
ar
X

iv
:0

81
1.

47
13

v1
 [

cs
.D

S
]

28
 N

ov
 2

00
8

Compact Labelings For Efficient First-Order

Model-Checking

Bruno Courcelle 1,2 and Cyril Gavoille 1 and Mamadou Moustapha Kanté 1

Université de Bordeaux, LaBRI, CNRS
351 cours de la Libération

33405 Talence, France

Abstract

We consider graph properties that can be checked from labels, i.e., bit sequences, of
logarithmic length attached to vertices. We prove that there exists such a labeling
for checking a first-order formula with free set variables in the graphs of every
class that is nicely locally cwd-decomposable. This notion generalizes that of a nicely
locally tree-decomposable class. The graphs of such classes can be covered by graphs
of bounded clique-width with limited overlaps. We also consider such labelings for
bounded first-order formulas on graph classes of bounded expansion. Some of these
results are extended to counting queries.

Key words: First-Order Logic; Labeling Scheme; Local Clique-Width; Local
Tree-Width; Locally Bounded Clique-Width.

1 Introduction

The model-checking problem for a class of structures C and a logical language
L consists in deciding for given S ∈ C, and for some fixed sentence ϕ ∈ L
if S |= ϕ, i.e., if S satisfies the property expressed by ϕ. More generally, if
ϕ is a formula with free variables x1, . . . , xm one may ask whether S satisfies
ϕ(a1, . . . , am) where a1, . . . , am are values given to x1, . . . , xm. One may also
wish to list the set of m-tuples (a1, . . . , am) that satisfy ϕ in S, or simply count
them.

1 Supported by the GRAAL project of “Agence Nationale pour la Recherche”.
2 Member of “Institut Universitaire de France”.

Preprint submitted to Elsevier 1 December 2008

http://fr.arXiv.org/abs/0811.4713v1

Polynomial time algorithms for these problems (for fixed ϕ) exist for certain
classes of structures and certain logical languages. In this sense graphs of
bounded degree “fit” with first-order (FO for short) logic [28,12] and graphs
of bounded tree-width or clique-width “fit” with monadic second-order (MSO
for short) logic. Frick and Grohe [14,15,17] have defined Fixed Parameter
Tractable (FPT for short) algorithms for FO model-checking problems on
classes of graphs that may have unbounded degree and tree-width (definitions
and examples are given in Section 4) and our results will concern such classes.
We will also use graph classes of bounded expansion, a notion introduced by
Nešetřil and Ossona de Mendez [26].

We will use similar tools for the following labeling problem: let be given a class
of graphs C and a property P (x1, . . . , xm, Y1, . . . , Yq) of vertices x1, . . . , xm

and of sets of vertices Y1, . . . , Yq of graphs in C. Our aim is to design two
algorithms: an algorithm A that attaches to each vertex x of a given graph
of C a label L(x), defined as a sequence of 0’s and 1’s, and an algorithm B
that checks the property P (x1, . . . , xm, Y1, . . . , Yq) by using the labels and no
other information about the considered graph. This latter algorithm must take
as input the labels L(x1), . . . , L(xm) and the sets of labels L(Y1), . . . , L(Yq) of
the sets Y1, . . . , Yq and tells whether P (x1, . . . , xm, Y1, . . . , Yq) is true. Moreover
each label L(x) identifies the vertex x in the graph. An f -labeling scheme for a
class of structures C is a pair (A,B) of algorithms solving the labeling problem
and using labels of length at most f(n) for n-vertex graphs of C. Results of
this type have been established for monadic second-order (MSO for short)
logic by Courcelle and Vanicat [10] and, for particular properties (connectivity
queries, that are expressible in MSO logic) by Courcelle and Twigg in [9] and
by Courcelle et al. in [6].

Let us review the motivations for looking for compact labelings. By compact,
we mean of length of order less than O(n), where n is the number of vertices
of the graph, hence in particular of length logO(1)(n).

In distributed computing over a communication network with underlying graph
G, nodes must act according to their local knowledge only. This knowledge
can be updated by message passing. Due to space constraints on the local
memory of each node, and on the sizes of messages, a distributed task cannot
be performing by representing the whole graph G in each node or in each
message. It must rather manipulate compact representations of G, distributed
in a balanced way over the graph. For an example, the routing task may
use routing tables that are sub-linear in the size of G (preferably of poly-
logarithmic size), and short addresses transmitted in the headers of messages
(of poly-logarithmic size too). As surveyed in [18] many distributed tasks can
be optimized by the use of labels attached to vertices. Such labels should
be usable even when the network has node or link crashes. They arise from
forbidden-set labeling schemes in [9]. In this framework, local informations can

2

be updated by transmitting to all surviving nodes the list of (short) labels of
all defected nodes and links, so that the surviving nodes can update their local
information, e.g., their routing tables.

Let us comment about using set arguments. The forbidden (or defective) parts
of a network are handled as sets of vertices passed to a query as an argument.
This means that algorithm A computes the labels once and for all, inde-
pendently of the possible forbidden parts of the network. In other words the
labeling supports node deletions from the given network. (Edge deletions are
supported in the labelings of [6] and [9].)

If the network is augmented with new nodes and links, the labels must be
recomputed. We leave this incremental extension as a topic for future research.

Set arguments can be used to handle deletions, but also constraints, or queries
like “what are the nodes that are at distance at most 3 of X and Y ” where X
and Y are two specified sets of nodes.

This article is organized as follows. In Section 2 we give some preliminary
definitions regarding first-order logic and we define the notions of clique-width
and of labeling schemes. Section 3 deals with first-order logic and needed
results. In Section 4 we define the notions of local bounded clique-width and of
nicely locally cwd-decomposable. We give some examples and some preliminary
results. Section 5 is devoted to the proofs of the main results of this article.
In Section 6 we extend some of the main results to counting queries.

2 Definitions

Our results concern graph properties expressed by logical formulas, which
assumes that graphs are represented by relational structures. All graphs and
relational structures will be finite.

A relational signature is a finite set R = {R, S, T, . . .} of relation symbols,
each of which given with an arity ar(R) ≥ 1. A finite relational R-structure

S is defined as 〈DS, (RS)R∈R 〉 where RS ⊆ D
ar(R)
S . The set DS is called the

domain of S. A relational signature R is binary if ar(R) ≤ 2 for all R ∈ R. A
relational structure is binary if it is a relational R-structure for some binary
relational signature R. We let Ri be the set of symbols of arity i.

A binary relational R-structure S = 〈DS, (RS)R∈R 〉 will be identified with
a colored graph G with vertex set DS, that has an edge from x to y colored
by R in R2 if and only if RS(x, y) holds, and such that a vertex x has color
P in R1 if and only if P (x) holds. Hence, G is a directed graph such that

3

each edge has a color and a vertex a possibly empty set of colors 3 . We use
standard graph theoretical notations: VG for vertex set, EG for edge set and
we will write G as the relational structure 〈VG, (edgaG)a∈C2

, (paG)a∈C1
〉 where

R2 = {edga | a ∈ C2} and R1 = {pa | a ∈ C1}. Such a graph is not colored
if R2 = {edg} and R1 = ∅. A graph represented by the relational structure
〈VG, (edgaG)a∈C2

, (paG)a∈C1
〉 is called a C-graph, C = C1 ∪ C2.

Let G be a graph, colored or not. If X is a subset of the set of vertices of G,
we let G[X] be the induced sub-graph of G with vertex set X and induced
colors in the obvious way and, we let G\X be the sub-graph G[VG −X] 4 .

IfX is a subset of VG, we letN t
G(X) be the set {y ∈ VG | d(x, y) ≤ t for some x ∈

X} and d(x, y) is the length of a shortest undirected path between x and y in
G.

An undirected graph is a graph G such that R2 = {edg} and edg is symmetric.
If G is any graph and m ≥ 1, we denote by Gm the simple, loop-free undirected
graph such that VGm = VG and two distinct vertices x and y are adjacent in
Gm if and only if d(x, y) ≤ m.

A graph has arboricity at most k if it is the union of k edge-disjoint forests
(independently of the colors of its edges and of its vertices).

We now define first-order logic and monadic second-order logic on relational
structures and thus, on graphs. Let R be a relational signature. Atomic for-
mulas over relational R-structures are x = y, x ∈ X and R(x1, . . . , xar(R)) for
all relations R in R. A first order formula (FO formula for short) over rela-
tional R-structures is a formula formed from atomic formulas over relational
R-structures with Boolean connectives ∧,∨,¬,⇒ and first-order quantifica-
tions ∃x and ∀x. We may have free set variables. A monadic second-order
formula (MSO formula for short) over relational R-structures is formed as
FO formulas over relational R-structures with set quantifications ∃X, ∀X. By
formulas (FO or MSO) we mean formulas written with the signature appro-
priate for the considered relational structures. If the free variables of a formula
ϕ are among x1, . . . , xm, Y1, . . . , Yq we will write ϕ(x1, . . . , xm, Y1, . . . , Yq). A
sentence is a formula without free variables. We write S |= ϕ to mean that
the sentence ϕ is satisfied by the relational structure S.

The tree-width [4] of a graph is independent of edge directions and of the
colors of edges and vertices. It is a well-known graph parameter and yields
many algorithmic properties surveyed by Grohe [17] and Kreutzer [23]. The

3 It is technically useful in many cases to have several colors attached to a vertex.
Furthermore, these colored graphs correspond to relational structures with relation
symbols of arity 1 (vertex colors) and 2 (edge colors)
4 If X is the singleton {x}, we write G\x instead of G\{x}.

4

survey [5] by Bodlaender presents tree-width and recent developments about
this notion.

Clique-width [8] is another graph parameter that yields interesting algorithmic
results. It is sensible to colors and directions of edges. The original definition
of clique-width in [8] concerns only uncolored graphs. However, it can be
extended to colored graphs [3,13].

Definition 2.1 (Clique-Width of Colored Graphs) We let C be the fi-
nite set (C = C1 ∪ C2) of colors for vertices and edges. In order to construct
graphs, we will use the set [k] := {1, 2, . . . , k} for k ≥ 1 to color also ver-
tices, with one and only one color for each vertex. A k-C-graph (or k-graph
if R = {edg}) G is defined as G = 〈 VG, (edgaG)a∈C2

, (paG)a∈C1
, labG 〉 where

labG : VG → [k] is a total function and the other components are as defined
above. We give several operations on k-C-graphs.

(1) For k-C-graphs G and H such that VG ∩ VH = ∅, we let G ⊕ H be the
k-C-graph K where:

VK = VG ∪ VH ,

paK(x) =





paG(x) if x ∈ VG

paH(x) if x ∈ VH

for all a ∈ C1.

edgaK(x, y) =




edgaG(x, y) if x, y ∈ VG

edgaH(x, y) if x, y ∈ VH

for all a ∈ C2.

labK(x) =




labG(x) if x ∈ VG

labH(x) if x ∈ VH .

The graph G⊕H is well-defined up to isomorphism.
(2) For a k-C-graph G, for a color b in C2 and for distinct i, j ∈ [k], we

denote by ηb
i,j(G), the k-C-graph K = 〈VG, (edgaK)a∈C2

, (paG)a∈C1
, labG 〉

where:

edgaK =




edgaG if a 6= b

edgbG ∪ {(x, y) | x, y ∈ VG ∧ x 6= y ∧ i = labG(x), j = labG(y)} if a = b.

(3) For a k-C-graph G, for distinct i, j ∈ [k], we denote by ρi→j(G), the
k-colored graph K = 〈VG, (edgaG)a∈C2

, (paG)a∈C1
, labK 〉 where

labK(x) =




j if labG(x) = i,

labG(x) otherwise.

(4) For each i ∈ [k] and each A ⊆ C, iA denotes a k-C-graph with a single
vertex x with labiA(x) = i such that paiA(x) holds if and only if a ∈ A∩C1

5

and edgaiA(x, x) holds if and only if a ∈ A ∩ C2. We let CC,k = {iA | i ∈
[k], A ⊆ C}.

We let FC,k = {⊕, ηa
i,j, ρi→j | i, j ∈ [k], a ∈ C}. Each term t in T (FC,k, CC,k)

has a value val(t): it is the k-C-graph obtained by evaluating t according to def-
initions (1)-(4). The clique-width of a (colored) graph G, denoted by cwd(G),
is the minimum k such that G is isomorphic to val(t) for some term t in
T (FC,k, CC,k).

There is a function f : N × N → N such that if a C-graph has tree-width
w then, it has clique-width at most f(w, |C|). The proof of [8] that concerns
uncolored graphs can be adapted. The converse is false because cliques have
clique-width 2 and unbounded tree-width. For fixed k, there exists a cubic-
time algorithm that given an undirected C-graph G either outputs that it has
clique-width at least k + 1 or outputs a term t in T (F a

C,k′, Ca
C,k′) that defines

G with k′ = 2k+1−1 [27,20]. This algorithm can be adapted to colored graphs
with k′ = g(k) for some function g [22]. Also, every property expressible
in MSO logic can be checked in cubic-time in classes of colored graphs of
bounded clique-width by combining the results of [7] and of [22]. The survey
by Kamiński et al. [21] presents recent results on clique-width.

We now define the notion of bounded expansion [26]. As tree-width, it is in-
dependent of colors of vertices and/or edges. Graph classes with bounded ex-
pansion, defined in [26], have several equivalent characterizations. We will use
the following one.

Definition 2.2 (Bounded Expansion) A class C of colored graphs has bounded
expansion if for every integer p, there exists a constant N (C, p) such that for
every G ∈ C, one can partition its vertex set in at most N (C, p) parts such
that any i parts for i ≤ p induce a sub-graph of tree-width at most i− 1.

The case i = 1 of Definition 2.2 implies that each part is a stable set, hence
the corresponding partition can be seen as a proper vertex-coloring. We finish
these preliminary definitions by introducing the notion of labeling scheme.

Definition 2.3 (Labeling Scheme) Let R be a relational signature. Let S =
〈DS, (RG)R∈R 〉 be a relational R-structure. A labeling of S is an injective
mapping J : DS → {0, 1}∗ (or into some more convenient set Σ∗ where Σ is a
finite alphabet). If Y is a subset of DS we let J (Y) be the family (J (y))y∈Y .
Clearly each set Y is defined from J (Y).

Let ϕ(x̄, Y) be an FO or MSO formula over relational R-structures where x̄
is an m-tuple of FO variables and Y a q-tuple of set variables. Let C be a
class of relational R-structures and let f : N → N be an increasing function.
An f -labeling scheme supporting the query defined by ϕ in the relational R-
structures of C is a pair (A,B) of algorithms doing the following:

6

(1) A constructs for each S in C a labeling J of S such that |J(a)| = O(f(n))
for every a ∈ DS, where n = |DS|.

(2) If J is computed from S by A, then B takes as input an (m+ q)-tuple
(J(a1), . . . , J(am), J(W1), . . . , J(Wq)) and says correctly whether:

S |= ϕ(ā,W).

Labeling schemes based on logical descriptions of queries by MSO formulas
have been first defined by Courcelle and Vanicat [10] for graphs of bounded
clique-width (whence also of bounded tree-width). We recall this theorem. If
W is a q-tuple of sets, we let |W | = |W1| + · · · + |Wq| and if ā is an m-tuple
of vertices, we let |ā| = m.

Theorem 2.4 Let k be a positive integer and let C be a finite set of col-
ors. Then, for every MSO formula ϕ(x1, . . . , xm, Y1, . . . , Yq) there exists a log-
labeling scheme (A,B) for ϕ on the class of C-graphs of clique-width at most k.
Moreover, if the input C-graph has n vertices, algorithm A computes the labels
J(x) of all vertices x in time O(n3) or in time O(n · log(n)) if the clique-width
expression of the graph is given. Given J(a1), . . . , J(am) and J(W1), . . . , J(Wq)
algorithm B checks whether ϕ(ā,W) holds in time O(log(n) · (|W | + |ā| + 1))

For n-vertex C-graphs of tree-width at most k, algorithm A builds the labelings
in time O(n · log(n)).

The proof of Theorem 2.4 combines the construction of [10] that works for
graphs given with their decompositions, and “parsing” results by Bodlaender
[4] for tree-width and, by Hliněný, Oum and Seymour [20,27] and Kanté [22] for
clique-width (discussed above). Labeling schemes for distance and connectivity
queries in respectively graphs of bounded clique-width and in planar graphs
have been given respectively by Courcelle and Twigg in [9] and by Courcelle,
Gavoille, Kanté and Twigg in [6].

In the present article, we consider classes of graphs of unbounded clique-
width and, in particular, classes that are locally decomposable (Frick and Grohe
[14,15]) and classes of bounded expansion. So, MSO logic is out of reach for
such classes and we will consider FO logic over C-graphs.

3 Bounded and Local First-Order Formulas

The definitions below concern binary relational structures called graphs since
they correspond to colored graphs as explained in Section 2. Formulas are
written over binary relational structures for a fixed binary relational signature
that we do not specify all the time.

7

Definition 3.1 (Bounded Formulas) An FO formula ϕ (x1, . . . , xm, Y1, . . . , Yq)
is a basic bounded formula if for some p ∈ N we have the following equivalence
for all graphs G, all a1, . . . , am ∈ VG and all W1, . . . ,Wq ⊆ VG

G |= ϕ (a1, . . . , am,W1, . . . ,Wq) iff G[X] |= ϕ (a1, . . . , am,W1 ∩X, . . . ,Wq ∩X)

for some X ⊆ VG such that a1, . . . , am ∈ X and |X| ≤ p.

If this is true for X, then G[Y] |= ϕ(a1, . . . , am,W1∩Y, . . . ,Wq ∩Y) for every
Y ⊇ X. We call p a bound on the quantification space.

An FO formula is bounded if it is a Boolean combination of basic bounded
formulas.

The negation of a basic bounded formula is not (in general) basic bounded,
but it is bounded. The property that a graph has a sub-graph isomorphic to
a fixed graph H is expressible by a bounded formula.

We still call sentence an FO formula without free FO variables that has free
set variables.

Definition 3.2 (Local Formulas) An FO formula ϕ (x1, . . . , xm, Y1, . . . , Yq)
is t-local around (x1, . . . , xm) if for every graph G, all a1, . . . , am in VG and
all subsets W1, . . . ,Wq of VG we have

G |= ϕ (a1, . . . , am,W1, . . . ,Wq) iff G[N] |= ϕ (a1, . . . , am,W1 ∩N, . . . ,Wq ∩N)

where N = N t
G({a1, . . . , am}).

An FO sentence ϕ(Y1, . . . , Yq) is basic (t, s)-local if it is equivalent to a sen-
tence of the form

∃x1 · · · ∃xs




∧

1≤i<j≤s

d (xi, xj) > 2t ∧
∧

1≤i≤s

ψ (xi, Y1, . . . , Yq)




where ψ (x, Y1, . . . , Yq) is t-local around its unique free variable x.

Remark 3.3 The property d (x, y) ≤ r is basic bounded (for p = r + 1) and
t-local for t = ⌊r/2⌋. Its negation d (x, y) > r is t-local and bounded (but not
basic bounded).

We now recall a decomposition of FO formulas into t-local and basic (t′, s)-
local formulas due to Gaifman [16].

Theorem 3.4 ([24]) Every FO formula ϕ(x̄, Y) is logically equivalent to a

Boolean combination B
(
ϕ1(u1, Y), . . . , ϕp(up, Y), ψ1(Y), . . . , ψh(Y)

)
where:

8

• each ϕi is a t-local formula around some sub-sequence ui of x̄,
• each ψi is a basic (t′, s)-local sentence.

Moreover B can be computed effectively and, the integers t, t′ and s can be
bounded in terms of m and the quantifier-rank of ϕ.

This theorem is usually stated and proved for FO formulas without free set
variables. However, in an FO formula, a set variable Yi occurs in atomic formu-
las of the form “y ∈ Yi”. This is equivalent to “Ri(y)” if Ri is a unary relation
representing Yi. We denote by ϕ′(x̄) the formula obtained from ϕ(x̄, Y1, . . . , Yq)
by replacing every sub-formula “y ∈ Yi” by “Ri(y)”. In order to prove that
two FO formulas ϕ(x̄, Y1, . . . , Yq) and ψ(x̄, Y1, . . . , Yq) are equivalent in every
relational structure of a class C of relational R-structures, it is enough to
prove that the corresponding formulas ϕ′(x̄) and ψ′(x̄) are equivalent in every
relational structure S ′ that is an expansion of a relational structure S in C by
unary relations R1, . . . , Rq. Hence, Theorem 3.4 follows from its usual formu-
lation for FO formulas without free set variables. The same holds for Theorem
3.5 below.

We will use a stronger form of Theorem 3.4 from [14], that decomposes t-local
formulas. Let m, t ≥ 1. The t-distance type of an m-tuple ā is the undirected
graph ∆(ā) = ([m], edg∆(ā)) where edg∆(ā)(i, j) iff d(ai, aj) ≤ 2t+ 1. For each
graph ∆ the property that an m-tuple ā satisfies ∆(ā) = ∆ can be expressed
by a t-local formula ρt,∆(x1, . . . , xm) equivalent to:

∧

(i,j)∈edg∆

d(xi, xj) ≤ 2t+ 1 ∧
∧

(i,j)/∈edg∆

d(xi, xj) > 2t+ 1.

Theorem 3.5 ([14]) Let ϕ(x̄, Y) be a t-local formula around the m-tuple x̄,
m ≥ 1 with Y = (Y1, . . . , Yq). For each t-distance type ∆ with connected com-
ponents ∆1, . . . ,∆p one can compute a Boolean combination F t,∆(ϕ1,1, . . . , ϕ1,j1,
. . . , ϕp,1, . . . , ϕp,jp

) of formulas ϕi,j with free variables in x̄ and in Y such
that:

• The free FO variables of each ϕi,j belong to x̄ | ∆i (where x̄ | ∆i denotes
the restriction of x̄ to ∆i).

• ϕi,j is t-local around x̄ | ∆i.
• For each m-tuple ā, each q-tuple of sets W , G |= ρt,∆(ā) ∧ ϕ(ā,W) iff
G |= ρt,∆(ā) ∧ F t,∆(. . . , ϕi,j(ā | ∆i,W), . . .).

We are interested in on-line checking properties of networks in case of (re-
ported) failures of some nodes (nodes are vertices of the associated graphs).
Hence, for each property of interest, defined by a formula ϕ (x1, . . . , xm), we are
not only interested in checking ifG |= ϕ (a1, . . . , am) by using J (a1) , . . . , J (am)
for a1, . . . , am ∈ VG, but also, in checking if G\W |= ϕ (a1, . . . , am) by using
J (a1) , . . . , J (am) and J (W) where W is a subset of VG −{a1, . . . , am}. How-

9

ever, the property G\W |= ϕ (a1, . . . , am) for an FO formula ϕ(x1, . . . , xm)
is equivalent to G |= ϕ′ (a1, . . . , am,W) and to GW |= ϕ′′ (a1, . . . , am) for
FO formulas ϕ′(x1, . . . , xm, Y) and ϕ′′(x1, . . . , xm) that are easy to write. We
denote by GW the graph G equipped with an additional vertex-color ⊥, i.e., as
the structure G expanded with a unary relation p⊥ such that p⊥GW

(u) holds
iff u ∈W . We will handle “holes” in graphs by means of set variables.

4 Locally Decomposable Classes

We will use the same notations as in [14,15]. Definition 4.1 is analogous to [15,
Definition 5.1].

Definition 4.1 (Local Clique-Width)

(1) The local clique-width of a graph G is the function lcwG : N → N defined
by lcwG(t) := max{cwd(G[N t

G(a)]) | a ∈ VG}.
(2) A class C of graphs has bounded local clique-width if there is a function

f : N → N such that lcwG(t) ≤ f(t) for every G ∈ C and t ∈ N.

Examples of Graphs of Bounded Local Clique-Width

(1) Every class of graphs of bounded clique-width has also bounded local
clique-width since cwd(G[A]) ≤ cwd(G) for every A ⊆ VG (see [8]).

(2) The classes of graphs of bounded local tree-width have bounded lo-
cal clique-width since every class of graphs of bounded tree-width has
bounded clique-width (see [8]). We can cite graphs of bounded degree
and minor-closed classes of graphs that exclude some apex-graph as a
minor 5 (see [14,15]) as examples of classes of bounded local tree-width.

(3) Let m be a positive integer and let C be a class of graphs of bounded local
clique-width. Then Cm = {Gm | G ∈ C} has bounded local clique-width.
Let sketch the proof. Let G be a graph in C. For every vertex x of G
and every positive integer r we have N r

Gm(x) ⊆ N rm
G (x). Hence, for every

graph G in C and for every positive integer r, lcwGm

(r) ≤ f(rm) where
f is the function that bounds the local clique-width of graphs in C.

The same holds for Line(C) = {Line(G) | G ∈ C} 6 if C has bounded
local tree-width. Let G be a graph in C and let K = Line(G). For every e
and e′ in EG = VK we have dG(x, y) ≤ dK(e, e′) + 1 if x is any end vertex
of e and y is any end vertex of e′. It follows that K[N r

K(e)] = Line(H)

5 An apex-graph is a graph G such that G\u is planar for some vertex u.
6 If G is a graph we denote by K = Line(G), called the line graph of G, the graph
with vertex set the set of edges of G and edgK(x, y) holds if and only if x and y are
incident.

10

where H is a sub-graph of G[N r+1
G (x)] and x is an end vertex of e. If C

has bounded local tree-width then twd(H) ≤ twd(G[N r+1
G (x)) ≤ f(r) 7

for some function f , hence cwd(K[N r
K(e)]) = cwd(Line(H)) ≤ g(f(r))

for some function g by a result of [19]. Hence, the class C has bounded
local clique-width.

(4) The class of interval graphs has not bounded local clique-width. Other-
wise, interval graphs would have bounded clique-width, because if we add
to an interval graph a new vertex adjacent to all, we obtain an interval
graph of diameter 2.

In order to obtain a log-labeling scheme for certain classes of graphs of bounded
local clique-width, we will cover their graphs, as in [14,15], by graphs of
bounded clique-width. In [14] a notion of nicely locally tree-decomposable class
of structures was introduced. We will define a slightly more general notion.
But before we define the intersection graph of a cover of a graph G, i.e., a
family T of subsets of VG the union of which is VG.

Definition 4.2 (Intersection Graph) Let G be a graph and let T be a cover
of G. The intersection graph of T is the undirected graph G(T) where VG(T) :=
{xU | U ∈ T } and xUxV ∈ EG(T) if and only if U ∩ V 6= ∅.

Definition 4.3 (Graph Covers) Let r, ℓ ≥ 1 and g : N → N. An (r, ℓ, g)-
cwd cover of a graph G is a family T of subsets of VG such that:

(1) For every a ∈ VG there exists a set U ∈ T such that N r
G (a) ⊆ U .

(2) The graph G(T) has degree at most ℓ.
(3) For each U ∈ T we have cwd(G[U]) ≤ g(1).

An (r, ℓ, g)-cwd cover is nice if condition (3) is replaced by condition (3’)
below:

(3’) For all U1, . . . , Uq ∈ T and q ≥ 1 we have cwd(G[U1 ∪ · · · ∪ Uq]) ≤ g(q).

A class C of graphs is (nicely) locally cwd-decomposable if every graph G in
C has, for each r ≥ 1, a (nice) (r, ℓ, g)-cwd cover for some ℓ, g depending on
r (but not on G).

The notions of locally cwd-decomposable and of nicely locally cwd-decomposable
are the same as in [15,14] where we substitute clique-width to tree-width ex-
cept that our definition requires nothing about the time necessary to compute
covers.

7 We denote by twd(G) the tree-width of a graph G.

11

Examples of (Nicely) Locally Cwd-Decomposable Graph Classes

(1) Every nicely locally cwd-decomposable class is locally cwd-decomposable
and the converse does not seem to be true (but we do not have a coun-
terexample).

(2) Each class of nicely locally tree-decomposable graph is nicely locally cwd-
decomposable.

(3) We do not know if every graph class of bounded local clique-width is
locally cwd-decomposable. We conjecture that there exists a graph class
of bounded local clique-width which is not locally cwd-decomposable.

(4) Figure 1 shows inclusion relations between the many classes defined in
Sections 3 and 4.

Bounded expansion

Bounded arboricityBounded local clique−width

Locally cwd−decomposable
Bounded local tree−width

Nicely locally cwd−decomposable Locally tree−decomposable

Nicely locally tree−decomposable

Bounded degree

Excludes a minor

Planar

Apex minor−free

Fig. 1. Inclusion diagram indicating which results apply to which classes. An arrow
means an inclusion of classes. Bold boxes are used in this paper.

Fact 4.4 The class of unit-interval graphs is nicely locally cwd-decomposable.

Proof. We first prove that unit-interval graphs have bounded local clique-
width. We let Hn,m be the graph 〈V1 ∪ · · · ∪ Vn, E1 ∪ E2 〉 with nm vertices

12

such that:

Vi = {vi,1, . . . , vi,m},
E1 =

⋃

1≤i≤n

{vi,jvi,ℓ | j, ℓ ≤ m},

E2 =
⋃

1≤i≤n−1

1≤j≤m

{vi,jvℓ,j | ℓ = i+ 1, . . . , m}

Figure 2 shows the graph H4,4. Lozin [25] showed that every unit-interval
graph with n vertices is an induced sub-graph of Hn,n.

Let G be a unit-interval graph with n vertices. Then for every positive integer
r and every vertex x of G the sub-graph G[N r

G(x)] is an induced sub-graph of
Hr,n, i.e., has clique-width at most 3r since for every positive integers s and t
the clique-width of Hs,t is at most 3s [25]. (Bagan gives in [2] another proof
stating that unit-interval graphs have bounded local clique-width.)

We now prove that the class of unit-interval graphs is nicely locally cwd-
decomposable. Let G be a unit-interval graph. For 1 ≤ i ≤ n − 1 we let
Gi = N r+1

G (vi,1). It is clear that the family {Gi | 1 ≤ i ≤ n − 1} is a nice
(r, 2r + 2, 3 · (r + 1))-cwd cover of G. 2

H4,4

V1

V2

V3

V4

Fig. 2. The graph H4,4. Each Vi, for 1 ≤ i ≤ 4, induces a clique.

The lemma below is an easy adaptation of the results in [15].

Lemma 4.5 Let G be in a class of graphs of bounded local clique-width and
let ϕ be a basic (t, s)-local sentence without set variables. We can check in time
O(n4) whether G satisfies ϕ, n = |VG|.

13

Proof Sketch. Let G be in a class C of graphs of bounded local clique-width
and let f be the function that bounds the local clique-width of graphs in C.
Let ϕ be a basic (t, s)-local sentence, equivalent to

∃x1 · · · ∃xs




∧

1≤i<j≤s

d (xi, xj) > 2t ∧
∧

1≤i≤s

ψ(xi)





where ψ(x) is t-local around its unique free variable x.

For each vertex a in G we can compute the set N t
G(a), of size at most n, in

time O(n2). Since cwd(G[N t
G(a)]) ≤ f(t), we can verify in time O(n3) if G

satisfies ϕ(a) by combining the results in [20] and in [7]. We can then compute
in time O(n4) the set {a ∈ VG | G |= ϕ(a)}. The formula ϕ is valid in G if and
only if there exist a1, . . . , as in P such that d(ai, aj) > 2t. It is proved in [17]
that we can verify their existence in time O(n3). 2

5 Labeling Schemes for First-Order Queries

Our results concern 4 types of graph classes (see Figure 1) and 5 types of FO
queries. We now state the main theorem of this section.

Theorem 5.1 (First Main Theorem) There exist log-labeling schemes (A,B)
for the following queries and graph classes. In each case the input graph has
n vertices and each query is denoted by ϕ(x̄, Y).

(1) Quantifier-free queries in graphs of bounded arboricity. Algorithm A con-
structs a labeling in time O(n). Algorithm B gives the answer in time
O(log(n) · (|ā| + |W | + 1)) for every tuples ā and W . The same labeling
can be used to check all quantifier-free queries.

(2) Bounded FO queries for each class of graphs of bounded expansion. Algo-
rithm A constructs a labeling in time O(n). Algorithm B gives the answer
in time O(log(n) · (|ā| + |W | + 1)) for every tuples ā and W .

(3) Local queries with set arguments on locally cwd-decomposable classes. Al-
gorithm A constructs a labeling in time O(f(n)+n4) where f is the time
taken to construct a cwd-cover. Algorithm B gives the answer in time
O(log(n) · (|ā|2 + |W | + 1)) for every tuples ā and W .

(4) FO queries without set arguments on locally cwd-decomposable classes.
Algorithm A constructs a labeling in time O(f(n) + n4) where f is the
time taken to construct a cwd-cover. Algorithm B gives the answer in
time O(log(n) · (|ā|2)) for every tuple ā.

(5) FO queries with set arguments on nicely locally cwd-decomposable classes.
Algorithm A constructs a labeling in time O(f(n) + n4) where f is the
time taken to construct a nice cwd-cover. Algorithm B gives the answer

14

in time O(log(n) · (|ā|2 + |W | + 1)) for every tuples ā and W .

Proof of Theorem 5.1 (1). Let G be a colored graph with n vertices,
represented by the relational structure 〈VG, (edgaG)a∈C2

, (paG)a∈C1
〉. We recall

that edga is binary and pa is unary.

Assume that und(G), the graph obtained from G by forgetting edge directions
and colors of vertices and of edges, is a forest. Let R be a subset of VG that
contains one and only one vertex of each connected component, which is a
tree, of G. For each color a in C2 we let f+

a , f
−
a : VG → VG be mappings such

that:

- f+
a (u) = v iff edga(u, v) in G and v is on the unique undirected

path between u and some vertex of R
- f−

a (u) = v iff edga(v, u) in G and v is on the unique undirected
path between u and some vertex of R.

The edge relation in G is defined by:

edgaG(u, v) ⇐⇒ v = f+
a (u) ∨ u = f−

a (v) (1)

If G is the union of k edge-disjoint forests F1, . . . , Fk we take the pairs (f+
i,a, f

−
i,a)

for each forest und(Fi). The edge relation of G is defined in a similar way as
in (1) with 2k unary functions by letting

edgaG(u, v) ⇐⇒
∨

i∈[k]

v = f+
i,a(u) ∨ u = f−

i,a(v) (2)

We let C1 = {c1, . . . , cℓ}. For each vertex x of G we let bx be the Boolean
vector (ba1

, . . . , baℓ
) where bai

= 1 if and only if pciG(x) holds. If vertices are
numbered from 1 to n and pxq is the bit representation of the index of x, then
we let

J(x) =
(
pxq, pf+

1,a1
(x)q, pf−

1,a1
(x)q, . . . , pf+

k,aℓ
(x)q, pf−

k,aℓ
(x)q, bx

)
.

It is clear that |J(x)| = O(log(n)). We now explain how to check any quantifier-
free formula.

Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a quantifier-free formula. For all m-tuples
(a1, . . . , am) of VG and all q-tuples (W1, . . . ,Wq) of subsets of VG we can deter-
mineG[{x1, . . . , xm}∪W1∪· · ·∪Wq] from J(a1), . . . , J(am) and J(W1), . . . , J(Wq),
and check if ϕ(ā,W) holds.

It is clear that if the input graph has n vertices andm edges then our algorithm
constructs the labels in time O(n+m). But, if a graphG has arboricity at most

15

k, then the number of edges is linear in the number of vertices of G. Therefore,
the labels are constructed in linear-time. We now examine the time taken to
check whether G satisfies ϕ(a1, . . . , am,W1, . . . ,Wq). For each x ∈ {a1, . . . , am}
it takes constant time to check whether pciG(x) holds by using the bx part of
J(x). For every x and y in W1 ∪ · · · ∪Wq ∪ {a1, . . . , am} and every c in C2

it takes time O(log(n)) to check whether edgcG(x, y) holds and it takes time
O(|Wi| · log(n)) to check if x is in Wi. Therefore we can check the validity of
ϕ(a1, . . . , am,W1, . . . ,Wq) in time O(log(n) · (|W |+ |ā|+1)) since a quantifier-
free formula is a Boolean combination of atomic formulas. 2

Proof of Theorem 5.1 (2). Let C be a class of graphs of bounded expansion
and let G in C be a graph with n vertices, represented by the relational struc-
ture 〈 VG, (edgaG)a∈C2

, (paG)a∈C1
〉. Let ϕ(x1, . . . , xm, Y1, . . . , Yq) with m ≥ 1 be

a be a basic bounded formula with bound p on the quantification space (see
Definition 3.1). We let N = N(C, p) and we partition VG into V1⊎V2⊎· · ·⊎VN

as in the definition (Definition 2.2) with each Vi nonempty. (We denote by ⊎
the disjoint union of sets.)

For every α ⊆ [N] of size p we let Vα =
⋃

i∈α Vi so that the tree-width of G[Vα]
is at most p− 1. Each vertex x belongs to less than (N − 1)p−1 sets Vα.

Hence the basic bounded formula ϕ(x̄, Y) is true in G iff it is true in some
G[X] with |X| ≤ p, hence in some G[Vα] such that x1, . . . , xm ∈ Vα. For each
α we construct a labeling Jα of G[Vα] (of tree-width at most p−1) supporting

query ϕ by using Theorem 2.4. We let J(x) =
(
pxq, {(pαq, Jα(x)) | x ∈ Vα}

)
.

We have |J(x)| = O(log(n)).

Given vertices a1, . . . , am and sets of vertices W1, . . . ,Wq we now explain how
to decide the validity of ϕ(ā, Y) by using J(a1), . . . , J(am) and J(W1), . . . , J(Wq).
From J(a1), . . . , J(am) we can determine all those sets α such that Vα contains
a1, . . . , am. Using the components Jα(·) of J(a1), . . . , J(am) and the labels in
J(W1), . . . , J(Wq) we can determine if for some α, G[Vα] |= ϕ(a1, . . . , am,W1∩
Vα, . . . ,Wq ∩ Vα) hence whether G |= ϕ(a1, . . . , am,W1, . . . ,Wq).

It remains to consider the case of a basic bounded formula of the form ϕ(Y1, . . . , Yq),
i.e., where m = 0. For each α we determine the truth value bα of ϕ(∅, . . . , ∅)
in G[Vα]. The family of pairs (α, bα) is of fixed size (depending on p) and is
appended to J(x) defined as above (suitably appended as a sequence of bits).
From J(W1), . . . , J(Wq) we get D = {α | Vα ∩ (W1 ∪ · · · ∪Wq) 6= ∅}.

By using the Jα(·) components of the labels in J(W1) ∪ · · · ∪ J(Wq) we can
determine if for some α ∈ D we have G[Vα] |= ϕ(W1∩Vα, . . . ,Wq ∩Vα). If one
is found we can conclude positively. Otherwise, we look for some bβ = true

such that β /∈ D. The final answer is positive if such β is found.

16

For a Boolean combination of basic bounded formulas ϕ1, . . . , ϕt with associ-
ated labelings J1, . . . , Jt we take the concatenation J1(x), J2(x), · · · , Jt(x) of
the corresponding labels. It is of size O(log(n)) and gives the desired result.

In [26] Nešetřil and Ossona de Mendez described a linear-time algorithm that
computes the partition {V1, . . . , VN}. The number of sets Vα where α is a
subset of [N] of size p is bounded by Np. Then the number of graphs G[Vα] is
bounded by Np. Then the labeling J is constructed in linear-time since each
labeling Jα is constructed in linear-time by Theorem 2.4.

We now examine the time taken to check whether G satisfies ϕ(a1, . . . , am).
Each vertex x is in less than (N − 1)p−1 sets Vα. By comparing the sets that
contain all the ai’s with the sets that contain a1 we can determine in time
O(log(n) · |ā|) the sets Vα that contain (a1, . . . , am). For each Vα and each Wi

we can determine in time O(log(n) · |Wi|) the set Wi ∩ Vα. By Theorem 2.4
we can verify in each G[Vα] in time O(log(n) · (|ā| + |W | + 1)) whether G[Vα]
satisfies ϕ(a1, . . . , am,W1 ∩ Vα, . . . ,Wq ∩ Vα) since each G[Vα] has bounded
tree-width. Therefore B checks the validity of ϕ(a1, . . . , am,W1, . . . ,Wq) in
time O(log(n) · (|ā| + |W | + 1)). 2

Proof of Theorem 5.1 (3). Let C be a locally cwd-decomposable class of
graphs and let G in C be a graph with n vertices, represented by the structure
〈VG, (edgaG)a∈C2

, (paG)a∈C1
〉. Let ϕ(x̄, Y1, . . . , Yq) be a t-local formula around

x̄ = (x1, . . . , xm), m ≥ 1. Then G |= ϕ(ā,W1, . . . ,Wq) iff G[N t
G(ā)] |=

ϕ(ā,W1 ∩N t
G(ā), . . . ,Wq ∩N t

G(ā)). Let ∆ be a t-distance type with connected
components ∆1, . . . ,∆p. By Lemma 3.5, G |= ρt,∆(ā) ∧ ϕ(ā,W1, . . . ,Wq) iff
G |= ρt,∆(ā) ∧ F t,∆(ϕ1,1(ā | ∆1,W1, . . . ,Wq), . . . , ϕp,jp

(ā | ∆p,W1, . . . ,Wq)).

We let T be an (r, ℓ, g)-cwd cover of G where r = m(2t + 1). We use this
integer r to warranty that if ∆ = ∆(a1, . . . , am) and i1, . . . , ik in [m] belong
to a connected component of ∆ then, N t

G({ai1 , . . . , aik}) ⊆ U for some U in
T . This is so because dG(ai1 , aik′

) ≤ (m− 1) · (2t+ 1) for every k′ = 2, . . . , k,
hence, if a ∈ N t

G({ai1 , . . . , aik}) we have dG(ai1 , a) ≤ t+ (m− 1) · (2t+ 1) ≤ r.
Hence, N t

G({ai1, . . . , aik}) ⊆ N r
G(ai1) ⊆ U for some U in T . For each vertex x

there exist less than ℓ many sets V in T such that x ∈ V . We assume that
each set U in T has an index encoded as a bit string denoted by pUq. There
are at most n · ℓ sets in T . Hence pUq has length O(log(n)).

For each set U in T we label each vertex in G[U] with a label KU(x) of length
O(log(n)) in order to decide if dG[U](x, y) ≤ 2t+ 1 or not by using KU(x) and

17

KU(y) 8 (Theorem 2.4). For each vertex x of G we let

K(x) =
(
pxq, {

(
pUq, KU(x)

)
| N(x) ⊆ U}, {

(
pUq, KU(x)

)
| N(x) * U}

)

where N(x) = N2t+1
G (x). (We have x ∈ N t

G(x) for all t ∈ N.) It is clear that
|K(x)| = O(log(n)).

By Theorem 2.4 for each formula ϕi,j(x̄ | ∆i, Y1, . . . , Yq) arising from Theorem
3.5 and each U ∈ T we can label each vertex x ∈ U by some label J∆

i,j,U(x)
of length O(log(n)) so that we can decide if ϕi,j(ā | ∆i,W1, . . . ,Wq) holds in

G[U] by using
(
J∆

i,j,U(b)
)

b∈ā |∆i

and J∆
i,j,U(W1∩U), . . . , J∆

i,j,U(Wq ∩U). For each

vertex x of G we let

J∆(x) :=
((

pUq, J∆
1,1,U(x), . . . , J∆

1,j1,U(x), . . . , J∆
p,1,U(x), . . . , J∆

p,jp,U(x)
)
| N t

G(x) ⊆ U
)
.

It is clear that |J∆(x)| = O(log(n)) since each x is in less than ℓ many
sets V in T . There exist at most k′ = 2k(k−1)/2 t-distance type graphs; we
enumerate them by ∆1, . . . ,∆k′

. For each vertex x of G we let J(x) :=
(pxq, K(x), J∆1(x), . . . , J∆k′ (x)). It is clear that J(x) is of length O(log(n)).

By hypothesis the cover T is computed in time f(n) for G in C with n vertices.
By Theorem 2.4 the labelings KU and J∆

i,j,U can be constructed in cubic-time.
Therefore, the labeling J is constructed in time O(f(n) + n4) since there are
less than ℓ · n sets U in T .

We now explain how to decide whether G |= ϕ(a1, . . . , am,W1, . . . ,Wq) by
using J(a1), . . . , J(am) and J(W1), . . . , J(Wq).

From the labels K(x), we can determine the set {pUq | U ∈ T , x ∈ U}, hence
the family of sets U ∈ T such that W ∩ U 6= ∅, W ⊆ VG, where W is a set
argument.

Since for each vertex x of G there exists a set U in T such that N r
G(x) ⊆

U , for each pair of vertices (x, y) we have dG(x, y) ≤ 2t + 1 if and only if
dG[U](x, y) ≤ 2t+ 1. Hence, by using the components K(a1), . . . , K(am) from
J(a1), . . . , J(am) we can construct the t-distance type ∆ of (a1, . . . , am); let
∆1, . . . ,∆p be the connected components of ∆. From each J(ai) we can recover
J∆(ai). For each ā | ∆i there exists at least one U ∈ T such that N t

G(ā | ∆i) ⊆
U . We can determine these sets (there are less than ℓ of them) by using the
labels in J(b), b ∈ ā | ∆i. We can now decide whether G |= F t,∆(ϕ1,1(ā |
∆1,W1 ∩ U1, . . . ,Wq ∩ U1), . . . , ϕp,jp

(ā | ∆p,W1 ∩ Up, . . . ,Wq ∩ Up)) for some
U1, . . . , Up determined from J(a1), . . . , J(am). By using also J(W1), . . . , J(Wq)
we can determine the sets Wi ∩ Uj and this is sufficient by Theorem 3.5.

8 For checking if dG(x, y) ≤ 2t+1, an (r′, ℓ′, g′)-cwd cover suffices, with r′ = 2t+1.

18

We now examine the time taken to check ϕ(ā,W). For each couple (ai, aj) it
takes time O(log(n)) to check if d(ai, aj) ≤ 2t+1. Since there are at most |ā|2
couples, we construct the graph ∆ in time O(log(n) · |ā|2). For each connected
component ā | ∆ we can determine the sets U that contain it in time O(log(n)·
|ā|) (less than ℓ such sets). By Theorem 2.4 we can check each ϕi,j in time
O(log(n) · (|ā|+ |W |+1)). Therefore, B checks the validity of ϕ(ā,W) in time
O(log(n) · (|ā|2 + |W | + 1)). 2

Proof of Theorem 5.1 (4). Let C be a locally cwd-decomposable class of
graphs and let G in C be a graph with n vertices, represented by the structure
〈VG, (edgaG)a∈C2

, (paG)a∈C1
〉. Let ϕ(x1, . . . , xm) be an FO formula without set

arguments. By Theorem 3.4 the formula ϕ is equivalent to a Boolean combi-
nation B(ϕ1(x̄), . . . , ϕp(x̄), ψ1, . . . , ψh) where ϕi is a t-local formula and ψi is
a basic (t′, s)-local sentence without set variables, for some t, t′, s.

By Lemma 4.5 one can decide the validity of each sentence ψi. Let b =
(b1, . . . , bh) where bi = 1 if G satisfies ψi and 0 otherwise. For each 1 ≤ i ≤ p
we construct a labeling Ji supporting query ϕi by Theorem 5.1 (3) (G belongs
to a locally cwd-decomposable class and ϕi is a t-local formula around x̄). For
each vertex x of G we let J(x) := (pxq, J1(x), . . . , Jp(x), b). It is clear that
|J(x)| = O(log(n)) since |Ji(x)| = O(log(n)). We now explain how to decide
whether G |= ϕ(a1, . . . , am) by using J(a1), . . . , J(am).

From b we can recover the truth value of each sentence ψi. By using Ji(ā) we
can check if ϕi(ā) holds. Then, we can check if B(ϕ1(x̄), . . . , ϕp(x̄), ψ1, . . . , ψh)
holds hence, if ϕ(ā) holds.

By Lemma 4.5 the validity of each sentence ψi is checked in time O(n4). And,
by Theorem 5.1 (3), each labeling Ji is constructed in time O(f(n) + n4)
where f(n) is the time taken for constructing an (r, ℓ, g)-cwd cover. Hence,
the labeling J can be constructed in time O(f(n) + n4). The time taken to
check the validity of ϕ(a1, . . . , am) is done in time O(log(n) · |ā|2) by Theorem
5.1 (3). 2

Before proving Theorem 5.1 (5) we introduce some definitions and facts. If
T is an (r, ℓ, g)-cwd cover of a graph G, then G(T) has maximum degree
at most ℓ. Let m be a positive integer, a proper distance-m coloring of a
graph H is a proper coloring of Hm (see Section 2 for the definition of Hm).
Then, in a proper distance-m coloring, vertices at distance at most m have
different colors. A graph G admits a proper (d+1)-coloring if d is its maximum
degree. The graph G(T) has maximum degree at most ℓ, hence, has a proper
distance-m coloring with ℓO(m) colors since G(T)m has maximum degree at
most ℓ · (1 + (ℓ− 1) + · · · + (ℓ− 1)m−1).

19

If T is cover of a graph G, for each positive integer t and each set U in T we
let Kt(U) be the set {x ∈ U | N t

G(x) ⊆ U}. We call it the t-kernel of U .

Proof of Theorem 5.1 (5). Let C be a nicely locally cwd-decomposable
class of graphs and let G in C be a graph with n vertices, represented by the
structure 〈 VG, (edgaG)a∈C2

, (paG)a∈C1
〉. We want a labeling for an FO query

with set arguments. By Theorems 3.4 and 5.1 (3) it is sufficient to define a
labeling for FO formulas ϕ(Y1, . . . , Yq) of the form:

∃x1 · · · ∃xm




∧

1≤i<j≤m

d(xi, xj) > 2t ∧
∧

1≤i≤m

ψ(xi, Y1, . . . , Yq)





where ψ(x, Y1, . . . , Yq) is t-local around x. We show how to check such formulas
by means of log-labelings.

We consider for purpose of clarity the particular case where m = 2. Let T
be a nice (r, ℓ, g)-cwd cover of G where r = 2t+ 1, and let γ be a distance-2
coloring of G(T), the intersection graph of T (vertices at distance 1 or 2 have
different colors). For every two colors i and j we let Gi,j be the graph induced
by the union of the sets U in T that are colored by i or j (we may have i = j).

Claim 5.2 cwd(Gi,j) ≤ g(2).

Proof of Claim 5.2. Let T 2 = {U ∪U ′ | U,U ′ ∈ T , U ∩U ′ 6= ∅}. The graph
Gi,j is a disjoint union of sets in T ∪T 2. This union is disjoint because if U∪U ′

with U∩U ′ 6= ∅ meets some U ′′ ∈ T such that U ′′ 6= U, U ′′ 6= U ′, then we have
have γ(U) = i, γ(U ′) = j 6= i and U ′′ meets U or U ′. It can have neither color
i nor color j because γ is a distance-2 coloring. Since cwd(G[U ∪ U ′]) ≤ g(2),
we are done because the clique-width of a disjoint union of graphs H1, . . . , Hs

is max{cwd(Hi) | i = 1, . . . , s}. 2

Claim 5.3 Let x ∈ K2t(U) and y ∈ K2t(U ′) for some sets U and U ′ in T .
Then dG(x, y) > 2t iff dG[U∪U ′](x, y) > 2t.

Proof of Claim 5.3. The “only if direction” is clear since dG(x, y) ≤ dG[U∪U ′](x, y).

For proving the converse, assume dG(x, y) ≤ 2t; there exists a path of length at
most 2t from x to y. This path is in U ∪U ′ since x ∈ K2t(U) and y ∈ K2t(U ′).
Hence it is also in G[U ∪ U ′], hence dG[U∪U ′] ≤ 2t. 2

Let us now give to each vertex x of G the smallest color i such that x ∈ K2t(U)
and γ(U) = i. Hence each vertex has one and only one color. We express this

20

by pi(x) where pi is a new unary predicate. For each pair (i, j) (possibly i = j)
we consider the formula ψi,j :

∃x, y
(
d(x, y) > 2t ∧ ψ(x, Y1, . . . , Yq) ∧ ψ(y, Y1, . . . , Yq) ∧ pi(x) ∧ pj(y)

)

By Theorem 2.4 we can construct a log-labeling Ji,j for the formula ψi,j in
the graph Gi,j. (We recall that vertex colors, i.e., additional unary relations,
do not increase clique-width; the number of relations pi does not depend on
the graph G.) We compute the truth value bi,j of ψi,j(∅, . . . , ∅) in Gi,j; we get

a vector ~b of fixed length. We also label each vertex x by its color γ(x). We

concatenate that ~b and the Ji,j(x) for x ∈ VGi,j
, giving J(x). The coloring

γ uses O(ℓ2) colors. Then, the number of graphs Gi,j is bounded by O(ℓ4).
Therefore |J(x)| = O(log(n)).

From J(W1), . . . , J(Wq) we can determine those Gi,j such that VGi,j
∩ (W1 ∪

· · · ∪Wq) 6= ∅, and check if for one of them Gi,j |= ψi,j(W1, . . . ,Wq). If one
is found we are done. Otherwise, we use the bi,j’s to look for Gi,j such that
Gi,j |= ψi,j(∅, . . . , ∅) and (W1 ∪ · · · ∪Wq) ∩ VGi,j

= ∅. This gives the correct
results because of the following facts:

• If x, y satisfy the formula ϕ, then x ∈ K2t(U), y ∈ K2t(U ′) (possibly U =
U ′) and dG(x, y) > 2t implies dGi,j

(x, y) > 2t, henceGi,j |= ψi,j(W1, . . . ,Wq)
where i = γ(U) and j = γ(U ′).

• If Gi,j |= ψi,j(W1, . . . ,Wq) then we get G |= ϕ(W1, . . . ,Wq) by similar
argument (in particular dGi,j

(x, y) > 2t implies dG[U∪U ′](x, y) > 2t which
implies that dG(x, y) > 2t by Claim 5.3).

For m = 1, the proof is similar by using a proper distance-1 coloring γ and
the graphs Gi,i instead of the graphs Gi,j.

For the case m > 2, the proof is the same: one takes for γ a distance-m proper
coloring of the intersection graph, one considers graphs Gi1,...,im defined as
(disjoint) unions of sets U1 ∪ · · · ∪Um for U1, . . . , Um in T , of respective colors
i1, . . . , im and cwd(G[U1 ∪ · · · ∪ Um]) ≤ g(m).

By hypothesis, the cover T is computed in time f(n) for an n-vertex graph
G in C. In each graph Gi1,...,im the labeling Ji1,...,im is constructed in cubic-
time by Theorem 2.4. The coloring γ uses ℓO(m) colors. Then, the number of
graphs Gi1,...,im is bounded by ℓO(m2). Hence, the labeling J is computed in
time O(f(n) + n3).

We now examine the time taken to check the validity of ϕ(W). For each
Gi1,...,im and each Wi it takes time O(log(n) · |Wi|) to determine Wi∩VGi1,...,im

.

By Theorem 2.4 it takes time O(log(n) · (|W | + 1)) to check in Gi1,...,im the

21

validity of ϕ(W). This terminates the proof of Theorem 5.1. 2

Let us ask a very general question: what can be done with labels of size
O(log(n))? Here is a fact that limits the extension of these results.

Let ϕ0(x, y) be the t-local and bounded FO formula telling us whether two
distinct vertices x and y are connected by a path of length 2:

x 6= y ∧ ∃z (z 6= x ∧ z 6= y ∧ edg(x, z) ∧edg(z, y))

The adjacency query has a log-labeling scheme for graphs of bounded arboric-
ity (Theorem 5.1 (1)).

Proposition 5.4 Every labeling scheme supporting ϕ0 on graphs with n ver-
tices and of arboricity at most 2 requires labels of length at least

√
n
2
− 1 for

some graphs.

Proof. With every simple, loop-free and undirected graph G we associate the
graph G̃ obtained by inserting a vertex zxy on each edge xy.

V
G̃

= VG ∪ {zx,y | x, y ∈ VG and xy ∈ EG},
E

G̃
= {xzx,y | xy ∈ EG}.

The following properties hold.

(1) VG ⊆ V
G̃

and |V
G̃
| = |VG| + |EG|.

(2) For all x, y ∈ VG, xy ∈ EG if and only if G̃ |= ϕ0(x, y).
(3) G̃ has arboricity at most 2.

The first two points are clear. For the third one we orient each edge e of G
and we get a directed graph, that we denote by ~G. We let:

F1 = {xzx,y | (x, y) ∈ E ~G},
F2 = {zx,yy | (x, y) ∈ E ~G}.

Neither F1 nor F2 has a cycle in G̃. Then G̃ has arboricity at most 2 since
(F1, F2) is a bipartition of E

G̃
.

By using a simple counting argument, one can show that every labeling scheme
supporting adjacency in simple and undirected graphs with n vertices requires

some labels of size at least 1
n

log2

(
2(n

2)
)

= (n − 1)/2 bits. Hence, adjacency

requires labels of size ⌊n/2⌋ in all graphs. Using (2) above, we conclude that
any labeling scheme for ϕ0 on the graph family Fn = {G̃ | G has n vertices}
requires labels of size at least

⌊
n
2

⌋
. Let G̃ be in Fn and let ñ = |V

G̃
|. Using (1)

22

we have ñ = n+ |EG| ≤ n(n+1)
2

, i.e., n ≥
√

2ñ− 1. Hence, any labeling scheme
for ϕ0 on Fn requires for some graphs with ñ vertices labels of size at least⌊√

2ñ−1
2

⌋
>

√
ñ
2
− 1. 2

6 Extension to Counting Queries

We now consider an extension to counting queries.

Definition 6.1 (Counting Query) Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be an FO
or MSO formula and let G be a (colored) graph. For W1, . . . ,Wq ⊆ VG we let:

#Gϕ(W1, . . . ,Wq) :=

∣∣∣∣
{
(a1, . . . , am) ∈ V m

G | G |= ϕ(a1, . . . , am,W1, . . . ,Wq)
}∣∣∣∣.

The counting query of ϕ consists in determining #Gϕ(W1, . . . ,Wq) for given
(W1, . . . ,Wq). If s ≥ 2 the counting query of ϕ modulo s consists in deter-
mining #Gϕ(W1, . . . ,Wq) modulo s for given (W1, . . . ,Wq).

The following theorem is an easy extension of Theorem 2.4.

Theorem 6.2 Let k be a positive integer and, let ϕ(x1, . . . , xm, Y1, . . . , Yq) be
an MSO formula over colored graphs (binary relational structures) and s ≥ 2.
There exists a log2-labeling scheme (resp. a log-labeling scheme) (A,B) on the
class of graphs of clique-width at most k for the counting query of ϕ (resp.
the counting query of ϕ modulo s). Moreover, if the input graph has n vertices
then, algorithm A constructs the labels in time O(n3) or in O(n · log(n)) if the
clique-width expression is given; algorithm B computes #Gϕ(W1, . . . ,Wq) in
time O(log2(n) · (|W | + 1)) (resp. O(log(n) · (|W | + 1))).

We will prove a similar theorem for nicely locally cwd-decomposable classes
of graphs and FO formulas.

Theorem 6.3 (Second Main Theorem) Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be an
FO formula and let s ≥ 2. There exists a log2-labeling scheme (resp. a log-
labeling scheme) (A,B) for the counting query of ϕ (resp. the counting query
of ϕ modulo s) on nicely locally cwd-decomposable classes. Moreover, if the
input graph has n vertices then, algorithm A constructs the labels in time
O(f(n) + n3) where f(n) is the time taken to construct a nice cwd-cover; al-
gorithm B computes #Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W | + 1)) (resp.
O(log(n) · (|W | + 1))).

We will first prove Theorem 6.3 for particular t-local formulas on locally cwd-
decomposable classes.

23

Definition 6.4 (t-Connected Formulas) A formula ϕ(x1, . . . , xm, Y1, . . . , Yq)
is t-connected if for all G, a1, . . . , am ∈ VG and W1, . . . ,Wq ⊆ VG,

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) iff





∧
1≤i<j≤m d(ai, aj) ≤ t and

G[N] |= ϕ(a1, . . . , am,W1 ∩N, . . . ,Wq ∩N)

where N = N t
G({a1, . . . , am}).

Remark 6.5 Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a t-connected formula. Then for
all W ⊇ N t

G(a1, . . . , am):

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) iff G[W] |= ϕ(a1, . . . , am,W1 ∩W, . . . ,Wq ∩W)

and, since N t
G({a1, . . . , am}) ⊆ N2t

G (a1), we have

G |= ϕ(a1, . . . , am,W1, . . . ,Wq) iff G[N2t
G (a1)] |= ϕ(a1, . . . , am,W1, . . . ,Wq).

Lemma 6.6 Let ϕ(x1, . . . , xm, Y1, . . . , Yq) be a t-connected formula and let
s ≥ 2. Then, there exists a log2-labeling scheme (resp. a log-labeling scheme)
(A,B) for the counting query of ϕ (resp. the counting query of ϕ modulo s)
on locally cwd-decomposable classes of graphs. Moreover, if the input graph
has n vertices then, algorithm A constructs the labels in time O(f(n) + n3)
where f(n) is the time taken to construct a cwd-cover; algorithm B computes
#Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W |+ 1)) (resp. O(log(n) · (|W |+ 1))).

Proof. Let C be a locally cwd-decomposable class of graphs and let T be a
(2t, ℓ, g)-cwd cover of an n-vertex graph G from C. Let H be the intersection
graph of T (Definition 4.2) and let γ be a proper coloring of H with colors in
[ℓ+ 1].

Claim 6.7 Let x ∈ K2t
G (U) and y ∈ U ′ with γ(U) = γ(U ′), U 6= U ′. Then

dG(x, y) > 2t.

Proof of Claim 6.7. If this is not the case, then y ∈ U and xU and xU ′ are
adjacent in H . This is impossible since they have the same color. 2

We color each vertex x of G by i, the smallest γ(U) such that x ∈ K2t
G (U).

We represent this by the validity of pi(x), as in the proof of Theorem 5.1 (5).
For each i ∈ [ℓ + 1] we let ϕi be the formula:

ϕ(x1, . . . , xm, Y1, . . . , Yq) ∧ pi(x1).

Then the following is clear.

24

Claim 6.8 #Gϕ(Y1, . . . , Yq) =
∑
i

#Gϕi(Y1, . . . , Yq).

We now show that the counting query of ϕ admits a log2-labeling scheme on
G. We let Vi =

⋃
γ(U)=i

{U | U ∈ T }.

Claim 6.9 cwd(G[Vi]) ≤ g(1).

Proof of Claim 6.9. Vi is a disjoint union of sets U from T . From Definition
4.3 each graph G[U] has clique-width at most g(1). Therefore cwd(G[Vi]) ≤
g(1). 2

Claim 6.10 #Gϕi(Y1, . . . , Yq) = #G[Vi]ϕi(Y1, . . . , Yq).

Proof of Claim 6.10. If ϕ(a1, . . . , am,W1, . . . ,Wq) holds and pi(a1) holds
then, a1 ∈ K2t

G (U) for some U such that γ(U) = i. Hence a2, . . . , am ∈ N2t
G (a1)

and G[N2t
G (a1)] |= ϕi(a1, . . . , am,W1, . . . ,Wq), hence G[Vi] |= ϕi(a1, . . . , am,

W1, . . . ,Wq).

If G[Vi] |= ϕi(a1, . . . , am,W1, . . . ,Wq), then pi(a1) holds and dG[Vi](al, as) ≤ t
for all l, s ∈ [m]. But dG(al, as) = dG[Vi](al, as) = dG[U](al, as) where a1 ∈ U
and γ(U) = i. And since N t

G({a1, . . . , am}) ⊆ Vi we have G |= ϕi(a1, . . . , am,
W1, . . . ,Wq). 2

By Theorem 6.2 and Claims 6.9 and 6.10 there exists a log2-labeling Ji for the
counting query of each ϕi. For each x ∈ VG we let J(x) = (J1(x), . . . , Jℓ+1(x)).
Hence J is a log2-labeling for the counting query of ϕ by Claim 6.8. By The-
orem 6.2 labels of size O(log(n)) are sufficient for the counting query of each
ϕi modulo s.

By Theorem 6.2 each labeling Ji is constructed in cubic-time. Therefore, the
labeling J is constructed in time O(f(n)+n3) where f(n) is the time taken for
constructing the (2t, ℓ, g)-cwd cover T of G. By Claim 6.8 and Theorem 6.2
B computes #Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W |+ 1)) (resp. O(log(n) ·
(|W | + 1))). 2

We now prove Theorem 6.3.

Proof of Theorem 6.3. Let ϕ(x̄, Y) be an FO formula with free variables
in x̄ = (x1, . . . , xm) and in Y = (Y1, . . . , Yq). By Theorem 3.4 ϕ is logically

25

equivalent to a Boolean combination of t-local formulas around x̄ and of ba-
sic (t′, s)-local formulas. We have proved that each basic (t′, s)-local formula
admits a log-labeling scheme on each nicely locally cwd-decomposable class
of graphs (Theorem 5.1 (5)). It remains to prove that the counting query of
a t-local formula admits a log2-labeling scheme on each nicely locally cwd-
decomposable class of graphs C. Let G, a graph with n vertices, be in C

Let ψ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ = (x1, . . . , xm). By Theorem
3.5 we can reduce the counting query of ψ to the counting query of finitely
many formulas of the form ρt,∆(x̄) ∧ ϕ′(x̄, Y1, . . . , Yq) that can be expressed
as

ϕ′(x̄, Y1, . . . , Yq) :=
∧

1≤i<j≤p

d(x̄ | ∆i, x̄ | ∆j) > 2t+ 1 ∧
∧

1≤i≤p

ϕi(x̄ | ∆i, Y1, . . . , Yq)

where each ϕi is t-local and (m · (2t + 1))-connected. We can assume that ψ
is of the form ϕ′(x̄, Y1, . . . , Yq).

Let T be a nice (r, ℓ, g)-cwd cover where r = m · (2t+1) and let γ be a proper
distance-m coloring of G(T), the intersection graph of T . For every m-tuple of
colors (i1, . . . , im) we let Gi1,...,im be the graph G[V] where V is the union of all
sets U ∈ T such that γ(U) ∈ {i1, . . . , im}. We have then cwd(G[V]) ≤ g(m)
(same arguments as in Claim 5.2). We color each vertex with the smallest
color i such that x ∈ Kr

G(U) and γ(U) = i and we express this by the validity
of pi(x). We let ϕ′

i1,...,im be

∧

1≤i<j≤p

d(x̄ | ∆i, x̄ | ∆j) > 2t+ 1 ∧
∧

1≤ℓ≤p

(ϕℓ(x̄ | ∆ℓ, Y1, . . . , Yq) ∧ piℓ(zℓ))

where zℓ is the first variable of each tuple x̄ | ∆ℓ. We have:

Claim 6.11 #Gψ(Y1, . . . , Yq) =
∑

(i1,...,im)
#Gϕ

′
i1,...,im(Y1, . . . , Ym).

We let H = Gi1,...,im. By the same arguments as in the proof of Claim 5.3 we
have:

Claim 6.12 dG(x̄ | ∆i, x̄ | ∆j) > 2t + 1 if and only if dH(x̄ | ∆i, x̄ | ∆j) >
2t+ 1.

It follows that:

Claim 6.13 #Gϕ
′
i1,...,im(Y1, . . . , Yq) = #Hϕ

′
i1,...,im(Y1, . . . , Yq).

By Theorem 6.2 and Claims 6.11, 6.12 and 6.13 there exists a log2-labeling
scheme for the counting query of each t-local formula, and a log-labeling
scheme is enough for modulo counting.

26

By hypothesis, a nice (r, ℓ, g)-cwd cover T of G can be constructed in time
f(n). For each formula ϕi1,...,im the associated labeling Ji1,...,im is constructed
in time O(n3) by Theorem 6.2. The coloring γ uses ℓO(m) colors. The number
of graphs Gi1,...,im is bounded by ℓO(m2). Hence, the labeling J is computed in
time O(f(n) + n3). By Claim 6.11 and Theorem 6.2 algorithm B computes
#Gϕ(W1, . . . ,Wq) in time O(log2(n) · (|W |+ 1)) (resp. O(log(n) · (|W |+ 1))).
This finishes the proof. 2

7 Conclusion

We conjecture that the results of Theorem 5.1 (3-5) extend to classes of graphs
that exclude, or locally exclude a minor (definitions are from [11,17]).

Question 1 Does there exist a log-labeling scheme for FO formulas with set
arguments on locally cwd-decomposable classes?

References

[1] S. Arnborg, J. Lagergren and D. Seese. Easy Problems for Tree-Decomposable
Graphs. Journal of Algorithms 12(2):308-340, 1991.

[2] G. Bagan. PhD Thesis, Université de Caen. March, 2009.

[3] A. Blumensath and B. Courcelle. Recognizability, Hypergraph Operations and
Logical Types. Information and Computation 204(6):853-919, 2006.

[4] H.L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Tree-width. SIAM Journal on Computing 25(6):1305-1317, 1996.

[5] H.L. Bodlaender. Tree-Width: Structure and Algorithms. In G. Principe
and S. Zaks eds., Structural Information and Communication Complexity
(SIROCCO), volume 4474 of LNCS, pages 11-25. Springer, 2007.

[6] B. Courcelle, C. Gavoille, M.M. Kanté and A. Twigg. Optimal Labeling for
Connectivity Checking in Planar Networks with Obstacles. Manuscript, 2008.
An extended abstract will appear in Electronic Notes in Discrete Mathematics,
proceedings of the first Conference Topological and Geometric Graph Theory
(TGGT), Paris, 2008.

[7] B. Courcelle, J.A. Makowsky and U. Rotics. Linear-Time Solvable Optimization
Problems on Graphs of Bounded Clique-Width. Theory of Computing Systems
33(2):125-150, 2000.

[8] B. Courcelle and S. Olariu. Upper Bounds to the Clique-Width of Graphs.
Discrete Applied Mathematics 101(1-3):77-114, 2000.

27

[9] B. Courcelle and A. Twigg. Compact Forbidden-Set Routing. In W. Thomas
and P. Weil eds., Annual Symposium on Theoretical Aspects of Computer
Science (STACS), volume 4393 of LNCS, pages 37-48. Springer, 2007.

[10] B. Courcelle and R. Vanicat. Query Efficient Implementation of Graphs of
Bounded Clique-Width. Discrete Applied Mathematics 131(1):129-150, 2003.

[11] A. Dawar, M. Grohe and S. Kreutzer. Locally Excluding a Minor. In 22nd

IEEE Symposium on Logic in Computer Science (LICS), pages 270-279. IEEE
Computer Society, 2007.

[12] Arnaud Durand and Etienne Grandjean. First-Order Queries on Structures of
Bounded Degree are Computable with Constant Delay. ACM Transactions on
Computational Logic 8(4), 2007.

[13] E. Fisher, J.A. Makowsky and E.V. Ravve. Counting Truth Assignments
of Formulas of Bounded Tree-Width or Clique-Width. Discrete Applied
Mathematics 156(4):511-529, 2008.

[14] M. Frick. Generalized Model-Checking over Locally Tree-Decomposable Classes.
Theory of Computing Systems 37(1):157-191, 2004.

[15] M. Frick and M. Grohe. Deciding First-Order Properties of Locally Tree-
Decomposable Structures. Journal of the ACM 48(1):1184-1206, 2001.

[16] H. Gaifman. On Local and Non-Local Properties. In Proceedings of the
Herbrand Symposium Logic Colloquium’81 pages 105-135, 1982.

[17] M. Grohe. Logic, Graphs and Algorithms. In Flum, Grädel, Wilke eds., Logic,
Automata, History and Perspectives, pages 357-422. Amsterdam University
Press, 2007.

[18] C. Gavoille and D. Peleg. Compact and Localized Distributed Data Structures.
Distributed Computing 16(2-3):111-120, 2003.

[19] F. Gurski and E. Wanke. Line Graphs of Bounded Clique-Width. Discrete
Mathematics 307(22):2734-2754, 2007.

[20] P. Hliněný and S. Oum. Finding Branch-Decompositions and Rank-
Decompositions. In L. Arge, M. Hoffmann and E. Welzl eds., Annual European
Symposium, volume 4698 of LNCS, pages 163-174. Springer, 2007.

[21] M. Kamiński, V. Lozin and M. Milanič. Recent Developments on Graphs of
Bounded Clique-Width. Discrete Applied Mathematics, in press, 2008.

[22] M. M. Kanté. Graph Structurings: Some Algorithmic Applications. PhD thesis,
Université Bordeaux 1, Bordeaux, 2008.

[23] S. Kreutzer. Algorithmic Meta-Theorems. Manuscript, 2008.

[24] L. Libkin. Elements of Finite Model Theory. Springer, 2004.

[25] V. Lozin. Clique-Width of Unit Interval Graphs. Manuscript, arXiv:0709.1935,
2007.

28

http://fr.arXiv.org/abs/0709.1935

[26] J. Nešeťril and P. Ossona de Mendez. Linear Time Low Tree-Width Partitions
and Algorithmic Consequences. In J.M. Kleinberg ed., 38th Annual ACM
Symposium on Theory of Computing (STOC), pages 391-400. ACM, 2006.

[27] S. Oum and P. Seymour. Approximating Clique-Width and Branch-Width,
Journal of Combinatorial Theory, Series B, 96(4):514-528, 2006.

[28] D. Seese. Linear Time Computable Problems and First-Order Descriptions.
Mathematical Structures in Computer Science 6(6):505-526, 1996.

29

	Introduction
	Definitions
	Bounded and Local First-Order Formulas
	Locally Decomposable Classes
	Labeling Schemes for First-Order Queries
	Extension to Counting Queries
	Conclusion
	References

