Graphs
- 4 Main Results

- Clique-width is defined in terms of few very simple graph operations.
- Graphs are simple, directed or not.
- *k*-graph = each vertex has one and only one color from {1,...,*k*}.
- several vertices may have the same color.
- One binary operation: \oplus = disjoint union of *k*-graphs.
- Notice that $G \oplus G \neq G$.

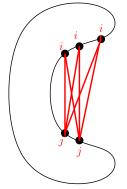
6 / 28

CLIQUE-WIDTH (UNARY OPERATIONS)

 add_{i,j}(G) is the (undirected) k-graph where we add to G edges between vertices colored by *i* and vertices colored by *j*.

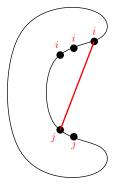


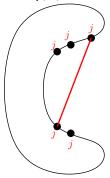
G

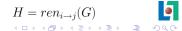


CLIQUE-WIDTH (UNARY OPERATIONS)

- add_{i,j}(G) is the (undirected) k-graph where we add to G edges between vertices colored by i and vertices colored by j.
- *ren_{i→j}(G)* is the graph where we relabel every vertex of G colored by *i* into *j*. Then there is no vertex colored by *i* in *ren_{i→j}(G)*.







G

CLIQUE-WIDTH (UNARY OPERATIONS)

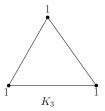
- add_{i,j}(G) is the (undirected) k-graph where we add to G edges between vertices colored by i and vertices colored by j.
- *ren_{i→j}(G)* is the graph where we relabel every vertex of G colored by *i* into *j*. Then there is no vertex colored by *i* in *ren_{i→j}(G)*.
- *k*-Basic graphs are *k*-graphs with a single vertex: (i for $i \in [k]$).

DEFINITION

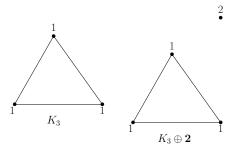
The clique-width of a graph *G*, denoted by cwd(G), is the minimum *k* such that *G* is constructed from *k*-basic graphs with the operations \oplus , $add_{i,j}$ and $ren_{i\rightarrow j}$ for $i, j \in [k]$.

< □ > < □ > < □ > < □ > < □ > < □ >

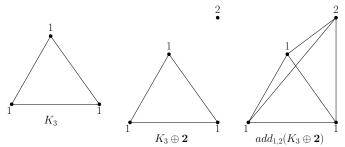
• Cliques have clique-width 2:



• Cliques have clique-width 2:

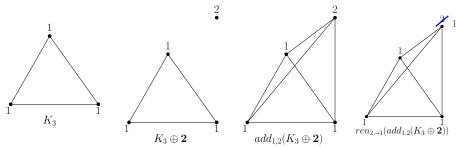


• Cliques have clique-width 2:



-2

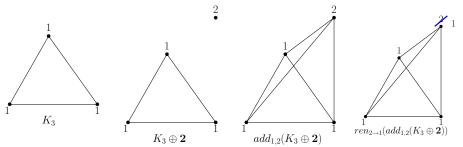
• Cliques have clique-width 2:



-2

・ロト ・ 四ト ・ ヨト ・ ヨト

• Cliques have clique-width 2:



- Distance hereditary graphs have clique-width \leq 3.
- $cwd(G) \le 3 \cdot 2^{twd(G)-1}$.
- Planar graphs, interval graphs have unbounded clique-width.

OUTLINE

NOTATIONS

- Graph G = ⟨V, E⟩ where V is the set of vertices and E(·, ·) is the adjacency relation.
- $\varphi(x_1, \ldots, x_m, Y_1, \ldots, Y_q)$: free FO variables in $\{x_1, \ldots, x_m\}$ and free set variables in $\{Y_1, \ldots, Y_q\}$.
- An FO sentence is an FO formula without free variables.

FO LOGIC: EXAMPLES

DISTANCE AT MOST *t* in $G \setminus Y$: $D_t(x, y, Y)$

$$(x = y) \lor \exists x_1 \cdots x_{t+1} \notin Y\left(\bigwedge_{1 \leq i \leq t} E(x_i, x_{i+1}) \land x = x_1 \land y = x_{t+1}\right).$$

COMMON NEIGHBOR OF x and y in Y: $\varphi(x, y, Y)$

$$\exists z \in Y \ \Big(E(x,z) \land E(y,z) \Big).$$

◆□ > ◆圖 > ◆臣 > ◆臣 > ○

CLIQUE-WIDTH AND MSO LOGIC

MSO LOGIC

MSO logic = FO logic with quantifications over sets of vertices.

THEOREM 1 (COURCELLE AND VANICAT)

Let $P(x_1, \ldots, x_m, Y_1, \ldots, Y_q)$ be an *MSO*-definable property and $k \in \mathbb{N}$.

- There exists an $O(f(k)\log(n))$ -labeling scheme $(\mathcal{A}, \mathcal{B})$ for graphs of clique-width at most k.
- A computes the labels in O(n³)-time or in O(n log(n))-time if the decomposition is given.

OUTLINE

D Clique-Width

3 LOCALLY DECOMPOSABLE GRAPHS

Main Results

MOTIVATION

MOTIVATION

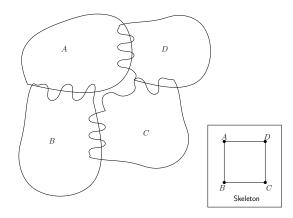
- Bounded clique-width is limited but is OK for MSO logic.
- MSO logic cannot be OK for unbounded clique-width unless P=NP (3-colorability is MSO-definable and NP-complete on planar graphs).
- Unbounded clique-width may work for FO logic.

EXAMPLES

Planar Graphs, unit-interval graphs, graphs of bounded degree,

MOTIVATION : NETWORKS BUILT BY COMBINING GRAPHS OF VARIOUS TYPES

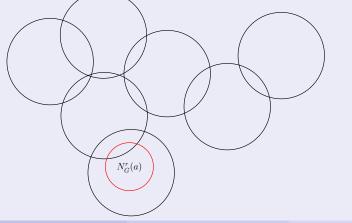
- A,B,C,D have clique-width $\leq k$.
- Planar Skeleton
- Skeleton of bounded degree (limited overlaps).
- Concretely ...



CWD-COVER

Let $r, \ell \ge 1$ and $g : \mathbb{N} \to \mathbb{N}$. An (r, ℓ, g) -*cwd cover* of G is a family \mathcal{T} of subsets of V_G such that:

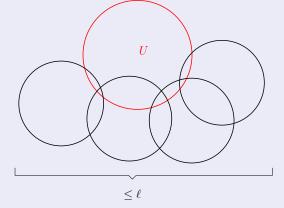
• For every $a \in V_G$ there exists $U \in \mathcal{T}$ such that $N_G^r(a) \subseteq U$.



CWD-COVER

Let $r, \ell \ge 1$ and $g : \mathbb{N} \to \mathbb{N}$. An (r, ℓ, g) -*cwd cover* of G is a family \mathcal{T} of subsets of V_G such that:

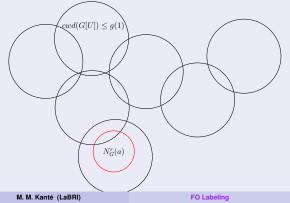
- For every $a \in V_G$ there exists $U \in \mathcal{T}$ such that $N_G^r(a) \subseteq U$.
- **2** For each $U \in \mathcal{T}$ there exist less than ℓ many $V \in \mathcal{T}$ such that $U \cap V \neq \emptyset$.



CWD-COVER

Let $r, \ell \ge 1$ and $g : \mathbb{N} \to \mathbb{N}$. An (r, ℓ, g) -*cwd cover* of G is a family \mathcal{T} of subsets of V_G such that:

- For every $a \in V_G$ there exists $U \in \mathcal{T}$ such that $N_G^r(a) \subseteq U$.
- **2** For each $U \in \mathcal{T}$ there exist less than ℓ many $V \in \mathcal{T}$ such that $U \cap V \neq \emptyset$.
- So For each U we have $cwd(G[U]) \le g(1)$.



CWD-COVER

```
Let r, \ell \ge 1 and g : \mathbb{N} \to \mathbb{N}. An (r, \ell, g)-cwd cover of G is a family \mathcal{T} of subsets of V_G such that:
```

- For every $a \in V_G$ there exists $U \in \mathcal{T}$ such that $N_G^r(a) \subseteq U$.
- **③** For each $U \in \mathcal{T}$ there exist less than ℓ many $V \in \mathcal{T}$ such that $U \cap V \neq \emptyset$.
- So For each U we have $cwd(G[U]) \le g(1)$.

NICE CWD-COVER

An (r, ℓ, g) -cwd cover is *nice* if condition 3 is replaced by:

For $q \geq 1$ and all U_1, \ldots, U_q in \mathcal{T} we have

 $cwd(G[U_1\cup\cdots\cup U_q])\leq g(q).$

A class C of graphs is *locally cwd-decomposable* if there is a polynomial time algorithm that given $G \in C$ and $r \ge 1$,

computes ℓ , g and an (r, ℓ, g) -cwd cover of G where ℓ , g depend only on r.

A class C of graphs is *locally cwd-decomposable* if there is a polynomial time algorithm that given $G \in C$ and $r \ge 1$,

computes ℓ , g and an (r, ℓ, g) -cwd cover of G where ℓ , g depend only on r.

NICELY LOCALLY CWD-DECOMPOSABLE

A class C of graphs is *nicely locally cwd-decomposable* if there is a polynomial time algorithm that given $G \in C$ and $r \ge 1$,

computes ℓ , g and a nice (r, ℓ, g) -cwd cover of G where ℓ , g depend only on r.

< □ > < □ > < □ > < □ > < □ > < □ >

OUTLINE

Clique-Width

M. M. Kanté (LaBRI)

MAIN THEOREM

There exist $O(\log(n))$ -labeling schemes for the following queries and graph classes:

- FO queries without set arguments on locally cwd-decomposable classes.
- FO queries with set arguments on nicely locally cwd-decomposable.

< □ > < □ > < □ > < □ > < □ > < □ >

MAIN THEOREM

There exist $O(\log(n))$ -labeling schemes for the following queries and graph classes:

• FO queries without set arguments on locally cwd-decomposable classes.

9 FO queries with set arguments on nicely locally cwd-decomposable.

USING SET ARGUMENTS

In a network, we may specify the failed or forbidden nodes in the formula by using set variables.

< □ > < □ > < □ > < □ > < □ > < □ >

FO LOGIC

t-local formulas

An FO formula $\varphi(x_1, \ldots, x_m, Y_1, \ldots, Y_q)$ is *t-local around* (x_1, \ldots, x_m) if for every *G* and, every $a_1, \ldots, a_m \in V_G$, $W_1, \ldots, W_q \subseteq V_G$ we have

$$\boldsymbol{G} \models \varphi(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m,\boldsymbol{W}_1,\ldots,\boldsymbol{W}_q)$$

iff

w

$$G[N] \models \varphi(a_1, \dots, a_m, W_1 \cap N, \dots, W_q \cap N)$$

here $N = N_G^t(a_1, \dots, a_m) = \{y \in V_G \mid d(y, a_i) \le t \text{ for some } i = 1, \dots, m\}.$

・ロト ・四ト ・ヨト ・ヨト

FO LOGIC

t-local formulas

An FO formula $\varphi(x_1, \ldots, x_m, Y_1, \ldots, Y_q)$ is *t-local around* (x_1, \ldots, x_m) if for every *G* and, every $a_1, \ldots, a_m \in V_G$, $W_1, \ldots, W_q \subseteq V_G$ we have

$$\boldsymbol{G} \models \varphi(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_m, \boldsymbol{W}_1, \ldots, \boldsymbol{W}_q)$$

iff

$$G[N] \models \varphi(a_1,\ldots,a_m,W_1 \cap N,\ldots,W_q \cap N)$$

where $N = N_G^t(a_1, ..., a_m) = \{y \in V_G \mid d(y, a_i) \le t \text{ for some } i = 1, ..., m\}.$

REMARK

The query $d(x, y) \leq 2t$ is *t*-local.

ヘロト 人間 ト 人間 ト 人間 トー

(t, s)-local sentences

An FO sentence is *basic* (t, s)-local if it is equivalent to a sentence of the form

$$\exists x_1 \cdots \exists x_s \left(\bigwedge_{1 \le i < j \le s} d(x_i, x_j) > 2t \land \bigwedge_{1 \le i \le s} \psi[x_i/x] \right)$$

where $\psi(x)$ is *t*-local around its unique free variable *x*.

GAIFMAN THEOREM

THEOREM 2

Let $\varphi(\bar{x})$ be a FO formula where $\bar{x} = (x_1, \dots, x_m)$. Then φ is logically equivalent to a Boolean combination $B(\varphi_1(\bar{u}_1), \dots, \varphi_p(\bar{u}_p), \psi_1, \dots, \psi_h)$ where:

- each φ_i is a *t*-local formula around $\bar{u}_i \subseteq \bar{x}$ (sub-tuple).
- each ψ_i is a basic (t', s)-local sentence.

B can be computed and, *t*, *t'* and *s* can be bounded in terms of *m* and the quantifier-rank of φ .

VERIFICATION OF BASIC (t, s)-local sentences

LEMMA 1

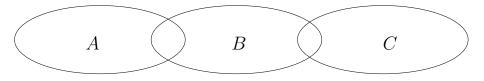
Let *G* be in a locally cwd-decomposable class. Every basic (t, s)-local sentence can be decided in polynomial time on *G*.

PROOF.

Adaptated from Frick and Grohe.

イロト イヨト イヨト イヨト

How to Check Distance at most t



- For each $x, N_G^t(x) \subseteq A$ or B or C.
- Each A, B, C of clique-width $\leq k$.
- By Courcelle-Vanicat, labelings J_A , J_B , J_C for $d(x, y) \le t$ in G[A], G[B], G[C] respectively.
- $L(x) = (J_A(x), J_B(x), J_C(x)) (J_A(x) =$ "undefined" if $x \notin A$).
- $d(x, y) \le t$ iff some pair $(J_U(x), J_U(y))$ says $d_{G[U]}(x, y) \le t$ for $U \in \{A, B, C\}$.

A *t*-Formula around one Free FO Variable

$\varphi(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ with set variables \mathbf{Y} and \mathbf{Z}

- For $\varphi(x, Y, Z)$ apply Courcelle-Vanicat to each U and get a labeling J_U .
- *x* may be in many $U \in \{A, B, C\}$ and the same for $N_G^t(x)$.
- For simplicity, let each x in A, B and C.
- $L(x) = (J_A(x), J_B(x), J_C(x)).$
- Given L(x), L(Y) and L(Z) determine the U such that N^t_G(x) ⊆ U and recover Y ∩ U and Z ∩ U.
- $G \models \varphi(x, Y, Z)$ iff $J_U(x)$ says that $G[U] \models \varphi(x, Y \cap U, Z \cap U)$.

t-local formulas (stronger statement)

Lemma 2

There exists an $O(\log(n))$ -labeling scheme for *t*-local formulas with set arguments on locally cwd-decomposable classes.

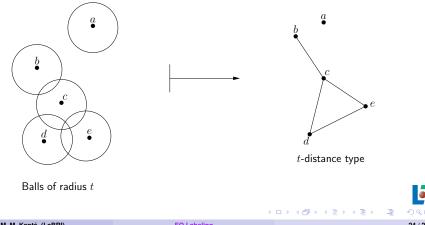
PROOF.

- We will use a decomposition of *t*-local formulas by Frick.
- Recall that Gaifman Theorem extends to FO formulas with set arguments (handled as colors of vertices; distances do not depend on colors).

t-DISTANCE TYPE

DEFINITION 1

Let *m*, *t* \geq 1. The *t*-distance type of an *m*-tuple \bar{a} is the undirected graph $\epsilon = ([m], edg_{\epsilon})$ where $edg_{\epsilon}(i, j)$ iff $d(a_i, a_j) \leq 2t + 1$.



DEFINITION 1

Let $m, t \ge 1$. The *t*-distance type of an *m*-tuple \bar{a} is the undirected graph $\epsilon = ([m], edg_{\epsilon})$ where $edg_{\epsilon}(i, j)$ iff $d(a_i, a_j) \le 2t + 1$.

SATISFACTION

The satisfaction of a *t*-distance type by an *m*-tuple can be expressed by a *t*-local formula:

$$\rho_{t,\epsilon}(x_1,\ldots,x_m) := \bigwedge_{(i,j)\in edg_{\epsilon}} d(x_i,x_j) \leq 2t+1 \land \bigwedge_{(i,j)\notin edg_{\epsilon}} d(x_i,x_j) > 2t+1.$$

Decomposition of t-local formulas

Lemma 3

Let $\varphi(\bar{x}, Y_1, \ldots, Y_q)$ be a *t*-local formula around $\bar{x} = (x_1, \ldots, x_m)$. For each *t*-distance type ϵ with $\epsilon_1, \ldots, \epsilon_p$ as connected components, one can compute a Boolean combination $F^{t,\epsilon}(\varphi_{1,1}, \ldots, \varphi_{1,j_1}, \ldots, \varphi_{p,1}, \ldots, \varphi_{p,j_p})$ of formulas $\varphi_{i,j}$ such that:

- The FO free variables of each φ_{i,j} are among x
 | ε_i (x

 of x

 to ε_i) and the set arguments remains in {Y₁,..., Y_q}.
- $\varphi_{i,j}$ is *t*-local around $\bar{x} \mid \epsilon_i$.
- For each *m*-tuple \bar{a} , each *q*-tuple of sets W_1, \ldots, W_q :

 $\boldsymbol{G} \models \rho_{t,\epsilon}(\boldsymbol{\bar{a}}) \land \varphi(\boldsymbol{\bar{a}}, \boldsymbol{W}_1, \ldots, \boldsymbol{W}_q)$

iff

$$G \models \rho_{t,\epsilon}(\bar{a}) \land F^{t,\epsilon}(\ldots,\varphi_{i,j}(\bar{a} \mid \epsilon_i, W_1,\ldots, W_q),\ldots).$$

- Let T be an (r, ℓ, g) -cwd cover of G where r = m(2t + 1).
- Label each vertex with a label K(x) of length $O(\log(n))$ for deciding if $d(x, y) \le 2t + 1$ (Distance at most *t* Slide 21).
- Let ϵ be a fixed *t*-distance type and call the algorithm of Frick (Lemma 3).
- For each $\varphi_{i,j}^{\epsilon}$, there exists a labeling $J_{i,j,U}^{\epsilon}$ in G[U] (Courcelle-Vanicat).
- For each x we append all these labels J^ε_{i,i,U} in order to get a label J_ε.
- There exists at most $k' = 2^{k(k-1)/2} t$ -distance types, we let

$$J(x) = \{ \ulcorner x \urcorner, K(x), J_{\epsilon^1}, \ldots, J_{\epsilon^{k'}} \}.$$

• It has length $O(\log(n))$ (Huge Constants).

<ロ> <四> <四> <四> <三> <三> <三> <三

- Let $J(a_1), \ldots, J(a_m)$ and $J(W_1), \ldots, J(W_q)$.
- By using K(a_i) we can construct the *t*-distance type ε satisfied by a₁,..., a_m. We can then recover J_ε(a_i).
- We let $\epsilon_1, \ldots, \epsilon_p$ be the connected components of ϵ .
- For each ā | ǫ_i there exists at least one U ∈ T such that N^t_G(ā | ǫ_i) ⊆ U. (There are less than ℓ.)
- We can now decide whether *G* satisfies φ by Lemma 3.

<ロト < 回 > < 回 > < 回 > < 回 > < 三

- Sizes of labels: a_{φ,T} · log(n). Decrease a_{φ,T} by concrete constructions avoiding logic.
- Better understanding of locally cwd-decomposable classes.
- Extension to larger classes of graphs.
- Can we extend the logic, or give at least specific constructions for interesting properties like connectivity ?
- Thank you !