# Compact Labelings For Efficient First-Order Model-Checking 

Bruno Courcelle ${ }^{1,2}$ and Cyril Gavoille ${ }^{1}$ and Mamadou Moustapha Kanté ${ }^{1}$<br>Université de Bordeaux, LaBRI, CNRS<br>351 cours de la Libération<br>33405 Talence, France


#### Abstract

We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is nicely locally cwd-decomposable. This notion generalizes that of a nicely locally tree-decomposable class. The graphs of such classes can be covered by graphs of bounded clique-width with limited overlaps. We also consider such labelings for bounded first-order formulas on graph classes of bounded expansion. Some of these results are extended to counting queries.


Key words: First-Order Logic; Labeling Scheme; Local Clique-Width; Local Tree-Width; Locally Bounded Clique-Width.

## 1 Introduction

The model-checking problem for a class of structures $\mathcal{C}$ and a logical language $\mathcal{L}$ consists in deciding for given $S \in \mathcal{C}$, and for some fixed sentence $\varphi \in \mathcal{L}$ if $S \models \varphi$, i.e., if $S$ satisfies the property expressed by $\varphi$. More generally, if $\varphi$ is a formula with free variables $x_{1}, \ldots, x_{m}$ one may ask whether $S$ satisfies $\varphi\left(a_{1}, \ldots, a_{m}\right)$ where $a_{1}, \ldots, a_{m}$ are values given to $x_{1}, \ldots, x_{m}$. One may also wish to list the set of $m$-tuples $\left(a_{1}, \ldots, a_{m}\right)$ that satisfy $\varphi$ in $S$, or simply count them.

[^0]Polynomial time algorithms for these problems (for fixed $\varphi$ ) exist for certain classes of structures and certain logical languages. In this sense graphs of bounded degree "fit" with first-order (FO for short) logic [28,12] and graphs of bounded tree-width or clique-width "fit" with monadic second-order (MSO for short) logic. Frick and Grohe $[14,15,17]$ have defined Fixed Parameter Tractable (FPT for short) algorithms for FO model-checking problems on classes of graphs that may have unbounded degree and tree-width (definitions and examples are given in Section 4) and our results will concern such classes. We will also use graph classes of bounded expansion, a notion introduced by Nešetřil and Ossona de Mendez [26].

We will use similar tools for the following labeling problem: let be given a class of graphs $\mathcal{C}$ and a property $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ of vertices $x_{1}, \ldots, x_{m}$ and of sets of vertices $Y_{1}, \ldots, Y_{q}$ of graphs in $\mathcal{C}$. Our aim is to design two algorithms: an algorithm $\mathcal{A}$ that attaches to each vertex $x$ of a given graph of $\mathcal{C}$ a label $L(x)$, defined as a sequence of 0 's and 1 's, and an algorithm $\mathcal{B}$ that checks the property $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ by using the labels and no other information about the considered graph. This latter algorithm must take as input the labels $L\left(x_{1}\right), \ldots, L\left(x_{m}\right)$ and the sets of labels $L\left(Y_{1}\right), \ldots, L\left(Y_{q}\right)$ of the sets $Y_{1}, \ldots, Y_{q}$ and tells whether $P\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ is true. Moreover each label $L(x)$ identifies the vertex $x$ in the graph. An $f$-labeling scheme for a class of structures $\mathcal{C}$ is a pair $(\mathcal{A}, \mathcal{B})$ of algorithms solving the labeling problem and using labels of length at most $f(n)$ for $n$-vertex graphs of $\mathcal{C}$. Results of this type have been established for monadic second-order (MSO for short) logic by Courcelle and Vanicat [10] and, for particular properties (connectivity queries, that are expressible in MSO logic) by Courcelle and Twigg in [9] and by Courcelle et al. in [6].

Let us review the motivations for looking for compact labelings. By compact, we mean of length of order less than $O(n)$, where $n$ is the number of vertices of the graph, hence in particular of length $\log ^{O(1)}(n)$.

In distributed computing over a communication network with underlying graph $G$, nodes must act according to their local knowledge only. This knowledge can be updated by message passing. Due to space constraints on the local memory of each node, and on the sizes of messages, a distributed task cannot be performing by representing the whole graph $G$ in each node or in each message. It must rather manipulate compact representations of $G$, distributed in a balanced way over the graph. For an example, the routing task may use routing tables that are sub-linear in the size of $G$ (preferably of polylogarithmic size), and short addresses transmitted in the headers of messages (of poly-logarithmic size too). As surveyed in [18] many distributed tasks can be optimized by the use of labels attached to vertices. Such labels should be usable even when the network has node or link crashes. They arise from forbidden-set labeling schemes in [9]. In this framework, local informations can
be updated by transmitting to all surviving nodes the list of (short) labels of all defected nodes and links, so that the surviving nodes can update their local information, e.g., their routing tables.

Let us comment about using set arguments. The forbidden (or defective) parts of a network are handled as sets of vertices passed to a query as an argument. This means that algorithm $\mathcal{A}$ computes the labels once and for all, independently of the possible forbidden parts of the network. In other words the labeling supports node deletions from the given network. (Edge deletions are supported in the labelings of [6] and [9].)

If the network is augmented with new nodes and links, the labels must be recomputed. We leave this incremental extension as a topic for future research.

Set arguments can be used to handle deletions, but also constraints, or queries like "what are the nodes that are at distance at most 3 of $X$ and $Y$ " where $X$ and $Y$ are two specified sets of nodes.

This article is organized as follows. In Section 2 we give some preliminary definitions regarding first-order logic and we define the notions of clique-width and of labeling schemes. Section 3 deals with first-order logic and needed results. In Section 4 we define the notions of local bounded clique-width and of nicely locally cwd-decomposable. We give some examples and some preliminary results. Section 5 is devoted to the proofs of the main results of this article. In Section 6 we extend some of the main results to counting queries.

## 2 Definitions

Our results concern graph properties expressed by logical formulas, which assumes that graphs are represented by relational structures. All graphs and relational structures will be finite.

A relational signature is a finite set $\mathcal{R}=\{R, S, T, \ldots\}$ of relation symbols, each of which given with an $\operatorname{arity} \operatorname{ar}(R) \geq 1$. A finite relational $\mathcal{R}$-structure $S$ is defined as $\left\langle D_{S},\left(R_{S}\right)_{R \in \mathcal{R}}\right\rangle$ where $R_{S} \subseteq D_{S}^{a r(R)}$. The set $D_{S}$ is called the domain of $S$. A relational signature $\mathcal{R}$ is binary if $\operatorname{ar}(R) \leq 2$ for all $R \in \mathcal{R}$. A relational structure is binary if it is a relational $\mathcal{R}$-structure for some binary relational signature $\mathcal{R}$. We let $\mathcal{R}_{i}$ be the set of symbols of arity $i$.

A binary relational $\mathcal{R}$-structure $S=\left\langle D_{S},\left(R_{S}\right)_{R \in \mathcal{R}}\right\rangle$ will be identified with a colored graph $G$ with vertex set $D_{S}$, that has an edge from $x$ to $y$ colored by $R$ in $\mathcal{R}_{2}$ if and only if $R_{S}(x, y)$ holds, and such that a vertex $x$ has color $P$ in $\mathcal{R}_{1}$ if and only if $P(x)$ holds. Hence, $G$ is a directed graph such that
each edge has a color and a vertex a possibly empty set of colors ${ }^{3}$. We use standard graph theoretical notations: $V_{G}$ for vertex set, $E_{G}$ for edge set and we will write $G$ as the relational structure $\left\langle V_{G},\left(e d g_{a} G\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}\right\rangle$ where $\mathcal{R}_{2}=\left\{e d g_{a} \mid a \in C_{2}\right\}$ and $\mathcal{R}_{1}=\left\{p_{a} \mid a \in C_{1}\right\}$. Such a graph is not colored if $\mathcal{R}_{2}=\{e d g\}$ and $\mathcal{R}_{1}=\emptyset$. A graph represented by the relational structure $\left\langle V_{G},\left(e d g_{a} G\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}\right\rangle$ is called a $C$-graph, $C=C_{1} \cup C_{2}$.

Let $G$ be a graph, colored or not. If $X$ is a subset of the set of vertices of $G$, we let $G[X]$ be the induced sub-graph of $G$ with vertex set $X$ and induced colors in the obvious way and, we let $G \backslash X$ be the sub-graph $G\left[V_{G}-X\right]^{4}$.

If $X$ is a subset of $V_{G}$, we let $N_{G}^{t}(X)$ be the set $\left\{y \in V_{G} \mid d(x, y) \leq t\right.$ for some $x \in$ $X\}$ and $d(x, y)$ is the length of a shortest undirected path between $x$ and $y$ in $G$.

An undirected graph is a graph $G$ such that $\mathcal{R}_{2}=\{e d g\}$ and $e d g$ is symmetric. If $G$ is any graph and $m \geq 1$, we denote by $G^{m}$ the simple, loop-free undirected graph such that $V_{G^{m}}=V_{G}$ and two distinct vertices $x$ and $y$ are adjacent in $G^{m}$ if and only if $d(x, y) \leq m$.

A graph has arboricity at most $k$ if it is the union of $k$ edge-disjoint forests (independently of the colors of its edges and of its vertices).

We now define first-order logic and monadic second-order logic on relational structures and thus, on graphs. Let $\mathcal{R}$ be a relational signature. Atomic formulas over relational $\mathcal{R}$-structures are $x=y, x \in X$ and $R\left(x_{1}, \ldots, x_{a r(R)}\right)$ for all relations $R$ in $\mathcal{R}$. A first order formula (FO formula for short) over relational $\mathcal{R}$-structures is a formula formed from atomic formulas over relational $\mathcal{R}$-structures with Boolean connectives $\wedge, \vee, \neg, \Rightarrow$ and first-order quantifications $\exists x$ and $\forall x$. We may have free set variables. A monadic second-order formula (MSO formula for short) over relational $\mathcal{R}$-structures is formed as FO formulas over relational $\mathcal{R}$-structures with set quantifications $\exists X, \forall X$. By formulas (FO or MSO) we mean formulas written with the signature appropriate for the considered relational structures. If the free variables of a formula $\varphi$ are among $x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}$ we will write $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$. A sentence is a formula without free variables. We write $S \models \varphi$ to mean that the sentence $\varphi$ is satisfied by the relational structure $S$.

The tree-width [4] of a graph is independent of edge directions and of the colors of edges and vertices. It is a well-known graph parameter and yields many algorithmic properties surveyed by Grohe [17] and Kreutzer [23]. The

[^1]survey [5] by Bodlaender presents tree-width and recent developments about this notion.

Clique-width [8] is another graph parameter that yields interesting algorithmic results. It is sensible to colors and directions of edges. The original definition of clique-width in [8] concerns only uncolored graphs. However, it can be extended to colored graphs $[3,13]$.

Definition 2.1 (Clique-Width of Colored Graphs) We let $C$ be the $\mathrm{fi}_{\mathrm{i}}$ nite set ( $C=C_{1} \cup C_{2}$ ) of colors for vertices and edges. In order to construct graphs, we will use the set $[k]:=\{1,2, \ldots, k\}$ for $k \geq 1$ to color also vertices, with one and only one color for each vertex. A $k$ - $C$-graph (or $k$-graph if $\mathcal{R}=\{e d g\}) G$ is defined as $G=\left\langle V_{G},\left(e d g_{a G}\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}, l a b_{G}\right\rangle$ where $l a b_{G}: V_{G} \rightarrow[k]$ is a total function and the other components are as defined above. We give several operations on $k$-C-graphs.
(1) For $k$-C-graphs $G$ and $H$ such that $V_{G} \cap V_{H}=\emptyset$, we let $G \oplus H$ be the $k$-C-graph $K$ where:

$$
\begin{aligned}
V_{K} & =V_{G} \cup V_{H}, \\
p_{a K}(x) & =\left\{\begin{array}{ll}
p_{a G}(x) & \text { if } x \in V_{G} \\
p_{a H}(x) & \text { if } x \in V_{H}
\end{array} \quad \text { for all } a \in C_{1} .\right. \\
e d g_{a K}(x, y) & =\left\{\begin{array}{ll}
e d g_{a G}(x, y) & \text { if } x, y \in V_{G} \\
e d g_{a H}(x, y) & \text { if } x, y \in V_{H}
\end{array} \quad \text { for all } a \in C_{2} .\right. \\
l a b_{K}(x) & = \begin{cases}l a b_{G}(x) & \text { if } x \in V_{G} \\
l a b_{H}(x) & \text { if } x \in V_{H} .\end{cases}
\end{aligned}
$$

The graph $G \oplus H$ is well-defined up to isomorphism.
(2) For a $k$-C-graph $G$, for a color $b$ in $C_{2}$ and for distinct $i, j \in[k]$, we denote by $\eta_{i, j}^{b}(G)$, the $k$-C-graph $K=\left\langle V_{G},\left(e d g_{a K}\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}, l a b_{G}\right\rangle$ where:
$e d g_{a K}= \begin{cases}e d g_{a G} & \text { if } a \neq b \\ e d g_{b G} \cup\left\{(x, y) \mid x, y \in V_{G} \wedge x \neq y \wedge i=l a b_{G}(x), j=l a b_{G}(y)\right\} & \text { if } a=b .\end{cases}$
(3) For a $k$-C-graph $G$, for distinct $i, j \in[k]$, we denote by $\rho_{i \rightarrow j}(G)$, the $k$-colored graph $K=\left\langle V_{G},\left(e d g_{a G}\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}, l a b_{K}\right\rangle$ where

$$
\operatorname{lab}_{K}(x)= \begin{cases}j & \text { if } \operatorname{lab}_{G}(x)=i \\ \operatorname{lab}_{G}(x) & \text { otherwise }\end{cases}
$$

(4) For each $i \in[k]$ and each $A \subseteq C$, $\mathbf{i}_{\mathbf{A}}$ denotes a $k$ - $C$-graph with a single vertex $x$ with $\operatorname{lab}_{\mathbf{i}_{\mathbf{A}}}(x)=i$ such that $p_{\mathbf{i}_{\mathbf{A}}}(x)$ holds if and only if $a \in A \cap C_{1}$
and edg $g_{\mathbf{i}_{\mathbf{A}}}(x, x)$ holds if and only if $a \in A \cap C_{2}$. We let $C_{C, k}=\left\{\mathbf{i}_{\mathbf{A}} \mid i \in\right.$ $[k], A \subseteq C\}$.

We let $F_{C, k}=\left\{\oplus, \eta_{i, j}^{a}, \rho_{i \rightarrow j} \mid i, j \in[k], a \in C\right\}$. Each term $t$ in $T\left(F_{C, k}, C_{C, k}\right)$ has a value val $(t)$ : it is the $k$ - $C$-graph obtained by evaluating $t$ according to definitions (1)-(4). The clique-width of a (colored) graph $G$, denoted by $\operatorname{cwd}(G)$, is the minimum $k$ such that $G$ is isomorphic to val $(t)$ for some term $t$ in $T\left(F_{C, k}, C_{C, k}\right)$.

There is a function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that if a $C$-graph has tree-width $w$ then, it has clique-width at most $f(w,|C|)$. The proof of [8] that concerns uncolored graphs can be adapted. The converse is false because cliques have clique-width 2 and unbounded tree-width. For fixed $k$, there exists a cubictime algorithm that given an undirected $C$-graph $G$ either outputs that it has clique-width at least $k+1$ or outputs a term $t$ in $T\left(F_{C, k^{\prime}}^{a}, C_{C, k^{\prime}}^{a}\right)$ that defines $G$ with $k^{\prime}=2^{k+1}-1[27,20]$. This algorithm can be adapted to colored graphs with $k^{\prime}=g(k)$ for some function $g$ [22]. Also, every property expressible in MSO logic can be checked in cubic-time in classes of colored graphs of bounded clique-width by combining the results of [7] and of [22]. The survey by Kamiński et al. [21] presents recent results on clique-width.

We now define the notion of bounded expansion [26]. As tree-width, it is independent of colors of vertices and/or edges. Graph classes with bounded expansion, defined in [26], have several equivalent characterizations. We will use the following one.

Definition 2.2 (Bounded Expansion) A class $\mathcal{C}$ of colored graphs has bounded expansion if for every integer $p$, there exists a constant $N(\mathcal{C}, p)$ such that for every $G \in \mathcal{C}$, one can partition its vertex set in at most $N(\mathcal{C}, p)$ parts such that any $i$ parts for $i \leq p$ induce a sub-graph of tree-width at most $i-1$.

The case $i=1$ of Definition 2.2 implies that each part is a stable set, hence the corresponding partition can be seen as a proper vertex-coloring. We finish these preliminary definitions by introducing the notion of labeling scheme.

Definition 2.3 (Labeling Scheme) Let $\mathcal{R}$ be a relational signature. Let $S=$ $\left\langle D_{S},\left(R_{G}\right)_{R \in \mathcal{R}}\right\rangle$ be a relational $\mathcal{R}$-structure. A labeling of $S$ is an injective mapping $J: D_{S} \rightarrow\{0,1\}^{*}$ (or into some more convenient set $\Sigma^{*}$ where $\Sigma$ is a finite alphabet). If $Y$ is a subset of $D_{S}$ we let $J(Y)$ be the family $(J(y))_{y \in Y}$. Clearly each set $Y$ is defined from $J(Y)$.

Let $\varphi(\bar{x}, \bar{Y})$ be an FO or MSO formula over relational $\mathcal{R}$-structures where $\bar{x}$ is an m-tuple of $F O$ variables and $\bar{Y}$ a $q$-tuple of set variables. Let $\mathcal{C}$ be a class of relational $\mathcal{R}$-structures and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing function. An $f$-labeling scheme supporting the query defined by $\varphi$ in the relational $\mathcal{R}$ structures of $\mathcal{C}$ is a pair $(\mathcal{A}, \mathcal{B})$ of algorithms doing the following:
(1) $\mathcal{A}$ constructs for each $S$ in $\mathcal{C}$ a labeling $J$ of $S$ such that $|J(a)|=O(f(n))$ for every $a \in D_{S}$, where $n=\left|D_{S}\right|$.
(2) If $J$ is computed from $S$ by $\mathcal{A}$, then $\mathcal{B}$ takes as input an $(m+q)$-tuple $\left(J\left(a_{1}\right), \ldots, J\left(a_{m}\right), J\left(W_{1}\right), \ldots, J\left(W_{q}\right)\right)$ and says correctly whether:

$$
S \models \varphi(\bar{a}, \bar{W}) .
$$

Labeling schemes based on logical descriptions of queries by MSO formulas have been first defined by Courcelle and Vanicat [10] for graphs of bounded clique-width (whence also of bounded tree-width). We recall this theorem. If $\bar{W}$ is a $q$-tuple of sets, we let $|\bar{W}|=\left|W_{1}\right|+\cdots+\left|W_{q}\right|$ and if $\bar{a}$ is an $m$-tuple of vertices, we let $|\bar{a}|=m$.

Theorem 2.4 Let $k$ be a positive integer and let $C$ be a finite set of colors. Then, for every MSO formula $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ there exists a loglabeling scheme $(\mathcal{A}, \mathcal{B})$ for $\varphi$ on the class of $C$-graphs of clique-width at most $k$. Moreover, if the input $C$-graph has $n$ vertices, algorithm $\mathcal{A}$ computes the labels $J(x)$ of all vertices $x$ in time $O\left(n^{3}\right)$ or in time $O(n \cdot \log (n))$ if the clique-width expression of the graph is given. Given $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$ algorithm $\mathcal{B}$ checks whether $\varphi(\bar{a}, \bar{W})$ holds in time $O(\log (n) \cdot(|\bar{W}|+|\bar{a}|+1))$

For n-vertex $C$-graphs of tree-width at most $k$, algorithm $\mathcal{A}$ builds the labelings in time $O(n \cdot \log (n))$.

The proof of Theorem 2.4 combines the construction of [10] that works for graphs given with their decompositions, and "parsing" results by Bodlaender [4] for tree-width and, by Hliněný, Oum and Seymour [20,27] and Kanté [22] for clique-width (discussed above). Labeling schemes for distance and connectivity queries in respectively graphs of bounded clique-width and in planar graphs have been given respectively by Courcelle and Twigg in [9] and by Courcelle, Gavoille, Kanté and Twigg in [6].

In the present article, we consider classes of graphs of unbounded cliquewidth and, in particular, classes that are locally decomposable (Frick and Grohe $[14,15])$ and classes of bounded expansion. So, MSO logic is out of reach for such classes and we will consider FO logic over $C$-graphs.

## 3 Bounded and Local First-Order Formulas

The definitions below concern binary relational structures called graphs since they correspond to colored graphs as explained in Section 2. Formulas are written over binary relational structures for a fixed binary relational signature that we do not specify all the time.

Definition 3.1 (Bounded Formulas) An FO formula $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ is a basic bounded formula if for some $p \in \mathbb{N}$ we have the following equivalence for all graphs $G$, all $a_{1}, \ldots, a_{m} \in V_{G}$ and all $W_{1}, \ldots, W_{q} \subseteq V_{G}$
$G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ iff $G[X] \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap X, \ldots, W_{q} \cap X\right)$
for some $X \subseteq V_{G}$ such that $a_{1}, \ldots, a_{m} \in X$ and $|X| \leq p$.
If this is true for $X$, then $G[Y] \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap Y, \ldots, W_{q} \cap Y\right)$ for every $Y \supseteq X$. We call $p$ a bound on the quantification space.

An FO formula is bounded if it is a Boolean combination of basic bounded formulas.

The negation of a basic bounded formula is not (in general) basic bounded, but it is bounded. The property that a graph has a sub-graph isomorphic to a fixed graph $H$ is expressible by a bounded formula.

We still call sentence an FO formula without free FO variables that has free set variables.

Definition 3.2 (Local Formulas) An FO formula $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ is $t$-local around $\left(x_{1}, \ldots, x_{m}\right)$ if for every graph $G$, all $a_{1}, \ldots, a_{m}$ in $V_{G}$ and all subsets $W_{1}, \ldots, W_{q}$ of $V_{G}$ we have
$G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ iff $G[N] \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap N, \ldots, W_{q} \cap N\right)$
where $N=N_{G}^{t}\left(\left\{a_{1}, \ldots, a_{m}\right\}\right)$.
An FO sentence $\varphi\left(Y_{1}, \ldots, Y_{q}\right)$ is basic $(t, s)$-local if it is equivalent to a sentence of the form

$$
\exists x_{1} \cdots \exists x_{s}\left(\bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 t \wedge \bigwedge_{1 \leq i \leq s} \psi\left(x_{i}, Y_{1}, \ldots, Y_{q}\right)\right)
$$

where $\psi\left(x, Y_{1}, \ldots, Y_{q}\right)$ is $t$-local around its unique free variable $x$.
Remark 3.3 The property $d(x, y) \leq r$ is basic bounded (for $p=r+1$ ) and $t$-local for $t=\lfloor r / 2\rfloor$. Its negation $d(x, y)>r$ is $t$-local and bounded (but not basic bounded).

We now recall a decomposition of $F O$ formulas into $t$-local and basic $\left(t^{\prime}, s\right)$ local formulas due to Gaifman [16].

Theorem 3.4 ([24]) Every FO formula $\varphi(\bar{x}, \bar{Y})$ is logically equivalent to a Boolean combination $B\left(\varphi_{1}\left(\overline{u_{1}}, \bar{Y}\right), \ldots, \varphi_{p}\left(\overline{u_{p}}, \bar{Y}\right), \psi_{1}(\bar{Y}), \ldots, \psi_{h}(\bar{Y})\right)$ where:

- each $\varphi_{i}$ is a t-local formula around some sub-sequence $\overline{u_{i}}$ of $\bar{x}$,
- each $\psi_{i}$ is a basic $\left(t^{\prime}, s\right)$-local sentence.

Moreover $B$ can be computed effectively and, the integers $t, t^{\prime}$ and $s$ can be bounded in terms of $m$ and the quantifier-rank of $\varphi$.

This theorem is usually stated and proved for FO formulas without free set variables. However, in an FO formula, a set variable $Y_{i}$ occurs in atomic formulas of the form " $y \in Y_{i}$ ". This is equivalent to " $R_{i}(y)$ " if $R_{i}$ is a unary relation representing $Y_{i}$. We denote by $\varphi^{\prime}(\bar{x})$ the formula obtained from $\varphi\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right)$ by replacing every sub-formula " $y \in Y_{i}$ " by " $R_{i}(y)$ ". In order to prove that two FO formulas $\varphi\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right)$ and $\psi\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right)$ are equivalent in every relational structure of a class $\mathcal{C}$ of relational $\mathcal{R}$-structures, it is enough to prove that the corresponding formulas $\varphi^{\prime}(\bar{x})$ and $\psi^{\prime}(\bar{x})$ are equivalent in every relational structure $S^{\prime}$ that is an expansion of a relational structure $S$ in $\mathcal{C}$ by unary relations $R_{1}, \ldots, R_{q}$. Hence, Theorem 3.4 follows from its usual formulation for FO formulas without free set variables. The same holds for Theorem 3.5 below.

We will use a stronger form of Theorem 3.4 from [14], that decomposes $t$-local formulas. Let $m, t \geq 1$. The $t$-distance type of an $m$-tuple $\bar{a}$ is the undirected graph $\Delta(\bar{a})=\left([m], e d g_{\Delta(\bar{a})}\right)$ where $e d g_{\Delta(\bar{a})}(i, j)$ iff $d\left(a_{i}, a_{j}\right) \leq 2 t+1$. For each graph $\Delta$ the property that an $m$-tuple $\bar{a}$ satisfies $\Delta(\bar{a})=\Delta$ can be expressed by a $t$-local formula $\rho_{t, \Delta}\left(x_{1}, \ldots, x_{m}\right)$ equivalent to:

$$
\bigwedge_{(i, j) \in e d g_{\Delta}} d\left(x_{i}, x_{j}\right) \leq 2 t+1 \wedge \bigwedge_{(i, j) \notin e d g_{\Delta}} d\left(x_{i}, x_{j}\right)>2 t+1 .
$$

Theorem 3.5 ([14]) Let $\varphi(\bar{x}, \bar{Y})$ be a t-local formula around the $m$-tuple $\bar{x}$, $m \geq 1$ with $\bar{Y}=\left(Y_{1}, \ldots, Y_{q}\right)$. For each $t$-distance type $\Delta$ with connected components $\Delta_{1}, \ldots, \Delta_{p}$ one can compute a Boolean combination $F^{t, \Delta}\left(\varphi_{1,1}, \ldots, \varphi_{1, j_{1}}\right.$, $\ldots, \varphi_{p, 1}, \ldots, \varphi_{p, j_{p}}$ ) of formulas $\varphi_{i, j}$ with free variables in $\bar{x}$ and in $\bar{Y}$ such that:

- The free FO variables of each $\varphi_{i, j}$ belong to $\bar{x} \mid \Delta_{i}$ (where $\bar{x} \mid \Delta_{i}$ denotes the restriction of $\bar{x}$ to $\Delta_{i}$ ).
- $\varphi_{i, j}$ is $t$-local around $\bar{x} \mid \Delta_{i}$.
- For each m-tuple $\bar{a}$, each $q$-tuple of sets $\bar{W}, G \models \rho_{t, \Delta}(\bar{a}) \wedge \varphi(\bar{a}, \bar{W})$ iff $G \models \rho_{t, \Delta}(\bar{a}) \wedge F^{t, \Delta}\left(\ldots, \varphi_{i, j}\left(\bar{a} \mid \Delta_{i}, \bar{W}\right), \ldots\right)$.

We are interested in on-line checking properties of networks in case of (reported) failures of some nodes (nodes are vertices of the associated graphs). Hence, for each property of interest, defined by a formula $\varphi\left(x_{1}, \ldots, x_{m}\right)$, we are not only interested in checking if $G \models \varphi\left(a_{1}, \ldots, a_{m}\right)$ by using $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ for $a_{1}, \ldots, a_{m} \in V_{G}$, but also, in checking if $G \backslash W \models \varphi\left(a_{1}, \ldots, a_{m}\right)$ by using $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J(W)$ where $W$ is a subset of $V_{G}-\left\{a_{1}, \ldots, a_{m}\right\}$. How-
ever, the property $G \backslash W \models \varphi\left(a_{1}, \ldots, a_{m}\right)$ for an FO formula $\varphi\left(x_{1}, \ldots, x_{m}\right)$ is equivalent to $G \models \varphi^{\prime}\left(a_{1}, \ldots, a_{m}, W\right)$ and to $G_{W} \models \varphi^{\prime \prime}\left(a_{1}, \ldots, a_{m}\right)$ for FO formulas $\varphi^{\prime}\left(x_{1}, \ldots, x_{m}, Y\right)$ and $\varphi^{\prime \prime}\left(x_{1}, \ldots, x_{m}\right)$ that are easy to write. We denote by $G_{W}$ the graph $G$ equipped with an additional vertex-color $\perp$, i.e., as the structure $G$ expanded with a unary relation $p_{\perp}$ such that $p_{\perp G_{W}}(u)$ holds iff $u \in W$. We will handle "holes" in graphs by means of set variables.

## 4 Locally Decomposable Classes

We will use the same notations as in $[14,15]$. Definition 4.1 is analogous to [15, Definition 5.1].

## Definition 4.1 (Local Clique-Width)

(1) The local clique-width of a graph $G$ is the function lcw ${ }^{G}: \mathbb{N} \rightarrow \mathbb{N}$ defined by $l c w^{G}(t):=\max \left\{c w d\left(G\left[N_{G}^{t}(a)\right]\right) \mid a \in V_{G}\right\}$.
(2) A class $\mathcal{C}$ of graphs has bounded local clique-width if there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $l c w^{G}(t) \leq f(t)$ for every $G \in \mathcal{C}$ and $t \in \mathbb{N}$.

## Examples of Graphs of Bounded Local Clique-Width

(1) Every class of graphs of bounded clique-width has also bounded local clique-width since $\operatorname{cwd}(G[A]) \leq \operatorname{cwd}(G)$ for every $A \subseteq V_{G}$ (see [8]).
(2) The classes of graphs of bounded local tree-width have bounded local clique-width since every class of graphs of bounded tree-width has bounded clique-width (see [8]). We can cite graphs of bounded degree and minor-closed classes of graphs that exclude some apex-graph as a minor ${ }^{5}$ (see $[14,15]$ ) as examples of classes of bounded local tree-width.
(3) Let $m$ be a positive integer and let $\mathcal{C}$ be a class of graphs of bounded local clique-width. Then $\mathcal{C}^{m}=\left\{G^{m} \mid G \in \mathcal{C}\right\}$ has bounded local clique-width. Let sketch the proof. Let $G$ be a graph in $\mathcal{C}$. For every vertex $x$ of $G$ and every positive integer $r$ we have $N_{G^{m}}^{r}(x) \subseteq N_{G}^{r m}(x)$. Hence, for every graph $G$ in $\mathcal{C}$ and for every positive integer $r$, lcw $w^{G^{m}}(r) \leq f(r m)$ where $f$ is the function that bounds the local clique-width of graphs in $\mathcal{C}$.

The same holds for $\operatorname{Line}(\mathcal{C})=\{\operatorname{Line}(G) \mid G \in \mathcal{C}\}^{6}$ if $\mathcal{C}$ has bounded local tree-width. Let $G$ be a graph in $\mathcal{C}$ and let $K=\operatorname{Line}(G)$. For every $e$ and $e^{\prime}$ in $E_{G}=V_{K}$ we have $d_{G}(x, y) \leq d_{K}\left(e, e^{\prime}\right)+1$ if $x$ is any end vertex of $e$ and $y$ is any end vertex of $e^{\prime}$. It follows that $K\left[N_{K}^{r}(e)\right]=\operatorname{Line}(H)$

[^2]where $H$ is a sub-graph of $G\left[N_{G}^{r+1}(x)\right]$ and $x$ is an end vertex of $e$. If $\mathcal{C}$ has bounded local tree-width then $\operatorname{twd}(H) \leq t w d\left(G\left[N_{G}^{r+1}(x)\right) \leq f(r)^{7}\right.$ for some function $f$, hence $\operatorname{cwd}\left(K\left[N_{K}^{r}(e)\right]\right)=\operatorname{cwd}($ Line $(H)) \leq g(f(r))$ for some function $g$ by a result of [19]. Hence, the class $\mathcal{C}$ has bounded local clique-width.
(4) The class of interval graphs has not bounded local clique-width. Otherwise, interval graphs would have bounded clique-width, because if we add to an interval graph a new vertex adjacent to all, we obtain an interval graph of diameter 2 .

In order to obtain a log-labeling scheme for certain classes of graphs of bounded local clique-width, we will cover their graphs, as in $[14,15]$, by graphs of bounded clique-width. In [14] a notion of nicely locally tree-decomposable class of structures was introduced. We will define a slightly more general notion. But before we define the intersection graph of a cover of a graph $G$, i.e., a family $\mathcal{T}$ of subsets of $V_{G}$ the union of which is $V_{G}$.

Definition 4.2 (Intersection Graph) Let $G$ be a graph and let $\mathcal{T}$ be a cover of $G$. The intersection graph of $\mathcal{T}$ is the undirected $\operatorname{graph} G(\mathcal{T})$ where $V_{G(\mathcal{T})}:=$ $\left\{x_{U} \mid U \in \mathcal{T}\right\}$ and $x_{U} x_{V} \in E_{G(\mathcal{T})}$ if and only if $U \cap V \neq \emptyset$.

Definition 4.3 (Graph Covers) Let $r, \ell \geq 1$ and $g: \mathbb{N} \rightarrow \mathbb{N}$. An $(r, \ell, g)$ cwd cover of a graph $G$ is a family $\mathcal{T}$ of subsets of $V_{G}$ such that:
(1) For every $a \in V_{G}$ there exists a set $U \in \mathcal{T}$ such that $N_{G}^{r}(a) \subseteq U$.
(2) The graph $G(\mathcal{T})$ has degree at most $\ell$.
(3) For each $U \in \mathcal{T}$ we have $\operatorname{cwd}(G[U]) \leq g(1)$.

An $(r, \ell, g)-c w d$ cover is nice if condition (3) is replaced by condition (3') below:
(3') For all $U_{1}, \ldots, U_{q} \in \mathcal{T}$ and $q \geq 1$ we have $\operatorname{cwd}\left(G\left[U_{1} \cup \cdots \cup U_{q}\right]\right) \leq g(q)$.
A class $\mathcal{C}$ of graphs is (nicely) locally cwd-decomposable if every graph $G$ in $\mathcal{C}$ has, for each $r \geq 1$, a (nice) ( $r, \ell, g$ )-cwd cover for some $\ell, g$ depending on $r$ (but not on $G$ ).

The notions of locally cwd-decomposable and of nicely locally cwd-decomposable are the same as in $[15,14]$ where we substitute clique-width to tree-width except that our definition requires nothing about the time necessary to compute covers.

[^3]
## Examples of (Nicely) Locally Cwd-Decomposable Graph Classes

(1) Every nicely locally cwd-decomposable class is locally cwd-decomposable and the converse does not seem to be true (but we do not have a counterexample).
(2) Each class of nicely locally tree-decomposable graph is nicely locally cwddecomposable.
(3) We do not know if every graph class of bounded local clique-width is locally cwd-decomposable. We conjecture that there exists a graph class of bounded local clique-width which is not locally cwd-decomposable.
(4) Figure 1 shows inclusion relations between the many classes defined in Sections 3 and 4.


Fig. 1. Inclusion diagram indicating which results apply to which classes. An arrow means an inclusion of classes. Bold boxes are used in this paper.

Fact 4.4 The class of unit-interval graphs is nicely locally cwd-decomposable.

Proof. We first prove that unit-interval graphs have bounded local cliquewidth. We let $H_{n, m}$ be the graph $\left\langle V_{1} \cup \cdots \cup V_{n}, E_{1} \cup E_{2}\right\rangle$ with $n m$ vertices
such that:

$$
\begin{aligned}
V_{i} & =\left\{v_{i, 1}, \ldots, v_{i, m}\right\}, \\
E_{1} & =\bigcup_{1 \leq i \leq n}\left\{v_{i, j} v_{i, \ell} \mid j, \ell \leq m\right\}, \\
E_{2} & =\bigcup_{\substack{1 \leq i \leq n-1 \\
1 \leq j \leq m}}\left\{v_{i, j} v_{\ell, j} \mid \ell=i+1, \ldots, m\right\}
\end{aligned}
$$

Figure 2 shows the graph $H_{4,4}$. Lozin [25] showed that every unit-interval graph with $n$ vertices is an induced sub-graph of $H_{n, n}$.

Let $G$ be a unit-interval graph with $n$ vertices. Then for every positive integer $r$ and every vertex $x$ of $G$ the sub-graph $G\left[N_{G}^{r}(x)\right]$ is an induced sub-graph of $H_{r, n}$, i.e., has clique-width at most $3 r$ since for every positive integers $s$ and $t$ the clique-width of $H_{s, t}$ is at most $3 s$ [25]. (Bagan gives in [2] another proof stating that unit-interval graphs have bounded local clique-width.)

We now prove that the class of unit-interval graphs is nicely locally cwddecomposable. Let $G$ be a unit-interval graph. For $1 \leq i \leq n-1$ we let $G_{i}=N_{G}^{r+1}\left(v_{i, 1}\right)$. It is clear that the family $\left\{G_{i} \mid 1 \leq i \leq n-1\right\}$ is a nice $(r, 2 r+2,3 \cdot(r+1))$-cwd cover of $G$.


Fig. 2. The graph $H_{4,4}$. Each $V_{i}$, for $1 \leq i \leq 4$, induces a clique.
The lemma below is an easy adaptation of the results in [15].
Lemma 4.5 Let $G$ be in a class of graphs of bounded local clique-width and let $\varphi$ be a basic $(t, s)$-local sentence without set variables. We can check in time $O\left(n^{4}\right)$ whether $G$ satisfies $\varphi, n=\left|V_{G}\right|$.

Proof Sketch. Let $G$ be in a class $\mathcal{C}$ of graphs of bounded local clique-width and let $f$ be the function that bounds the local clique-width of graphs in $\mathcal{C}$. Let $\varphi$ be a basic $(t, s)$-local sentence, equivalent to

$$
\exists x_{1} \cdots \exists x_{s}\left(\bigwedge_{1 \leq i<j \leq s} d\left(x_{i}, x_{j}\right)>2 t \wedge \bigwedge_{1 \leq i \leq s} \psi\left(x_{i}\right)\right)
$$

where $\psi(x)$ is $t$-local around its unique free variable $x$.
For each vertex $a$ in $G$ we can compute the set $N_{G}^{t}(a)$, of size at most $n$, in time $O\left(n^{2}\right)$. Since $\operatorname{cwd}\left(G\left[N_{G}^{t}(a)\right]\right) \leq f(t)$, we can verify in time $O\left(n^{3}\right)$ if $G$ satisfies $\varphi(a)$ by combining the results in [20] and in [7]. We can then compute in time $O\left(n^{4}\right)$ the set $\left\{a \in V_{G} \mid G \models \varphi(a)\right\}$. The formula $\varphi$ is valid in $G$ if and only if there exist $a_{1}, \ldots, a_{s}$ in $P$ such that $d\left(a_{i}, a_{j}\right)>2 t$. It is proved in [17] that we can verify their existence in time $O\left(n^{3}\right)$.

## 5 Labeling Schemes for First-Order Queries

Our results concern 4 types of graph classes (see Figure 1) and 5 types of FO queries. We now state the main theorem of this section.

Theorem 5.1 (First Main Theorem) There exist log-labeling schemes $(\mathcal{A}, \mathcal{B})$ for the following queries and graph classes. In each case the input graph has $n$ vertices and each query is denoted by $\varphi(\bar{x}, \bar{Y})$.
(1) Quantifier-free queries in graphs of bounded arboricity. Algorithm $\mathcal{A}$ constructs a labeling in time $O(n)$. Algorithm $\mathcal{B}$ gives the answer in time $O(\log (n) \cdot(|\bar{a}|+|\bar{W}|+1))$ for every tuples $\bar{a}$ and $\bar{W}$. The same labeling can be used to check all quantifier-free queries.
(2) Bounded FO queries for each class of graphs of bounded expansion. Algorithm $\mathcal{A}$ constructs a labeling in time $O(n)$. Algorithm $\mathcal{B}$ gives the answer in time $O(\log (n) \cdot(|\bar{a}|+|\bar{W}|+1))$ for every tuples $\bar{a}$ and $\bar{W}$.
(3) Local queries with set arguments on locally cwd-decomposable classes. Algorithm $\mathcal{A}$ constructs a labeling in time $O\left(f(n)+n^{4}\right)$ where $f$ is the time taken to construct a cwd-cover. Algorithm $\mathcal{B}$ gives the answer in time $O\left(\log (n) \cdot\left(|\bar{a}|^{2}+|\bar{W}|+1\right)\right)$ for every tuples $\bar{a}$ and $\bar{W}$.
(4) FO queries without set arguments on locally cwd-decomposable classes. Algorithm $\mathcal{A}$ constructs a labeling in time $O\left(f(n)+n^{4}\right)$ where $f$ is the time taken to construct a cwd-cover. Algorithm $\mathcal{B}$ gives the answer in time $O\left(\log (n) \cdot\left(|\bar{a}|^{2}\right)\right)$ for every tuple $\bar{a}$.
(5) FO queries with set arguments on nicely locally cwd-decomposable classes. Algorithm $\mathcal{A}$ constructs a labeling in time $O\left(f(n)+n^{4}\right)$ where $f$ is the time taken to construct a nice cwd-cover. Algorithm $\mathcal{B}$ gives the answer
in time $O\left(\log (n) \cdot\left(|\bar{a}|^{2}+|\bar{W}|+1\right)\right)$ for every tuples $\bar{a}$ and $\bar{W}$.

Proof of Theorem 5.1 (1). Let $G$ be a colored graph with $n$ vertices, represented by the relational structure $\left\langle V_{G},\left(e d g_{a G}\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}\right\rangle$. We recall that $e d g_{a}$ is binary and $p_{a}$ is unary.

Assume that und $(G)$, the graph obtained from $G$ by forgetting edge directions and colors of vertices and of edges, is a forest. Let $R$ be a subset of $V_{G}$ that contains one and only one vertex of each connected component, which is a tree, of $G$. For each color $a$ in $C_{2}$ we let $f_{a}^{+}, f_{a}^{-}: V_{G} \rightarrow V_{G}$ be mappings such that:

- $f_{a}^{+}(u)=v \quad$ iff $\quad e d g_{a}(u, v)$ in $G$ and $v$ is on the unique undirected path between $u$ and some vertex of $R$
- $f_{a}^{-}(u)=v \quad$ iff $\quad e d g_{a}(v, u)$ in $G$ and $v$ is on the unique undirected path between $u$ and some vertex of $R$.

The edge relation in $G$ is defined by:

$$
\begin{equation*}
e d g_{a G}(u, v) \Longleftrightarrow v=f_{a}^{+}(u) \vee u=f_{a}^{-}(v) \tag{1}
\end{equation*}
$$

If $G$ is the union of $k$ edge-disjoint forests $F_{1}, \ldots, F_{k}$ we take the pairs $\left(f_{i, a}^{+}, f_{i, a}^{-}\right)$ for each forest $\operatorname{und}\left(F_{i}\right)$. The edge relation of $G$ is defined in a similar way as in (1) with $2 k$ unary functions by letting

$$
\begin{equation*}
e d g_{a G}(u, v) \Longleftrightarrow \bigvee_{i \in[k]} v=f_{i, a}^{+}(u) \vee u=f_{i, a}^{-}(v) \tag{2}
\end{equation*}
$$

We let $C_{1}=\left\{c_{1}, \ldots, c_{\ell}\right\}$. For each vertex $x$ of $G$ we let $b_{x}$ be the Boolean vector $\left(b_{a_{1}}, \ldots, b_{a_{\ell}}\right)$ where $b_{a_{i}}=1$ if and only if $p_{c_{i} G}(x)$ holds. If vertices are numbered from 1 to $n$ and $\ulcorner x\urcorner$ is the bit representation of the index of $x$, then we let

$$
J(x)=\left(\ulcorner x\urcorner,\left\ulcorner f_{1, a_{1}}^{+}(x)\right\urcorner,\left\ulcorner f_{1, a_{1}}^{-}(x)\right\urcorner, \ldots,\left\ulcorner f_{k, a_{\ell}}^{+}(x)\right\urcorner,\left\ulcorner f_{k, a_{\ell}}^{-}(x)\right\urcorner, b_{x}\right) .
$$

It is clear that $|J(x)|=O(\log (n))$. We now explain how to check any quantifierfree formula.

Let $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a quantifier-free formula. For all $m$-tuples $\left(a_{1}, \ldots, a_{m}\right)$ of $V_{G}$ and all $q$-tuples ( $W_{1}, \ldots, W_{q}$ ) of subsets of $V_{G}$ we can deter$\operatorname{mine} G\left[\left\{x_{1}, \ldots, x_{m}\right\} \cup W_{1} \cup \cdots \cup W_{q}\right]$ from $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$, and check if $\varphi(\bar{a}, \bar{W})$ holds.

It is clear that if the input graph has $n$ vertices and $m$ edges then our algorithm constructs the labels in time $O(n+m)$. But, if a graph $G$ has arboricity at most
$k$, then the number of edges is linear in the number of vertices of $G$. Therefore, the labels are constructed in linear-time. We now examine the time taken to check whether $G$ satisfies $\varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$. For each $x \in\left\{a_{1}, \ldots, a_{m}\right\}$ it takes constant time to check whether $p_{c_{i} G}(x)$ holds by using the $b_{x}$ part of $J(x)$. For every $x$ and $y$ in $W_{1} \cup \cdots \cup W_{q} \cup\left\{a_{1}, \ldots, a_{m}\right\}$ and every $c$ in $C_{2}$ it takes time $O(\log (n))$ to check whether $e d g_{c G}(x, y)$ holds and it takes time $O\left(\left|W_{i}\right| \cdot \log (n)\right)$ to check if $x$ is in $W_{i}$. Therefore we can check the validity of $\varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ in time $O(\log (n) \cdot(|\bar{W}|+|\bar{a}|+1))$ since a quantifierfree formula is a Boolean combination of atomic formulas.

Proof of Theorem 5.1 (2). Let $\mathcal{C}$ be a class of graphs of bounded expansion and let $G$ in $\mathcal{C}$ be a graph with $n$ vertices, represented by the relational structure $\left\langle V_{G},\left(e d g_{a G}\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}\right\rangle$. Let $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ with $m \geq 1$ be a be a basic bounded formula with bound $p$ on the quantification space (see Definition 3.1). We let $N=N(\mathcal{C}, p)$ and we partition $V_{G}$ into $V_{1} \uplus V_{2} \uplus \cdots \uplus V_{N}$ as in the definition (Definition 2.2) with each $V_{i}$ nonempty. (We denote by $\uplus$ the disjoint union of sets.)

For every $\alpha \subseteq[N]$ of size $p$ we let $V_{\alpha}=\bigcup_{i \in \alpha} V_{i}$ so that the tree-width of $G\left[V_{\alpha}\right]$ is at most $p-1$. Each vertex $x$ belongs to less than $(N-1)^{p-1}$ sets $V_{\alpha}$.

Hence the basic bounded formula $\varphi(\bar{x}, \bar{Y})$ is true in $G$ iff it is true in some $G[X]$ with $|X| \leq p$, hence in some $G\left[V_{\alpha}\right]$ such that $x_{1}, \ldots, x_{m} \in V_{\alpha}$. For each $\alpha$ we construct a labeling $J_{\alpha}$ of $G\left[V_{\alpha}\right]$ (of tree-width at most $p-1$ ) supporting query $\varphi$ by using Theorem 2.4. We let $J(x)=\left(\ulcorner x\urcorner,\left\{\left(\ulcorner\alpha\urcorner, J_{\alpha}(x)\right) \mid x \in V_{\alpha}\right\}\right)$. We have $|J(x)|=O(\log (n))$.

Given vertices $a_{1}, \ldots, a_{m}$ and sets of vertices $W_{1}, \ldots, W_{q}$ we now explain how to decide the validity of $\varphi(\bar{a}, \bar{Y})$ by using $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$. From $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ we can determine all those sets $\alpha$ such that $V_{\alpha}$ contains $a_{1}, \ldots, a_{m}$. Using the components $J_{\alpha}(\cdot)$ of $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and the labels in $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$ we can determine if for some $\alpha, G\left[V_{\alpha}\right] \vDash \varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap\right.$ $\left.V_{\alpha}, \ldots, W_{q} \cap V_{\alpha}\right)$ hence whether $G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$.

It remains to consider the case of a basic bounded formula of the form $\varphi\left(Y_{1}, \ldots, Y_{q}\right)$, i.e., where $m=0$. For each $\alpha$ we determine the truth value $b_{\alpha}$ of $\varphi(\emptyset, \ldots, \emptyset)$ in $G\left[V_{\alpha}\right]$. The family of pairs $\left(\alpha, b_{\alpha}\right)$ is of fixed size (depending on $p$ ) and is appended to $J(x)$ defined as above (suitably appended as a sequence of bits). From $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$ we get $D=\left\{\alpha \mid V_{\alpha} \cap\left(W_{1} \cup \cdots \cup W_{q}\right) \neq \emptyset\right\}$.

By using the $J_{\alpha}(\cdot)$ components of the labels in $J\left(W_{1}\right) \cup \cdots \cup J\left(W_{q}\right)$ we can determine if for some $\alpha \in D$ we have $G\left[V_{\alpha}\right] \models \varphi\left(W_{1} \cap V_{\alpha}, \ldots, W_{q} \cap V_{\alpha}\right)$. If one is found we can conclude positively. Otherwise, we look for some $b_{\beta}=$ TRUE such that $\beta \notin D$. The final answer is positive if such $\beta$ is found.

For a Boolean combination of basic bounded formulas $\varphi_{1}, \ldots, \varphi_{t}$ with associated labelings $J_{1}, \ldots, J_{t}$ we take the concatenation $J_{1}(x), J_{2}(x), \cdots, J_{t}(x)$ of the corresponding labels. It is of size $O(\log (n))$ and gives the desired result.

In [26] Nešetřil and Ossona de Mendez described a linear-time algorithm that computes the partition $\left\{V_{1}, \ldots, V_{N}\right\}$. The number of sets $V_{\alpha}$ where $\alpha$ is a subset of $[N]$ of size $p$ is bounded by $N^{p}$. Then the number of graphs $G\left[V_{\alpha}\right]$ is bounded by $N^{p}$. Then the labeling $J$ is constructed in linear-time since each labeling $J_{\alpha}$ is constructed in linear-time by Theorem 2.4.

We now examine the time taken to check whether $G$ satisfies $\varphi\left(a_{1}, \ldots, a_{m}\right)$. Each vertex $x$ is in less than $(N-1)^{p-1}$ sets $V_{\alpha}$. By comparing the sets that contain all the $a_{i}$ 's with the sets that contain $a_{1}$ we can determine in time $O(\log (n) \cdot|\bar{a}|)$ the sets $V_{\alpha}$ that contain $\left(a_{1}, \ldots, a_{m}\right)$. For each $V_{\alpha}$ and each $W_{i}$ we can determine in time $O\left(\log (n) \cdot\left|W_{i}\right|\right)$ the set $W_{i} \cap V_{\alpha}$. By Theorem 2.4 we can verify in each $G\left[V_{\alpha}\right]$ in time $O(\log (n) \cdot(|\bar{a}|+|\bar{W}|+1))$ whether $G\left[V_{\alpha}\right]$ satisfies $\varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap V_{\alpha}, \ldots, W_{q} \cap V_{\alpha}\right)$ since each $G\left[V_{\alpha}\right]$ has bounded tree-width. Therefore $\mathcal{B}$ checks the validity of $\varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ in time $O(\log (n) \cdot(|\bar{a}|+|\bar{W}|+1))$.

Proof of Theorem 5.1 (3). Let $\mathcal{C}$ be a locally cwd-decomposable class of graphs and let $G$ in $\mathcal{C}$ be a graph with $n$ vertices, represented by the structure $\left\langle V_{G},\left(e d g_{a G}\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}\right\rangle$. Let $\varphi\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right)$ be a $t$-local formula around $\bar{x}=\left(x_{1}, \ldots, x_{m}\right), m \geq 1$. Then $G \models \varphi\left(\bar{a}, W_{1}, \ldots, W_{q}\right)$ iff $G\left[N_{G}^{t}(\bar{a})\right] \vDash$ $\varphi\left(\bar{a}, W_{1} \cap N_{G}^{t}(\bar{a}), \ldots, W_{q} \cap N_{G}^{t}(\bar{a})\right)$. Let $\Delta$ be a $t$-distance type with connected components $\Delta_{1}, \ldots, \Delta_{p}$. By Lemma 3.5, $G \models \rho_{t, \Delta}(\bar{a}) \wedge \varphi\left(\bar{a}, W_{1}, \ldots, W_{q}\right)$ iff $G \models \rho_{t, \Delta}(\bar{a}) \wedge F^{t, \Delta}\left(\varphi_{1,1}\left(\bar{a} \mid \Delta_{1}, W_{1}, \ldots, W_{q}\right), \ldots, \varphi_{p, j_{p}}\left(\bar{a} \mid \Delta_{p}, W_{1}, \ldots, W_{q}\right)\right)$.

We let $\mathcal{T}$ be an $(r, \ell, g)$-cwd cover of $G$ where $r=m(2 t+1)$. We use this integer $r$ to warranty that if $\Delta=\Delta\left(a_{1}, \ldots, a_{m}\right)$ and $i_{1}, \ldots, i_{k}$ in $[m$ belong to a connected component of $\Delta$ then, $N_{G}^{t}\left(\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}\right) \subseteq U$ for some $U$ in $\mathcal{T}$. This is so because $d_{G}\left(a_{i_{1}}, a_{i_{k^{\prime}}}\right) \leq(m-1) \cdot(2 t+1)$ for every $k^{\prime}=2, \ldots, k$, hence, if $a \in N_{G}^{t}\left(\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}\right)$ we have $d_{G}\left(a_{i_{1}}, a\right) \leq t+(m-1) \cdot(2 t+1) \leq r$. Hence, $N_{G}^{t}\left(\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}\right) \subseteq N_{G}^{r}\left(a_{i_{1}}\right) \subseteq U$ for some $U$ in $\mathcal{T}$. For each vertex $x$ there exist less than $\ell$ many sets $V$ in $\mathcal{T}$ such that $x \in V$. We assume that each set $U$ in $\mathcal{T}$ has an index encoded as a bit string denoted by $\ulcorner U\urcorner$. There are at most $n \cdot \ell$ sets in $\mathcal{T}$. Hence $\ulcorner U\urcorner$ has length $O(\log (n))$.

For each set $U$ in $\mathcal{T}$ we label each vertex in $G[U]$ with a label $K_{U}(x)$ of length $O(\log (n))$ in order to decide if $d_{G[U]}(x, y) \leq 2 t+1$ or not by using $K_{U}(x)$ and
$K_{U}(y)^{8}$ (Theorem 2.4). For each vertex $x$ of $G$ we let

$$
K(x)=\left(\ulcorner x\urcorner,\left\{\left(\ulcorner U\urcorner, K_{U}(x)\right) \mid N(x) \subseteq U\right\},\left\{\left(\ulcorner U\urcorner, K_{U}(x)\right) \mid N(x) \nsubseteq U\right\}\right)
$$

where $N(x)=N_{G}^{2 t+1}(x)$. (We have $x \in N_{G}^{t}(x)$ for all $t \in \mathbb{N}$.) It is clear that $|K(x)|=O(\log (n))$.

By Theorem 2.4 for each formula $\varphi_{i, j}\left(\bar{x} \mid \Delta_{i}, Y_{1}, \ldots, Y_{q}\right)$ arising from Theorem 3.5 and each $U \in \mathcal{T}$ we can label each vertex $x \in U$ by some label $J_{i, j, U}^{\Delta}(x)$ of length $O(\log (n))$ so that we can decide if $\varphi_{i, j}\left(\bar{a} \mid \Delta_{i}, W_{1}, \ldots, W_{q}\right)$ holds in $G[U]$ by using $\left(J_{i, j, U}^{\Delta}(b)\right)_{b \in \bar{a} \mid \Delta_{i}}$ and $J_{i, j, U}^{\Delta}\left(W_{1} \cap U\right), \ldots, J_{i, j, U}^{\Delta}\left(W_{q} \cap U\right)$. For each vertex $x$ of $G$ we let
$J_{\Delta}(x):=\left(\left(\ulcorner U\urcorner, J_{1,1, U}^{\Delta}(x), \ldots, J_{1, j_{1}, U}^{\Delta}(x), \ldots, J_{p, 1, U}^{\Delta}(x), \ldots, J_{p, j_{p}, U}^{\Delta}(x)\right) \mid N_{G}^{t}(x) \subseteq U\right)$.
It is clear that $\left|J_{\Delta}(x)\right|=O(\log (n))$ since each $x$ is in less than $\ell$ many sets $V$ in $\mathcal{T}$. There exist at most $k^{\prime}=2^{k(k-1) / 2} t$-distance type graphs; we enumerate them by $\Delta^{1}, \ldots, \Delta^{k^{\prime}}$. For each vertex $x$ of $G$ we let $J(x):=$ $\left(\ulcorner x\urcorner, K(x), J_{\Delta^{1}}(x), \ldots, J_{\Delta^{k^{\prime}}}(x)\right)$. It is clear that $J(x)$ is of length $O(\log (n))$.

By hypothesis the cover $\mathcal{T}$ is computed in time $f(n)$ for $G$ in $\mathcal{C}$ with $n$ vertices. By Theorem 2.4 the labelings $K_{U}$ and $J_{i, j, U}^{\Delta}$ can be constructed in cubic-time. Therefore, the labeling $J$ is constructed in time $O\left(f(n)+n^{4}\right)$ since there are less than $\ell \cdot n$ sets $U$ in $\mathcal{T}$.

We now explain how to decide whether $G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ by using $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ and $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$.

From the labels $K(x)$, we can determine the set $\{\ulcorner U\urcorner \mid U \in \mathcal{T}, x \in U\}$, hence the family of sets $U \in \mathcal{T}$ such that $W \cap U \neq \emptyset, W \subseteq V_{G}$, where $W$ is a set argument.

Since for each vertex $x$ of $G$ there exists a set $U$ in $\mathcal{T}$ such that $N_{G}^{r}(x) \subseteq$ $U$, for each pair of vertices $(x, y)$ we have $d_{G}(x, y) \leq 2 t+1$ if and only if $d_{G[U]}(x, y) \leq 2 t+1$. Hence, by using the components $K\left(a_{1}\right), \ldots, K\left(a_{m}\right)$ from $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$ we can construct the $t$-distance type $\Delta$ of $\left(a_{1}, \ldots, a_{m}\right)$; let $\Delta_{1}, \ldots, \Delta_{p}$ be the connected components of $\Delta$. From each $J\left(a_{i}\right)$ we can recover $J_{\Delta}\left(a_{i}\right)$. For each $\bar{a} \mid \Delta_{i}$ there exists at least one $U \in \mathcal{T}$ such that $N_{G}^{t}\left(\bar{a} \mid \Delta_{i}\right) \subseteq$ $U$. We can determine these sets (there are less than $\ell$ of them) by using the labels in $J(b), b \in \bar{a} \mid \Delta_{i}$. We can now decide whether $G \models F^{t, \Delta}\left(\varphi_{1,1}(\bar{a} \mid\right.$ $\left.\Delta_{1}, W_{1} \cap U_{1}, \ldots, W_{q} \cap U_{1}\right), \ldots, \varphi_{p, j_{p}}\left(\bar{a} \mid \Delta_{p}, W_{1} \cap U_{p}, \ldots, W_{q} \cap U_{p}\right)$ ) for some $U_{1}, \ldots, U_{p}$ determined from $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$. By using also $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$ we can determine the sets $W_{i} \cap U_{j}$ and this is sufficient by Theorem 3.5.
$\overline{8}$ For checking if $d_{G}(x, y) \leq 2 t+1$, an $\left(r^{\prime}, \ell^{\prime}, g^{\prime}\right)$-cwd cover suffices, with $r^{\prime}=2 t+1$.

We now examine the time taken to check $\varphi(\bar{a}, \bar{W})$. For each couple $\left(a_{i}, a_{j}\right)$ it takes time $O(\log (n))$ to check if $d\left(a_{i}, a_{j}\right) \leq 2 t+1$. Since there are at most $|\bar{a}|^{2}$ couples, we construct the graph $\Delta$ in time $O\left(\log (n) \cdot|\bar{a}|^{2}\right)$. For each connected component $\bar{a} \mid \Delta$ we can determine the sets $U$ that contain it in time $O(\log (n)$. $|\bar{a}|)$ (less than $\ell$ such sets). By Theorem 2.4 we can check each $\varphi_{i, j}$ in time $O(\log (n) \cdot(|\bar{a}|+|\bar{W}|+1))$. Therefore, $\mathcal{B}$ checks the validity of $\varphi(\bar{a}, \bar{W})$ in time $O\left(\log (n) \cdot\left(|\bar{a}|^{2}+|\bar{W}|+1\right)\right)$.

Proof of Theorem 5.1 (4). Let $\mathcal{C}$ be a locally cwd-decomposable class of graphs and let $G$ in $\mathcal{C}$ be a graph with $n$ vertices, represented by the structure $\left\langle V_{G},\left(e d g_{a G}\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}\right\rangle$. Let $\varphi\left(x_{1}, \ldots, x_{m}\right)$ be an FO formula without set arguments. By Theorem 3.4 the formula $\varphi$ is equivalent to a Boolean combination $B\left(\varphi_{1}(\bar{x}), \ldots, \varphi_{p}(\bar{x}), \psi_{1}, \ldots, \psi_{h}\right)$ where $\varphi_{i}$ is a $t$-local formula and $\psi_{i}$ is a basic $\left(t^{\prime}, s\right)$-local sentence without set variables, for some $t, t^{\prime}, s$.

By Lemma 4.5 one can decide the validity of each sentence $\psi_{i}$. Let $b=$ $\left(b_{1}, \ldots, b_{h}\right)$ where $b_{i}=1$ if $G$ satisfies $\psi_{i}$ and 0 otherwise. For each $1 \leq i \leq p$ we construct a labeling $J_{i}$ supporting query $\varphi_{i}$ by Theorem 5.1 (3) ( $G$ belongs to a locally cwd-decomposable class and $\varphi_{i}$ is a $t$-local formula around $\left.\bar{x}\right)$. For each vertex $x$ of $G$ we let $J(x):=\left(\ulcorner x\urcorner, J_{1}(x), \ldots, J_{p}(x), b\right)$. It is clear that $|J(x)|=O(\log (n))$ since $\left|J_{i}(x)\right|=O(\log (n))$. We now explain how to decide whether $G \models \varphi\left(a_{1}, \ldots, a_{m}\right)$ by using $J\left(a_{1}\right), \ldots, J\left(a_{m}\right)$.

From $b$ we can recover the truth value of each sentence $\psi_{i}$. By using $J_{i}(\bar{a})$ we can check if $\varphi_{i}(\bar{a})$ holds. Then, we can check if $B\left(\varphi_{1}(\bar{x}), \ldots, \varphi_{p}(\bar{x}), \psi_{1}, \ldots, \psi_{h}\right)$ holds hence, if $\varphi(\bar{a})$ holds.

By Lemma 4.5 the validity of each sentence $\psi_{i}$ is checked in time $O\left(n^{4}\right)$. And, by Theorem 5.1 (3), each labeling $J_{i}$ is constructed in time $O\left(f(n)+n^{4}\right)$ where $f(n)$ is the time taken for constructing an $(r, \ell, g)$-cwd cover. Hence, the labeling $J$ can be constructed in time $O\left(f(n)+n^{4}\right)$. The time taken to check the validity of $\varphi\left(a_{1}, \ldots, a_{m}\right)$ is done in time $O\left(\log (n) \cdot|\bar{a}|^{2}\right)$ by Theorem 5.1 (3).

Before proving Theorem 5.1 (5) we introduce some definitions and facts. If $\mathcal{T}$ is an $(r, \ell, g)$-cwd cover of a graph $G$, then $G(\mathcal{T})$ has maximum degree at most $\ell$. Let $m$ be a positive integer, a proper distance- $m$ coloring of a graph $H$ is a proper coloring of $H^{m}$ (see Section 2 for the definition of $H^{m}$ ). Then, in a proper distance- $m$ coloring, vertices at distance at most $m$ have different colors. A graph $G$ admits a proper $(d+1)$-coloring if $d$ is its maximum degree. The graph $G(\mathcal{T})$ has maximum degree at most $\ell$, hence, has a proper distance- $m$ coloring with $\ell^{O(m)}$ colors since $G(\mathcal{T})^{m}$ has maximum degree at most $\ell \cdot\left(1+(\ell-1)+\cdots+(\ell-1)^{m-1}\right)$.

If $\mathcal{T}$ is cover of a graph $G$, for each positive integer $t$ and each set $U$ in $\mathcal{T}$ we let $K^{t}(U)$ be the set $\left\{x \in U \mid N_{G}^{t}(x) \subseteq U\right\}$. We call it the $t$-kernel of $U$.

Proof of Theorem 5.1 (5). Let $\mathcal{C}$ be a nicely locally cwd-decomposable class of graphs and let $G$ in $\mathcal{C}$ be a graph with $n$ vertices, represented by the structure $\left\langle V_{G},\left(e d g_{a G}\right)_{a \in C_{2}},\left(p_{a G}\right)_{a \in C_{1}}\right\rangle$. We want a labeling for an FO query with set arguments. By Theorems 3.4 and 5.1 (3) it is sufficient to define a labeling for FO formulas $\varphi\left(Y_{1}, \ldots, Y_{q}\right)$ of the form:

$$
\exists x_{1} \cdots \exists x_{m}\left(\bigwedge_{1 \leq i<j \leq m} d\left(x_{i}, x_{j}\right)>2 t \wedge \bigwedge_{1 \leq i \leq m} \psi\left(x_{i}, Y_{1}, \ldots, Y_{q}\right)\right)
$$

where $\psi\left(x, Y_{1}, \ldots, Y_{q}\right)$ is $t$-local around $x$. We show how to check such formulas by means of log-labelings.

We consider for purpose of clarity the particular case where $m=2$. Let $\mathcal{T}$ be a nice $(r, \ell, g)$-cwd cover of $G$ where $r=2 t+1$, and let $\gamma$ be a distance- 2 coloring of $G(\mathcal{T})$, the intersection graph of $\mathcal{T}$ (vertices at distance 1 or 2 have different colors). For every two colors $i$ and $j$ we let $G_{i, j}$ be the graph induced by the union of the sets $U$ in $\mathcal{T}$ that are colored by $i$ or $j$ (we may have $i=j$ ).

Claim $5.2 \operatorname{cwd}\left(G_{i, j}\right) \leq g(2)$.

Proof of Claim 5.2. Let $\mathcal{T}^{2}=\left\{U \cup U^{\prime} \mid U, U^{\prime} \in \mathcal{T}, U \cap U^{\prime} \neq \emptyset\right\}$. The graph $G_{i, j}$ is a disjoint union of sets in $\mathcal{T} \cup \mathcal{T}^{2}$. This union is disjoint because if $U \cup U^{\prime}$ with $U \cap U^{\prime} \neq \emptyset$ meets some $U^{\prime \prime} \in \mathcal{T}$ such that $U^{\prime \prime} \neq U, U^{\prime \prime} \neq U^{\prime}$, then we have have $\gamma(U)=i, \gamma\left(U^{\prime}\right)=j \neq i$ and $U^{\prime \prime}$ meets $U$ or $U^{\prime}$. It can have neither color $i$ nor color $j$ because $\gamma$ is a distance-2 coloring. Since $\operatorname{cwd}\left(G\left[U \cup U^{\prime}\right]\right) \leq g(2)$, we are done because the clique-width of a disjoint union of graphs $H_{1}, \ldots, H_{s}$ is $\max \left\{c w d\left(H_{i}\right) \mid i=1, \ldots, s\right\}$.

Claim 5.3 Let $x \in K^{2 t}(U)$ and $y \in K^{2 t}\left(U^{\prime}\right)$ for some sets $U$ and $U^{\prime}$ in $\mathcal{T}$. Then $d_{G}(x, y)>2 t$ iff $d_{G\left[U \cup U^{\prime}\right]}(x, y)>2 t$.

Proof of Claim 5.3. The "only if direction" is clear since $d_{G}(x, y) \leq d_{G\left[U \cup U^{\prime}\right]}(x, y)$.
For proving the converse, assume $d_{G}(x, y) \leq 2 t$; there exists a path of length at most $2 t$ from $x$ to $y$. This path is in $U \cup U^{\prime}$ since $x \in K^{2 t}(U)$ and $y \in K^{2 t}\left(U^{\prime}\right)$. Hence it is also in $G\left[U \cup U^{\prime}\right]$, hence $d_{G\left[U \cup U^{\prime}\right]} \leq 2 t$.

Let us now give to each vertex $x$ of $G$ the smallest color $i$ such that $x \in K^{2 t}(U)$ and $\gamma(U)=i$. Hence each vertex has one and only one color. We express this
by $p_{i}(x)$ where $p_{i}$ is a new unary predicate. For each pair $(i, j)$ (possibly $i=j$ ) we consider the formula $\psi_{i, j}$ :

$$
\exists x, y\left(d(x, y)>2 t \wedge \psi\left(x, Y_{1}, \ldots, Y_{q}\right) \wedge \psi\left(y, Y_{1}, \ldots, Y_{q}\right) \wedge p_{i}(x) \wedge p_{j}(y)\right)
$$

By Theorem 2.4 we can construct a $\log$-labeling $J_{i, j}$ for the formula $\psi_{i, j}$ in the graph $G_{i, j}$. (We recall that vertex colors, i.e., additional unary relations, do not increase clique-width; the number of relations $p_{i}$ does not depend on the graph $G$.) We compute the truth value $b_{i, j}$ of $\psi_{i, j}(\emptyset, \ldots, \emptyset)$ in $G_{i, j}$; we get a vector $\vec{b}$ of fixed length. We also label each vertex $x$ by its color $\gamma(x)$. We concatenate that $\vec{b}$ and the $J_{i, j}(x)$ for $x \in V_{G_{i, j}}$, giving $J(x)$. The coloring $\gamma$ uses $O\left(\ell^{2}\right)$ colors. Then, the number of graphs $G_{i, j}$ is bounded by $O\left(\ell^{4}\right)$. Therefore $|J(x)|=O(\log (n))$.

From $J\left(W_{1}\right), \ldots, J\left(W_{q}\right)$ we can determine those $G_{i, j}$ such that $V_{G_{i, j}} \cap\left(W_{1} \cup\right.$ $\left.\cdots \cup W_{q}\right) \neq \emptyset$, and check if for one of them $G_{i, j} \models \psi_{i, j}\left(W_{1}, \ldots, W_{q}\right)$. If one is found we are done. Otherwise, we use the $b_{i, j}$ 's to look for $G_{i, j}$ such that $G_{i, j} \models \psi_{i, j}(\emptyset, \ldots, \emptyset)$ and $\left(W_{1} \cup \cdots \cup W_{q}\right) \cap V_{G_{i, j}}=\emptyset$. This gives the correct results because of the following facts:

- If $x, y$ satisfy the formula $\varphi$, then $x \in K^{2 t}(U), y \in K^{2 t}\left(U^{\prime}\right)$ (possibly $U=$ $\left.U^{\prime}\right)$ and $d_{G}(x, y)>2 t$ implies $d_{G_{i, j}}(x, y)>2 t$, hence $G_{i, j} \models \psi_{i, j}\left(W_{1}, \ldots, W_{q}\right)$ where $i=\gamma(U)$ and $j=\gamma\left(U^{\prime}\right)$.
- If $G_{i, j} \models \psi_{i, j}\left(W_{1}, \ldots, W_{q}\right)$ then we get $G \models \varphi\left(W_{1}, \ldots, W_{q}\right)$ by similar argument (in particular $d_{G_{i, j}}(x, y)>2 t$ implies $d_{G\left[U \cup U^{\prime}\right]}(x, y)>2 t$ which implies that $d_{G}(x, y)>2 t$ by Claim 5.3).

For $m=1$, the proof is similar by using a proper distance- 1 coloring $\gamma$ and the graphs $G_{i, i}$ instead of the graphs $G_{i, j}$.

For the case $m>2$, the proof is the same: one takes for $\gamma$ a distance- $m$ proper coloring of the intersection graph, one considers graphs $G_{i_{1}, \ldots, i_{m}}$ defined as (disjoint) unions of sets $U_{1} \cup \cdots \cup U_{m}$ for $U_{1}, \ldots, U_{m}$ in $\mathcal{T}$, of respective colors $i_{1}, \ldots, i_{m}$ and $\operatorname{cwd}\left(G\left[U_{1} \cup \cdots \cup U_{m}\right]\right) \leq g(m)$.

By hypothesis, the cover $\mathcal{T}$ is computed in time $f(n)$ for an $n$-vertex graph $G$ in $\mathcal{C}$. In each graph $G_{i_{1}, \ldots, i_{m}}$ the labeling $J_{i_{1}, \ldots, i_{m}}$ is constructed in cubictime by Theorem 2.4. The coloring $\gamma$ uses $\ell^{O(m)}$ colors. Then, the number of graphs $G_{i_{1}, \ldots, i_{m}}$ is bounded by $\ell^{O\left(m^{2}\right)}$. Hence, the labeling $J$ is computed in time $O\left(f(n)+n^{3}\right)$.

We now examine the time taken to check the validity of $\varphi(\bar{W})$. For each $G_{i_{1}, \ldots, i_{m}}$ and each $W_{i}$ it takes time $O\left(\log (n) \cdot\left|W_{i}\right|\right)$ to determine $W_{i} \cap V_{G_{i_{1}, \ldots, i_{m}}}$. By Theorem 2.4 it takes time $O(\log (n) \cdot(|\bar{W}|+1))$ to check in $G_{i_{1}, \ldots, i_{m}}$ the
validity of $\varphi(\bar{W})$. This terminates the proof of Theorem 5.1.

Let us ask a very general question: what can be done with labels of size $O(\log (n))$ ? Here is a fact that limits the extension of these results.

Let $\varphi_{0}(x, y)$ be the $t$-local and bounded FO formula telling us whether two distinct vertices $x$ and $y$ are connected by a path of length 2 :

$$
x \neq y \wedge \exists z(z \neq x \wedge z \neq y \wedge e d g(x, z) \wedge e d g(z, y))
$$

The adjacency query has a log-labeling scheme for graphs of bounded arboricity (Theorem 5.1 (1)).

Proposition 5.4 Every labeling scheme supporting $\varphi_{0}$ on graphs with $n$ vertices and of arboricity at most 2 requires labels of length at least $\sqrt{\frac{n}{2}}-1$ for some graphs.

Proof. With every simple, loop-free and undirected graph $G$ we associate the graph $\widetilde{G}$ obtained by inserting a vertex $z_{x y}$ on each edge $x y$.

$$
\begin{aligned}
V_{\widetilde{G}} & =V_{G} \cup\left\{z_{x, y} \mid x, y \in V_{G} \text { and } x y \in E_{G}\right\}, \\
E_{\widetilde{G}} & =\left\{x z_{x, y} \mid x y \in E_{G}\right\} .
\end{aligned}
$$

The following properties hold.
(1) $V_{G} \subseteq V_{\widetilde{G}}$ and $\left|V_{\widetilde{G}}\right|=\left|V_{G}\right|+\left|E_{G}\right|$.
(2) For all $x, y \in V_{G}, x y \in E_{G}$ if and only if $\widetilde{G} \models \varphi_{0}(x, y)$.
(3) $\widetilde{G}$ has arboricity at most 2 .

The first two points are clear. For the third one we orient each edge $e$ of $G$ and we get a directed graph, that we denote by $\vec{G}$. We let:

$$
\begin{aligned}
& F_{1}=\left\{x z_{x, y} \mid(x, y) \in E_{\vec{G}}\right\}, \\
& F_{2}=\left\{z_{x, y} y \mid(x, y) \in E_{\vec{G}}\right\} .
\end{aligned}
$$

Neither $F_{1}$ nor $F_{2}$ has a cycle in $\widetilde{G}$. Then $\widetilde{G}$ has arboricity at most 2 since $\left(F_{1}, F_{2}\right)$ is a bipartition of $E_{\widetilde{G}}$.

By using a simple counting argument, one can show that every labeling scheme supporting adjacency in simple and undirected graphs with $n$ vertices requires some labels of size at least $\frac{1}{n} \log _{2}\left(2^{\binom{n}{2}}\right)=(n-1) / 2$ bits. Hence, adjacency requires labels of size $\lfloor n / 2\rfloor$ in all graphs. Using (2) above, we conclude that any labeling scheme for $\varphi_{0}$ on the graph family $\mathcal{F}_{n}=\{\widetilde{G} \mid G$ has $n$ vertices $\}$ requires labels of size at least $\left\lfloor\frac{n}{2}\right\rfloor$. Let $\widetilde{G}$ be in $\mathcal{F}_{n}$ and let $\tilde{n}=\left|V_{\widetilde{G}}\right|$. Using (1)
we have $\tilde{n}=n+\left|E_{G}\right| \leq \frac{n(n+1)}{2}$, i.e., $n \geq \sqrt{2 \tilde{n}}-1$. Hence, any labeling scheme for $\varphi_{0}$ on $\mathcal{F}_{n}$ requires for some graphs with $\tilde{n}$ vertices labels of size at least $\left\lfloor\frac{\sqrt{2 \bar{n}}-1}{2}\right\rfloor>\sqrt{\frac{\tilde{n}}{2}}-1$.

## 6 Extension to Counting Queries

We now consider an extension to counting queries.
Definition 6.1 (Counting Query) Let $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be an $F O$ or MSO formula and let $G$ be a (colored) graph. For $W_{1}, \ldots, W_{q} \subseteq V_{G}$ we let:
$\#{ }_{G} \varphi\left(W_{1}, \ldots, W_{q}\right):=\left|\left\{\left(a_{1}, \ldots, a_{m}\right) \in V_{G}^{m} \mid G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)\right\}\right|$.

The counting query of $\varphi$ consists in determining $\#{ }_{G} \varphi\left(W_{1}, \ldots, W_{q}\right)$ for given $\left(W_{1}, \ldots, W_{q}\right)$. If $s \geq 2$ the counting query of $\varphi$ modulo $s$ consists in determining $\#_{G} \varphi\left(W_{1}, \ldots, W_{q}\right)$ modulo $s$ for given $\left(W_{1}, \ldots, W_{q}\right)$.

The following theorem is an easy extension of Theorem 2.4.
Theorem 6.2 Let $k$ be a positive integer and, let $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be an MSO formula over colored graphs (binary relational structures) and $s \geq 2$. There exists a $\log ^{2}$-labeling scheme (resp. a $\log$-labeling scheme) $(\mathcal{A}, \mathcal{B})$ on the class of graphs of clique-width at most $k$ for the counting query of $\varphi$ (resp. the counting query of $\varphi$ modulo s). Moreover, if the input graph has $n$ vertices then, algorithm $\mathcal{A}$ constructs the labels in time $O\left(n^{3}\right)$ or in $O(n \cdot \log (n))$ if the clique-width expression is given; algorithm $\mathcal{B}$ computes $\#_{G} \varphi\left(W_{1}, \ldots, W_{q}\right)$ in time $O\left(\log ^{2}(n) \cdot(|\bar{W}|+1)\right)($ resp. $O(\log (n) \cdot(|\bar{W}|+1)))$.

We will prove a similar theorem for nicely locally cwd-decomposable classes of graphs and $F O$ formulas.

Theorem 6.3 (Second Main Theorem) Let $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be an $F O$ formula and let $s \geq 2$. There exists a $\log ^{2}$-labeling scheme (resp. a loglabeling scheme) $(\mathcal{A}, \mathcal{B})$ for the counting query of $\varphi$ (resp. the counting query of $\varphi$ modulo s) on nicely locally cwd-decomposable classes. Moreover, if the input graph has $n$ vertices then, algorithm $\mathcal{A}$ constructs the labels in time $O\left(f(n)+n^{3}\right)$ where $f(n)$ is the time taken to construct a nice cwd-cover; algorithm $\mathcal{B}$ computes $\#_{G} \varphi\left(W_{1}, \ldots, W_{q}\right)$ in time $O\left(\log ^{2}(n) \cdot(|\bar{W}|+1)\right.$ ) (resp. $O(\log (n) \cdot(|\bar{W}|+1)))$.

We will first prove Theorem 6.3 for particular $t$-local formulas on locally cwddecomposable classes.

Definition 6.4 ( $t$-Connected Formulas) $A$ formula $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ is $t$-connected if for all $G, a_{1}, \ldots, a_{m} \in V_{G}$ and $W_{1}, \ldots, W_{q} \subseteq V_{G}$, $G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right) \quad$ iff $\quad\left\{\begin{array}{l}\bigwedge_{1 \leq i<j \leq m} d\left(a_{i}, a_{j}\right) \leq t \text { and } \\ G[N] \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap N, \ldots, W_{q} \cap N\right)\end{array}\right.$
where $N=N_{G}^{t}\left(\left\{a_{1}, \ldots, a_{m}\right\}\right)$.
Remark 6.5 Let $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a $t$-connected formula. Then for all $W \supseteq N_{G}^{t}\left(a_{1}, \ldots, a_{m}\right)$ :
$G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right) \quad$ iff $\quad G[W] \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1} \cap W, \ldots, W_{q} \cap W\right)$ and, since $N_{G}^{t}\left(\left\{a_{1}, \ldots, a_{m}\right\}\right) \subseteq N_{G}^{2 t}\left(a_{1}\right)$, we have
$G \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right) \quad$ iff $\quad G\left[N_{G}^{2 t}\left(a_{1}\right)\right] \models \varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$.
Lemma 6.6 Let $\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right)$ be a t-connected formula and let $s \geq 2$. Then, there exists $a \log ^{2}$-labeling scheme (resp. a log-labeling scheme) $(\mathcal{A}, \mathcal{B})$ for the counting query of $\varphi$ (resp. the counting query of $\varphi$ modulo $s$ ) on locally cwd-decomposable classes of graphs. Moreover, if the input graph has $n$ vertices then, algorithm $\mathcal{A}$ constructs the labels in time $O\left(f(n)+n^{3}\right)$ where $f(n)$ is the time taken to construct a cwd-cover; algorithm $\mathcal{B}$ computes $\#{ }_{G} \varphi\left(W_{1}, \ldots, W_{q}\right)$ in time $O\left(\log ^{2}(n) \cdot(|\bar{W}|+1)\right)($ resp. $O(\log (n) \cdot(|\bar{W}|+1)))$.

Proof. Let $\mathcal{C}$ be a locally cwd-decomposable class of graphs and let $\mathcal{T}$ be a $(2 t, \ell, g)$-cwd cover of an $n$-vertex graph $G$ from $\mathcal{C}$. Let $H$ be the intersection graph of $\mathcal{T}$ (Definition 4.2) and let $\gamma$ be a proper coloring of $H$ with colors in $[\ell+1]$.

Claim 6.7 Let $x \in K_{G}^{2 t}(U)$ and $y \in U^{\prime}$ with $\gamma(U)=\gamma\left(U^{\prime}\right), U \neq U^{\prime}$. Then $d_{G}(x, y)>2 t$.

Proof of Claim 6.7. If this is not the case, then $y \in U$ and $x_{U}$ and $x_{U^{\prime}}$ are adjacent in $H$. This is impossible since they have the same color.

We color each vertex $x$ of $G$ by $i$, the smallest $\gamma(U)$ such that $x \in K_{G}^{2 t}(U)$. We represent this by the validity of $p_{i}(x)$, as in the proof of Theorem 5.1 (5). For each $i \in[\ell+1]$ we let $\varphi_{i}$ be the formula:

$$
\varphi\left(x_{1}, \ldots, x_{m}, Y_{1}, \ldots, Y_{q}\right) \wedge p_{i}\left(x_{1}\right)
$$

Then the following is clear.

Claim 6.8 $\#_{G} \varphi\left(Y_{1}, \ldots, Y_{q}\right)=\sum_{i} \#_{G} \varphi_{i}\left(Y_{1}, \ldots, Y_{q}\right)$.
We now show that the counting query of $\varphi$ admits a $\log ^{2}$-labeling scheme on $G$. We let $V_{i}=\underset{\gamma(U)=i}{\bigcup}\{U \mid U \in \mathcal{T}\}$.

Claim 6.9 $\operatorname{cwd}\left(G\left[V_{i}\right]\right) \leq g(1)$.

Proof of Claim 6.9. $V_{i}$ is a disjoint union of sets $U$ from $\mathcal{T}$. From Definition 4.3 each graph $G[U]$ has clique-width at most $g(1)$. Therefore $\operatorname{cwd}\left(G\left[V_{i}\right]\right) \leq$ $g(1)$.

Claim 6.10 $\#_{G} \varphi_{i}\left(Y_{1}, \ldots, Y_{q}\right)=\#_{G\left[V_{i}\right]} \varphi_{i}\left(Y_{1}, \ldots, Y_{q}\right)$.

Proof of Claim 6.10. If $\varphi\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$ holds and $p_{i}\left(a_{1}\right)$ holds then, $a_{1} \in K_{G}^{2 t}(U)$ for some $U$ such that $\gamma(U)=i$. Hence $a_{2}, \ldots, a_{m} \in N_{G}^{2 t}\left(a_{1}\right)$ and $G\left[N_{G}^{2 t}\left(a_{1}\right)\right] \models \varphi_{i}\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$, hence $G\left[V_{i}\right] \models \varphi_{i}\left(a_{1}, \ldots, a_{m}\right.$, $\left.W_{1}, \ldots, W_{q}\right)$.

If $G\left[V_{i}\right] \models \varphi_{i}\left(a_{1}, \ldots, a_{m}, W_{1}, \ldots, W_{q}\right)$, then $p_{i}\left(a_{1}\right)$ holds and $d_{G\left[V_{i}\right]}\left(a_{l}, a_{s}\right) \leq t$ for all $l, s \in[m]$. But $d_{G}\left(a_{l}, a_{s}\right)=d_{G\left[V_{i}\right]}\left(a_{l}, a_{s}\right)=d_{G[U]}\left(a_{l}, a_{s}\right)$ where $a_{1} \in U$ and $\gamma(U)=i$. And since $N_{G}^{t}\left(\left\{a_{1}, \ldots, a_{m}\right\}\right) \subseteq V_{i}$ we have $G \models \varphi_{i}\left(a_{1}, \ldots, a_{m}\right.$, $\left.W_{1}, \ldots, W_{q}\right)$.

By Theorem 6.2 and Claims 6.9 and 6.10 there exists a $\log ^{2}$-labeling $J_{i}$ for the counting query of each $\varphi_{i}$. For each $x \in V_{G}$ we let $J(x)=\left(J_{1}(x), \ldots, J_{\ell+1}(x)\right)$. Hence $J$ is a $\log ^{2}$-labeling for the counting query of $\varphi$ by Claim 6.8. By Theorem 6.2 labels of size $O(\log (n))$ are sufficient for the counting query of each $\varphi_{i}$ modulo $s$.

By Theorem 6.2 each labeling $J_{i}$ is constructed in cubic-time. Therefore, the labeling $J$ is constructed in time $O\left(f(n)+n^{3}\right)$ where $f(n)$ is the time taken for constructing the $(2 t, \ell, g)$-cwd cover $\mathcal{T}$ of $G$. By Claim 6.8 and Theorem 6.2 $\mathcal{B}$ computes $\#_{G} \varphi\left(W_{1}, \ldots, W_{q}\right)$ in time $O\left(\log ^{2}(n) \cdot(|\bar{W}|+1)\right)$ (resp. $O(\log (n)$. $(|\bar{W}|+1))$ ).

We now prove Theorem 6.3.

Proof of Theorem 6.3. Let $\varphi(\bar{x}, \bar{Y})$ be an $F O$ formula with free variables in $\bar{x}=\left(x_{1}, \ldots, x_{m}\right)$ and in $\bar{Y}=\left(Y_{1}, \ldots, Y_{q}\right)$. By Theorem $3.4 \varphi$ is logically
equivalent to a Boolean combination of $t$-local formulas around $\bar{x}$ and of basic $\left(t^{\prime}, s\right)$-local formulas. We have proved that each basic $\left(t^{\prime}, s\right)$-local formula admits a log-labeling scheme on each nicely locally cwd-decomposable class of graphs (Theorem 5.1 (5)). It remains to prove that the counting query of a $t$-local formula admits a $\log ^{2}$-labeling scheme on each nicely locally cwddecomposable class of graphs $\mathcal{C}$. Let $G$, a graph with $n$ vertices, be in $\mathcal{C}$

Let $\psi\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right)$ be a $t$-local formula around $\bar{x}=\left(x_{1}, \ldots, x_{m}\right)$. By Theorem 3.5 we can reduce the counting query of $\psi$ to the counting query of finitely many formulas of the form $\rho_{t, \Delta}(\bar{x}) \wedge \varphi^{\prime}\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right)$ that can be expressed as
$\varphi^{\prime}\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right):=\bigwedge_{1 \leq i<j \leq p} d\left(\bar{x}\left|\Delta_{i}, \bar{x}\right| \Delta_{j}\right)>2 t+1 \wedge \bigwedge_{1 \leq i \leq p} \varphi_{i}\left(\bar{x} \mid \Delta_{i}, Y_{1}, \ldots, Y_{q}\right)$
where each $\varphi_{i}$ is $t$-local and $(m \cdot(2 t+1))$-connected. We can assume that $\psi$ is of the form $\varphi^{\prime}\left(\bar{x}, Y_{1}, \ldots, Y_{q}\right)$.

Let $\mathcal{T}$ be a nice $(r, \ell, g)$-cwd cover where $r=m \cdot(2 t+1)$ and let $\gamma$ be a proper distance- $m$ coloring of $G(\mathcal{T})$, the intersection graph of $\mathcal{T}$. For every $m$-tuple of colors $\left(i_{1}, \ldots, i_{m}\right)$ we let $G_{i_{1}, \ldots, i_{m}}$ be the graph $G[V]$ where $V$ is the union of all sets $U \in \mathcal{T}$ such that $\gamma(U) \in\left\{i_{1}, \ldots, i_{m}\right\}$. We have then $\operatorname{cwd}(G[V]) \leq g(m)$ (same arguments as in Claim 5.2). We color each vertex with the smallest color $i$ such that $x \in K_{G}^{r}(U)$ and $\gamma(U)=i$ and we express this by the validity of $p_{i}(x)$. We let $\varphi_{i_{1}, \ldots, i_{m}}^{\prime}$ be

$$
\bigwedge_{1 \leq i<j \leq p} d\left(\bar{x}\left|\Delta_{i}, \bar{x}\right| \Delta_{j}\right)>2 t+1 \wedge \bigwedge_{1 \leq \ell \leq p}\left(\varphi_{\ell}\left(\bar{x} \mid \Delta_{\ell}, Y_{1}, \ldots, Y_{q}\right) \wedge p_{i_{\ell}}\left(z_{\ell}\right)\right)
$$

where $z_{\ell}$ is the first variable of each tuple $\bar{x} \mid \Delta_{\ell}$. We have:
Claim 6.11 $\#{ }_{G} \psi\left(Y_{1}, \ldots, Y_{q}\right)=\sum_{\left(i_{1}, \ldots, i_{m}\right)} \#_{G} \varphi_{i_{1}, \ldots, i_{m}}^{\prime}\left(Y_{1}, \ldots, Y_{m}\right)$.
We let $H=G_{i_{1}, \ldots, i_{m}}$. By the same arguments as in the proof of Claim 5.3 we have:

Claim 6.12 $d_{G}\left(\bar{x}\left|\Delta_{i}, \bar{x}\right| \Delta_{j}\right)>2 t+1$ if and only if $d_{H}\left(\bar{x}\left|\Delta_{i}, \bar{x}\right| \Delta_{j}\right)>$ $2 t+1$.

It follows that:
Claim 6.13 $\#_{G} \varphi_{i_{1}, \ldots, i_{m}}^{\prime}\left(Y_{1}, \ldots, Y_{q}\right)=\#_{H} \varphi_{i_{1}, \ldots, i_{m}}^{\prime}\left(Y_{1}, \ldots, Y_{q}\right)$.
By Theorem 6.2 and Claims $6.11,6.12$ and 6.13 there exists a $\log ^{2}$-labeling scheme for the counting query of each $t$-local formula, and a log-labeling scheme is enough for modulo counting.

By hypothesis, a nice ( $r, \ell, g$ )-cwd cover $\mathcal{T}$ of $G$ can be constructed in time $f(n)$. For each formula $\varphi_{i_{1}, \ldots, i_{m}}$ the associated labeling $J_{i_{1}, \ldots, i_{m}}$ is constructed in time $O\left(n^{3}\right)$ by Theorem 6.2. The coloring $\gamma$ uses $\ell^{O(m)}$ colors. The number of graphs $G_{i_{1}, \ldots, i_{m}}$ is bounded by $\ell^{O\left(m^{2}\right)}$. Hence, the labeling $J$ is computed in time $O\left(f(n)+n^{3}\right)$. By Claim 6.11 and Theorem 6.2 algorithm $\mathcal{B}$ computes $\#{ }_{G} \varphi\left(W_{1}, \ldots, W_{q}\right)$ in time $O\left(\log ^{2}(n) \cdot(|\bar{W}|+1)\right)($ resp. $O(\log (n) \cdot(|\bar{W}|+1)))$. This finishes the proof.

## 7 Conclusion

We conjecture that the results of Theorem $5.1(3-5)$ extend to classes of graphs that exclude, or locally exclude a minor (definitions are from [11,17]).

Question 1 Does there exist a log-labeling scheme for FO formulas with set arguments on locally cwd-decomposable classes?

## References

[1] S. Arnborg, J. Lagergren and D. Seese. Easy Problems for Tree-Decomposable Graphs. Journal of Algorithms 12(2):308-340, 1991.
[2] G. Bagan. PhD Thesis, Université de Caen. March, 2009.
[3] A. Blumensath and B. Courcelle. Recognizability, Hypergraph Operations and Logical Types. Information and Computation 204(6):853-919, 2006.
[4] H.L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of Small Tree-width. SIAM Journal on Computing 25(6):1305-1317, 1996.
[5] H.L. Bodlaender. Tree-Width: Structure and Algorithms. In G. Principe and S. Zaks eds., Structural Information and Communication Complexity (SIROCCO), volume 4474 of LNCS, pages 11-25. Springer, 2007.
[6] B. Courcelle, C. Gavoille, M.M. Kanté and A. Twigg. Optimal Labeling for Connectivity Checking in Planar Networks with Obstacles. Manuscript, 2008. An extended abstract will appear in Electronic Notes in Discrete Mathematics, proceedings of the first Conference Topological and Geometric Graph Theory (TGGT), Paris, 2008.
[7] B. Courcelle, J.A. Makowsky and U. Rotics. Linear-Time Solvable Optimization Problems on Graphs of Bounded Clique-Width. Theory of Computing Systems 33(2):125-150, 2000.
[8] B. Courcelle and S. Olariu. Upper Bounds to the Clique-Width of Graphs. Discrete Applied Mathematics 101(1-3):77-114, 2000.
[9] B. Courcelle and A. Twigg. Compact Forbidden-Set Routing. In W. Thomas and P. Weil eds., Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume 4393 of LNCS, pages 37-48. Springer, 2007.
[10] B. Courcelle and R. Vanicat. Query Efficient Implementation of Graphs of Bounded Clique-Width. Discrete Applied Mathematics 131(1):129-150, 2003.
[11] A. Dawar, M. Grohe and S. Kreutzer. Locally Excluding a Minor. In $22^{\text {nd }}$ IEEE Symposium on Logic in Computer Science (LICS), pages 270-279. IEEE Computer Society, 2007.
[12] Arnaud Durand and Etienne Grandjean. First-Order Queries on Structures of Bounded Degree are Computable with Constant Delay. ACM Transactions on Computational Logic 8(4), 2007.
[13] E. Fisher, J.A. Makowsky and E.V. Ravve. Counting Truth Assignments of Formulas of Bounded Tree-Width or Clique-Width. Discrete Applied Mathematics 156(4):511-529, 2008.
[14] M. Frick. Generalized Model-Checking over Locally Tree-Decomposable Classes. Theory of Computing Systems 37(1):157-191, 2004.
[15] M. Frick and M. Grohe. Deciding First-Order Properties of Locally TreeDecomposable Structures. Journal of the ACM 48(1):1184-1206, 2001.
[16] H. Gaifman. On Local and Non-Local Properties. In Proceedings of the Herbrand Symposium Logic Colloquium'81 pages 105-135, 1982.
[17] M. Grohe. Logic, Graphs and Algorithms. In Flum, Grädel, Wilke eds., Logic, Automata, History and Perspectives, pages 357-422. Amsterdam University Press, 2007.
[18] C. Gavoille and D. Peleg. Compact and Localized Distributed Data Structures. Distributed Computing 16(2-3):111-120, 2003.
[19] F. Gurski and E. Wanke. Line Graphs of Bounded Clique-Width. Discrete Mathematics 307(22):2734-2754, 2007.
[20] P. Hliněný and S. Oum. Finding Branch-Decompositions and RankDecompositions. In L. Arge, M. Hoffmann and E. Welzl eds., Annual European Symposium, volume 4698 of LNCS, pages 163-174. Springer, 2007.
[21] M. Kamiński, V. Lozin and M. Milanič. Recent Developments on Graphs of Bounded Clique-Width. Discrete Applied Mathematics, in press, 2008.
[22] M. M. Kanté. Graph Structurings: Some Algorithmic Applications. PhD thesis, Université Bordeaux 1, Bordeaux, 2008.
[23] S. Kreutzer. Algorithmic Meta-Theorems. Manuscript, 2008.
[24] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[25] V. Lozin. Clique-Width of Unit Interval Graphs. Manuscript, arXiv:0709.1935, 2007.
[26] J. Nešetřil and P. Ossona de Mendez. Linear Time Low Tree-Width Partitions and Algorithmic Consequences. In J.M. Kleinberg ed., $38^{t} h$ Annual ACM Symposium on Theory of Computing (STOC), pages 391-400. ACM, 2006.
[27] S. Oum and P. Seymour. Approximating Clique-Width and Branch-Width, Journal of Combinatorial Theory, Series B, 96(4):514-528, 2006.
[28] D. Seese. Linear Time Computable Problems and First-Order Descriptions. Mathematical Structures in Computer Science 6(6):505-526, 1996.


[^0]:    ${ }^{1}$ Supported by the GRAAL project of "Agence Nationale pour la Recherche".
    ${ }^{2}$ Member of "Institut Universitaire de France".

[^1]:     Furthermore, these colored graphs correspond to relational structures with relation symbols of arity 1 (vertex colors) and 2 (edge colors)
    ${ }^{4}$ If $X$ is the singleton $\{x\}$, we write $G \backslash x$ instead of $G \backslash\{x\}$.

[^2]:    ${ }^{5}$ An apex-graph is a graph $G$ such that $G \backslash u$ is planar for some vertex $u$.
    ${ }^{6}$ If $G$ is a graph we denote by $K=\operatorname{Line}(G)$, called the line graph of $G$, the graph with vertex set the set of edges of $G$ and $e d g_{K}(x, y)$ holds if and only if $x$ and $y$ are incident.

[^3]:    $\overline{7}$ We denote by $\operatorname{twd}(G)$ the tree-width of a graph $G$.

