
Efficient First-Order Model-Checking Using Short
Labels�

Bruno Courcelle��, Cyril Gavoille, and Mamadou Moustapha Kanté

Université Bordeaux 1, LaBRI, CNRS, 351 cours de la libération 33405 Talence
Cedex, France

{courcell,gavoille,mamadou.kante}@labri.fr

Abstract. We prove that there exists an O(log(n))-labeling scheme for
every first-order formula with free set variables in every class of graphs
that is nicely locally cwd-decomposable, which contains in particular, the
nicely locally tree-decomposable classes. For every class of bounded ex-
pansion we prove that every bounded formula has an O(log(n))-labeling
scheme. We also prove that, for fixed k, every quantifier-free formula has
an O(log(n))-labeling scheme in graphs of arboricity at most k. Some of
these results are extended to counting queries.

1 Introduction

The model-checking problem for a class of structures C and a logical language
L consists in deciding, for given S ∈ C and for some fixed sentence ϕ ∈ L if
S |= ϕ, i.e., if S satisfies the property expressed by ϕ. More generally, if ϕ is
a formula with free variables x1, . . . , xm one asks whether S |= ϕ(d1, . . . , dm)
where d1, . . . , dm ∈ DS are values given to x1, . . . , xm. One may also wish to list
the set of m-tuples (d1, . . . , dm) that satisfy ϕ in S, or simply count them.

Polynomial time algorithms for these problems (for fixed ϕ) exist for cer-
tain classes of structures and certain logical languages. In this sense graphs of
bounded degree “fit” with first-order (FO for short) logic [17,7] and graphs of
bounded tree-width or clique-width “fit” with monadic second-order (MSO for
short) logic. Frick and Grohe [8,9,11] have defined Fixed Parameter Tractable
(FPT for short) algorithms for FO model-checking problems on graphs of un-
bounded degree and tree-width (Definitions and Examples are given in Section
4). We will also use definitions from Nešeťril and Ossona de Mendez [15].

We will use the same tools for the following labeling problem : let be given a
class of graphs C and a property P (x1, . . . , xm, Y1, . . . , Yq) of vertices x1, . . . , xm

and of sets of vertices Y1, . . . , Yq of graphs G in C. We want two algorithms,
an algorithm A that attaches to each vertex u of a given graph G in C a label
L(u), defined as a sequence of 0’s and 1’s of length O(log(n)) or O(logk(n))
(for some fixed k) where n is the number of vertices of G, and an algorithm
� Research supported by the project “Graph decompositions and Algorithms

(GRAAL)” of “Agence Nationale pour la Recherche”.
�� Member of “Institut Universitaire de France”.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 159–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

160 B. Courcelle, C. Gavoille, and M.M. Kanté

B (independent of G) that checks property P (a1, . . . , am, W1, . . . , Wq) by us-
ing the labels : this algorithm must take as input the labels L(a1), . . . , L(am)
and the sets of labels L(W1), . . . , L(Wq) of the sets W1, . . . , Wq and tell whether
P (a1, . . . , am, W1, . . . , Wq) is true. (Each label L(u) identifies the vertex u, which
is possible with a sequence of length �log(n)�.) Results of this type have been
established for MSO logic by Courcelle and Vanicat [5] and, for particular prop-
erties (connectivity queries, that are expressible in MSO logic) by Courcelle and
Twigg in [4] and by Courcelle et al. in [2].

Let us review the motivations for looking for compact labelings of graphs. By
compact, we mean of length of order less than O(n), where n is the number of
vertices of the graph, hence in particular of length O(logk(n)). By an O(log(n))-
labeling, we mean one where each label is a word over {0, 1} of length at most
a · log(n), where n is the number of vertices and a is a constant depending on
the type of the graph (e.g., planar, or of tree-width at most some fixed value).

In distributed computing over a communication network with underlying
graph G, nodes must act according to their local knowledge only. This knowl-
edge can be updated by message passing. Due to space constraints on the local
memory of each node, and on the sizes of messages, a distributed task cannot be
solved by representing the whole graph G in each node or in each message, but
it must rather manipulate more compact representations of G. Typically, the
routing task may use routing tables, that are sublinear in the size of G (prefer-
ably of poly-logarithmic size), and short addresses transmitted in the headers
of messages (of poly-logarithmic size too). As surveyed in [12] many distributed
tasks can be optimized by the use of labels attached to vertices. Such labels
should be usable even when the network has node or link crashes. They are
called forbidden-set labeling schemes in [4]. In this framework local informations
can be updated just by transmitting to all surviving nodes the list of (short)
labels of all defected nodes and links, so that the surviving nodes can update
their local information, e.g., their routing tables.

Let us comment about using set arguments. The forbidden (or defective) parts
of a network are handled as a set of vertices passed to a query as an argument.
This means that algorithm A computes the labels once and for all, independently
of the possible forbidden parts of the network. In other words the labeling sup-
ports node deletions from the given network. (Edge deletions are supported in
the labelings of [2] and [4].) If the network is augmented with new nodes and
links, the labels must be recomputed. We leave this incremental extension as a
topic for future research. Set arguments can be used to handle deletions, but
also constraints, or queries like “what are the nodes that are at distance at most
3 of X and Y ” where X and Y are two specified sets of nodes.

2 Notations and Definitions

All graphs and relational structures are finite. Let ϕ (x1, . . . , xm, Y1, . . . , Yq) be
a FO formula with free FO variables among x1, . . . , xm and free set variables
among Y1, . . . , Yq. Set variables are allowed in FO formulas but are not quanti-
fied. They occur in atomic formulas of the form y ∈ Yi. Gaifman’s Theorem [10]

Efficient First-Order Model-Checking Using Short Labels 161

and its stronger versions are valid for such formulas because y ∈ Yi is the same
as “Ri(y) holds” where Ri is a unary relation representing Yi.

Let S be a relational structure of the relevant type, S = 〈DS , (RS)R∈R〉 with
domain DS. A labeling of S is an injective mapping J : DS → {0, 1}∗ (or into
some more convenient set A∗ where A is a finite alphabet). If Y ⊆ DS we let
J (Y) be the family (J (y))y∈Y . Clearly Y is defined from J (Y).

For a formula ϕ (x1, . . . , xm, Y1, . . . , Yq) and a class of structures C we are
interested in the construction of two algorithms A and B doing the following:

1. A constructs for each S ∈ C a labeling J of S such that |J (a) | = O (log (n))
for every a ∈ DS, where n = |DS |.

2. If J is computed from S by A, then B takes as input an (m + q)-tuple
(J (a1) , . . . , J (am) , J (W1) , . . . , J (Wq)) and says correctly whether:

S |= ϕ (a1, . . . , am, W1, . . . , Wq) .

In this case we say that the pair (A, B) defines an O (log (n))-labeling support-
ing the query defined by ϕ for the structures in C.

Labelings based on logical descriptions of queries have been defined by Cour-
celle and Vanicat [5] for MSO queries and graphs of bounded clique-width
(whence also of bounded tree-width). Applications to distance and connectiv-
ity queries in graphs of bounded clique-width and in planar graphs have been
given by Courcelle and Twigg in [4] and by Courcelle, Gavoille, Kanté and Twigg
in [2]. In the present article, we consider classes of graphs of unbounded clique-
width and in particular, classes that are locally decomposable (Frick and Grohe
[8,9]) and classes of bounded expansion (Nešeťril and Ossona de Mendez [15]).
We are thus obliged to consider only FO logic and no longer MSO logic.

In this extended abstract we only consider vertex-labeled graphs. The exten-
sion to structures can be done in a standard way through the so-called Gaifman
graphs. An A-labeled graph is G = 〈VG, edgG (·, ·) , (labaG)a∈A〉 (vertices, edge
relations and unary relation for vertex labels).

By replacing everywhere “clique-width”, “local clique-width”, etc. by “tree-
width”, “local tree-width”, etc., one can handle formulas with edge-set
quantifications.

Definition 1. Logic
An FO formula ϕ (x1, . . . , xm, Y1, . . . , Yq) is basic bounded if for some p ∈ N

we have the following equivalence for all graphs G, all a1, . . . , am ∈ VG and all
W1, . . . , Wq ⊆ VG

G |= ϕ (a1, . . . , am, W1, . . . , Wq) iff G[X] |= ϕ (a1, . . . , am, W1 ∩ X, . . . , Wq ∩ X)

for some X ⊆ VG such that |X | ≤ p and a1, . . . , am ∈ X . (If this is true for X ,
then G[Y] |= ϕ(a1, . . . , am, W1 ∩ Y, . . . , Wq ∩ Y) for every Y ⊇ X .)

An FO formula is bounded if it is a Boolean combination of basic bounded for-
mulas. In particular, the negation of a basic bounded formula is not (in general)
basic bounded, but it is bounded.

162 B. Courcelle, C. Gavoille, and M.M. Kanté

An FO formula ϕ (x1, . . . , xm, Y1, . . . , Yq) is t-local around (x1, . . . , xm) if for
every G and, every a1, . . . , am ∈ VG, W1, . . . , Wq ⊆ VG we have

G |= ϕ (a1, . . . , am, W1, . . . , Wq) iff G[N] |= ϕ (a1, . . . , am, W1 ∩ N, . . . , Wq ∩ N)

where N = N t
G (a1, . . . , am) = {y ∈ VG | d (y, ai) ≤ t for some i = 1, . . . , m} and

d (u, v) is the length of a shortest undirected path between u and v.
An FO sentence is basic (t, s)-local if it is equivalent to a sentence of the form

∃x1. · · · ∃xs.

⎛
⎝ ∧

1≤i<j≤s

d (xi, xj) > 2t ∧
∧

1≤i≤s

ψ (xi)

⎞
⎠

where ψ (x) is t-local around its unique free variable x.

Remark. The query d (x, y) ≤ r is basic bounded (p = r + 1) and t-local with
t = r/2 if r is even and (r − 1) /2 if r is odd. Its negation d (x, y) > r is t-local
and bounded (but not basic bounded).

3 Graphs

We are interested in on-line checking properties of networks in case of (re-
ported) failures. Hence for each property of interest ϕ (x1, . . . , xm) we are not
only interested in checking if G |= ϕ (a1, . . . , am) by using J (a1) , . . . , J (am)
where a1, . . . , am ∈ VG but also in checking G\X |= ϕ (a1, . . . , am) by using
J (a1) , . . . , J (am) and J (X) where X ⊆ VG − {a1, . . . , am} and G\X is the
subgraph of G induced on VG − X .

However, G\X |= ϕ (a1, . . . , am) for a FO formula ϕ(x1, . . . , xm) is equivalent
to G |= ϕ′ (a1, . . . , am, X) and to GX |= ϕ′′ (a1, . . . , am) for FO formulas
ϕ′(x1, . . . , xm, Y) and ϕ′′(x1, . . . , xm) that are easy to write. We denote by GX

the graph G equipped with an additional vertex-label. Hence, we consider GX as
the structure G augmented with a unary relation lab such that labGX (u) holds
iff u ∈ X . We will handle “holes” in graphs by means of set variables.

A graph has arboricity at most k if it is the union of k-edge disjoint forests
(independently of the orientations of its edges).

Classes with bounded expansion, defined in [15] have several equivalent char-
acterizations. We will use the following one: a class C has bounded expansion if
for every integer p, there exists a constant N (C, p) such that for every G ∈ C,
one can partition VG in at most N (C, p) parts such that any i ≤ p of them
induce a subgraph of tree-width at most i − 1. (This implies that each part is a
stable set, hence the partition can be seen as a proper vertex-coloring.)

4 Locally Decomposable Classes

We refer to [16] and to [3,5] for the definitions of tree-width and of clique-width
respectively. (We denote by cwd(G) the clique-width of a graph G). We will use
the same notations as in [8,9]. Definition 2 is analogous to [9, Definition 5.1].

Efficient First-Order Model-Checking Using Short Labels 163

Definition 2

1. The local clique-width of a graph G is the function lcwG : N → N defined by
lcwG(t) := max{cwd(G[N t

G (a)]) | a ∈ VG}.
2. A class C of graphs has bounded local clique-width if there is a function

f : N → N such that lcwG (t) ≤ f (t) for every G ∈ C and t ∈ N.

Examples

1. Every class of graphs of bounded clique-width has also bounded local clique-
width since cwd(G[A]) ≤ cwd(G) for every A ⊆ VG (see [3]).

2. The classes of graphs of bounded local tree-width have bounded local clique-
width since every class of graphs of bounded tree-width has bounded clique-
width (see [3]). We can cite graphs of bounded degree and minor-closed
classes of graphs that do not contain all apex-graphs (see [8,9]) as examples
of classes of bounded local tree-width.

3. The class of unit-interval graphs has bounded local clique-width (using re-
sults from [14]) but neither bounded clique-width nor bounded local tree-
width.

4. The class of interval graphs has not bounded local clique-width.

If we want to give an O (log (n))-labeling for certain classes of graphs of bounded
local clique-width, we need as in [8,9] to cover them by graphs of small clique-
width in a suitable way. In [8] a notion of nicely locally tree-decomposable class
of structures was introduced. We will define a slightly more general notion.

Definition 3. Let r, l ≥ 1 and g : N → N. An (r, l, g)-cwd cover of a graph G
is a family T of subsets of VG such that:

1. For every a ∈ VG there exists a U ∈ T such that N r
G (a) ⊆ U .

2. For each U ∈ T there exist less than l many V ∈ T such that U ∩ V
= ∅.
3. For each U we have cwd(G[U]) ≤ g(1).

An (r, l, g)-cwd cover is nice if condition 3 is replaced by condition 3’ below:

3’. For all U1, . . . , Uq and q ≥ 1 we have cwd(G[U1 ∪ · · · ∪ Uq]) ≤ g(q).

A class C of graphs is locally cwd-decomposable if there is a polynomial time
algorithm that given a graph G ∈ C and r ≥ 1, computes an (r, l, g)-cwd cover
of G for suitable l, g depending on r.

A class C of graphs is nicely locally cwd-decomposable if there is a polynomial
time algorithm that given a graph G ∈ C and r ≥ 1, computes a nice (r, l, g)-cwd
cover of G for suitable l, g depending on r. (These two definitions are the same
as in [9,8] where we substitute clique-width to tree-width.)

Examples

1. It is clear that every nicely locally cwd-decomposable class is locally cwd-
decomposable and the converse is not true.

164 B. Courcelle, C. Gavoille, and M.M. Kanté

2. Each class of nicely locally tree-decomposable structures [8] is nicely locally
cwd-decomposable.

3. Let G be a unit-interval graph. Using results from [14, Theorems 1,3 and
Corollary 5] one can prove that G has an (r, r, f(2r + 1))-cwd cover. Then
every class of unit-interval graphs is locally cwd-decomposable.

4. Figure 1 shows inclusion relations between the many classes defined in Sec-
tions 3 and 4. It completes the diagram [9, Figure 2].

Excludes a Minor

4(3,4)Locally cwd−decomposable4(3,5), 7

nicely Locally tree−decomposable

Bounded Degree Planar

Bounded Local Tree−Width

Bounded Local Clique−Width

4(2)Bounded Expansion

4(1)Bounded Arboricity

nicely Locally cwd−decomposable

Fig. 1. Inclusion diagram indicating which results apply to which classes. An arrow
means an inclusion of classes.

5 Results

The main results are as follows. In each case we consider labeled graphs over a
finite set A of vertex-labels.

Theorem 4 (First Main Theorem). There exist O (log (n))-labeling schemes
for the following queries and graph classes:

1. Quantifier-free queries in graphs of arboricity ≤ k, for each k.
2. Bounded FO queries for each class of graphs of bounded expansion.
3. Local queries with set arguments on locally cwd-decomposable classes.
4. FO queries without set arguments on locally cwd-decomposable classes.
5. FO queries with set arguments on nicely locally cwd-decomposable classes.

Efficient First-Order Model-Checking Using Short Labels 165

We recall that for graphs G of clique-width at most k, there exists a cubic time
algorithm that computes a cwd-term that defines G without being optimal [13].
(It uses 2k+1 − 1 labels, hence does not witness cwd(G) ≤ k; however this term
is enough for using [5].) And if a graph G has tree-width at most k, there exists
a linear time algorithm that computes a tree-decomposition of width k of G [1].
We will also use results by Gaifman [10], Frick and Grohe [9,8] recalled below.

Theorem 5 ([10]). Let ϕ(x̄) be a FO formula where x̄ = (x1, . . . , xm). Then ϕ
is logically equivalent to a Boolean combination B (ϕ1(ū1), . . . , ϕp(ūp), ψ1, . . . , ψh)
where:

– each ϕi is a t-local formula around ūi ⊆ x̄.
– each ψi is a basic (t′, s)-local sentence.

Moreover B can be computed effectively and, t, t′ and s can be bounded in terms
of m and the quantifier-rank of ϕ.

We will use a stronger form from [8]. Let m, t ≥ 1. The t-distance type of an
m-tuple ā is the undirected graph ε = ([m], edgε) where edgε(i, j) iff d(ai, aj) ≤
2t + 1. The satisfaction of a t-distance type by an m-tuple can be expressed by
a t-local formula:

ρt,ε(x1, . . . , xm) :=
∧

(i,j)∈edgε

d(xi, xj) ≤ 2t + 1 ∧
∧

(i,j)/∈edgε

d(xi, xj) > 2t + 1.

We recall that Gaifman’s Theorem and its variants extend to FO formulas
with set variables.

Lemma 1 ([8]). Let ϕ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ = (x1, . . . ,
xm), m ≥ 1. For each t-distance type ε with ε1, . . . , εp as connected components,
one can compute a Boolean combination F t,ε(ϕ1,1, . . . , ϕ1,j1 , . . . , ϕp,1, . . . , ϕp,jp)
of formulas ϕi,j with FO free variables among those of x̄ and set arguments in
{Y1, . . . , Yq} such that:

– The FO free variables of each ϕi,j are among x̄ | εi (x̄ | εi is the restriction
of x̄ to εi).

– ϕi,j is t-local around x̄ | εi.
– For each m-tuple ā, each q-tuple of sets W1, . . . , Wq, G |= ρt,ε(ā) ∧ ϕ(ā, W1,

. . . , Wq) iff G |= ρt,ε(ā) ∧ F t,ε(. . . , ϕi,j(ā | εi, W1, . . . , Wq), . . .).

The lemma below is an easy adaptation of the results in [9].

Lemma 2 ([9]). Let G be in a locally cwd-decomposable class. Every basic (t, s)-
local sentence can be decided in polynomial time.

We now give the proofs of each statement of Theorem 4 (except statement 1
because of space constraints). For clarity, we give them separately.

166 B. Courcelle, C. Gavoille, and M.M. Kanté

Proof (of Theorem 4 (2)). Let ϕ be a basic bounded formula with bound p and
at least one free FO variable. We let N = N(C, p) and we partition VG into
V1 � V2 � · · · � VN as in the definition, Vi
= ∅.

For every α ⊆ [N] of size p we let Vα =
⋃

i∈α Vi so that the tree-width of
G[Vα] is at most p − 1. Each vertex u belongs to less than (N − 1)p−1 sets Vα.

Hence a basic bounded formula ϕ(x1, . . . , xm, Y1, . . . , Yq) is true in G iff it is
true in some G[X] with |X | ≤ p, hence in some G[Vα] such that x1, . . . , xm ∈ Vα.
For each α we construct a labeling Jα of G[Vα] (of tree-width at most p − 1)
supporting query ϕ by using [5]. We let J(x) =

(
�x�, {(�α�, Jα(x)) | x ∈ Vα}

)
.

We have |J(x)| = O(log(n)).
We now explain how to decide ϕ by using the labels only. Given J(a1),

. . . , J(am) we can determine all those sets α such that Vα contains a1, . . . , am. Us-
ing the components Jα(·) of J(a1), . . . , J(am) and the labels in J(W1), . . . , J(Wq)
we can determine if for some α, G[Vα] |= ϕ(a1, . . . , am, W1 ∩ Vα, . . . , Wq ∩ Vα)
hence whether G |= ϕ(a1, . . . , am, W1, . . . , Wq).

It remains to consider the case of a basic bounded formula of the form
ϕ(Y1, . . . , Yq). For each α we determine the truth value tα of ϕ(∅, . . . , ∅) in G[Vα].
The family of pairs (α, tα) is of fixed size (depending on p) and is appended to
J(x) defined as above. From J(W1), . . . , J(Wq) we get D = {α | Vα ∩ (W1 ∪· · ·∪
Wq)
= ∅}.

By using the Jα(·) components of the labels in J(W1) ∪ · · · ∪ J(Wq) we can
determine if for some α ∈ D we have G[Vα] |= ϕ(W1 ∩ Vα, . . . , Wq ∩ Vα). If one
is found we conclude positively. Otherwise we look for some tβ = True where
β /∈ D. This gives the final answer.

For a Boolean combination of basic bounded formulas ϕ1, . . . , ϕt with associ-
ated labelings J1, . . . , Jt we take the concatenation J1(x) • J2(x) • · · · • Jt(x). It
is of size O(log(n)) and gives the desired result. ��

Proof (of Theorem 4 (3)). Let ϕ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ =
(x1, . . . , xm), m ≥ 1. Then G |= ϕ(ā, W1, . . . , Wq) iff G[N t

G(ā)] |= ϕ(ā, W1 ∩
N t

G(ā), . . . , Wq ∩ N t
G(ā)). Let ε be a t-distance type with ε1, . . . , εp as connected

components. By Lemma 1, G |= ρt,ε(ā) ∧ ϕ(ā, W1, . . . , Wq) iff G |= ρt,ε(ā) ∧
F t,ε(ϕ1,1(ā | ε1, W1, . . . , Wq), . . . , ϕp,jp(ā | εp, W1, . . . , Wq)).

We let T be an (r, l, g)-cwd cover of G where r = m(2t + 1). We use such
an r in order to warranty that if a1, . . . , am are in a connected component of a
t-distance type, there exists a U ∈ T such that N t

G(a1, . . . , am) ⊆ U . For each
vertex x there exist less than l many V ∈ T such that x ∈ V . We assume that
each U ∈ T has an index encoded as a bit string �U�. There are at most n · l
sets in T . Hence �U� has length O(log(n)).

By the results of [5] we can label each vertex with a label K(x) of length
O(log(n)) and decide in O(log(n))-time if d(u, v) ≤ 2t + 1 or not by using K(u)
and K(v)1. We build a labeling KU for each U ∈ T ; then for each x we let
K(x) =

(
�x�, {

(
�U�, KU(x)

)
| N(x) ⊆ U}, {

(
�U�, KU(x)

)
| N(x) � U}

)
.

where N(x) = N2t+1
G (x). (We always assume that x ∈ N t

G(x) for all t ∈ N.)
1 For checking if d(u, v) ≤ 2t + 1, an (r′, l′, g′)-cwd cover suffices, with r′ = 2t + 1.

Efficient First-Order Model-Checking Using Short Labels 167

By [5] for each ϕi,j(x̄ | εi, Y1, . . . , Yq) and each U ∈ T we can label each vertex
x ∈ U with Jε

i,j,U (x) of length O(log(n)) and decide ϕi,j(ā | εi, W1, . . . , Wq) in
G[U] by using

(
Jε

i,j,U (b)
)
b∈ā |εi

and Jε
i,j,U (W1 ∩U), . . . , Jε

i,j,U (Wq ∩ U). For each
x we let
Jε(x) :=

{(
�U�, Jε

1,1,U (x), . . . , Jε
1,j1,U (x), . . . , Jε

p,1,U (x), . . . , Jε
p,jp,U (x)

)
| N t

G(x) ⊆ U
}

.

It is clear that |Jε(x)| = O(log(n)) since each x is in less than l many V ∈ T .
There exist at most k′ = 2k(k−1)/2 t-distance type graphs; we enumerate them
by ε1, . . . , εk′

. For each x we let J(x) := (�x�, K(x), Jε1(x), . . . , Jεk′ (x)).
From the labels K(x), we can determine {�U� | U ∈ T , x ∈ U}, hence the

sets U ∈ T such that W ∩ U
= ∅, W ⊆ VG, where W is a set argument. It is
clear that J(x) is of length O(log(n)) and is computed in polynomial time since
T is computed in polynomial time and each Jε is computed in polynomial time.
We now explain how to decide whether G |= ϕ(a1, . . . , am, W1, . . . , Wq) by using
J(a1), . . . , J(am) and J(W1), . . . , J(Wq).

By using K(a1), . . . , K(am) from J(a1), . . . , J(am) we can construct the t-
distance type ε satisfied by a1, . . . , am; let ε1, . . . , εp be the connected components
of ε. From each J(ai) we can recover Jε(ai). For each ā | εi there exists at least
one U ∈ T such that N t

G(ā | εi) ⊆ U . We can recover them (there are less than
l) from the J(b), b ∈ ā | εi. We can now decide whether G |= F t,ε(ϕ1,1(ā |
ε1, W1 ∩ U1, . . . , Wq ∩ U1), . . . , ϕp,jp(ā | εp, W1 ∩ Up, . . . , Wq ∩ Up)) for some
U1, . . . , Up determined from J(a1), . . . , J(am). By using also J(W1), . . . , J(Wq)
we can determine the sets Wi ∩ Uj and this is sufficient by Lemma 1. ��

Proof (of Theorem 4 (4)). Let ϕ(x1, . . . , xm) be a FO formula without set ar-
guments. By Theorem 5 ϕ is equivalent to a Boolean combination B(ϕ1(x̄), . . . ,
ϕp(x̄), ψ1, . . . , ψh) where ϕi is t-local and ψi is a basic (t′, s)-local sentence for
suitable t, t′, s.

By Lemma 2 one can decide in polynomial time each sentence ψi. Let b =
(b1, . . . , bh) where bi = 1 if G satisfies ψi and 0 otherwise. For each 1 ≤ i ≤ p we
construct a labeling Ji supporting query ϕi by Theorem 4 (3) (G belongs to a
locally cwd-decomposable class and ϕi is a t-local formula around x̄). For each
x we let J(x) := (�x�, J1(x), . . . , Jp(x), b).

It is clear that |J(x)| = O(log(n)). Since from b one can recover the truth
value of each sentence ψi, we can decide whether G |= ϕ(a1, . . . , am) by using
J(a1), . . . , J(am), the truth values of ϕi(ā) and b. ��

Proof (of Theorem 4 (5)). By Theorem 4 (3) it is sufficient to consider FO
formulas ϕ(Y1, . . . , Yq) of the form:

∃x1. · · · ∃xm.

⎛
⎝ ∧

1≤i<j≤m

d(xi, xj) > 2t ∧
∧

1≤i≤m

ψ(xi, Y1, . . . , Yq)

⎞
⎠

where ψ(x, Y1, . . . , Yq) is t-local around x. We show how to check their validity
by means of O(log(n))-labelings.

168 B. Courcelle, C. Gavoille, and M.M. Kanté

We consider for purpose of clarity the particular case of m = 2. Let T be a nice
(r, l, g)-cwd cover of G where r = 2t + 1. We let K(U) = {x ∈ U | N2t

G (x) ⊆ U}
(the 2t-kernel of U (see [8])).

We let γ be a distance-2 coloring of the intersection graph of T (vertices at
distance 1 or 2 have different colors). For every 2 colors i, j we let Gi,j be the
graph induced by the union of the blocks U ∈ T of colors i and j.

Claim 1. cwd(Gi,j) ≤ g(2).

Proof (of Claim 1). Gi,j is a disjoint union of sets U in T and of unions U ∪ U ′

with U ∩ U ′
= ∅ for U, U ′ ∈ T . This union is disjoint because if U ∪ U ′ with
U ∩ U ′
= ∅ would meet some U ′′ ∈ T , U ′′
= U, U ′′
= U ′, then we would have
γ(U) = i, γ(U ′) = j and U ′′ meets U or U ′. It cannot have color i or j because
γ is a distance-2 coloring. Since cwd(G[U ∪ U ′]) ≤ g(2), we are done. ��

Claim 2. Let x ∈ K(U) and y ∈ K(U ′) for some U, U ′ ∈ T . Then dG(x, y) > 2t
iff dG[U∪U ′](x, y) > 2t.

Proof (of Claim 2). The “if direction” is clear since distance increases if we go
to induced subgraphs.

For the “converse direction”, we let dG(x, y) ≤ 2t; there exists a path of length
≤ 2t from x to y. This path is in U ∪ U ′ since x ∈ K(U) and y ∈ K(U ′). Hence
it is also in G[U ∪ U ′], hence dG[U∪U ′] ≤ 2t. ��

Let us now give to each vertex x of G the smallest color i such that x ∈ K(U)
and γ(U) = i. Hence a vertex has one and only one color. For each pair i, j we
consider the formula ψi,j (possibly j = i):

∃x, y.
(
d(x, y) > 2t ∧ ψ(x, Y1, . . . , Yq) ∧

ψ(y, Y1, . . . , Yq) ∧ “x has color i” ∧ “y has color j”
)

We use [5] to construct a labeling Ji,j for the formula ψi,j in the graph Gi,j

(with vertices colored by i or j, that is, we use new unary “color” predicates).
We compute the truth value bi,j of ψi,j(∅, . . . , ∅) in Gi,j ; we get a vector b of
fixed length. We also label each vertex x by its color. We concatenate to that b
and the Ji,j(x) for x ∈ VGi,j , giving J(x).

From J(W1), . . . , J(Wq) we can determine those Gi,j such that VGi,j ∩ (W1 ∪
· · · ∪ Wq)
= ∅, and check if for one of them Gi,j |= ψi,j(W1, . . . , Wq). If one
is found we are done. Otherwise we use the bi,j ’s to look for Gi,j such that
Gi,j |= ψi,j(∅, . . . , ∅) and (W1 ∪ · · · ∪ Wq) ∩ VGi,j = ∅. This gives the correct
results because of the following facts:

– If x, y satisfy the formula ϕ, then x ∈ K(U), y ∈ K(U ′) (possibly U = U ′)
and dG(x, y) > 2t implies dGi,j (x, y) > 2t, hence Gi,j |= ψi,j(W1, . . . , Wq)
where i = γ(U) and j = γ(U ′).

– If Gi,j |= ψi,j(W1, . . . , Wq) then we get G |= ϕ(W1, . . . , Wq) by similar
argument (in particular dGi,j (x, y) > 2t implies dG[U∪U ′](x, y) > 2t which
implies that dG(x, y) > 2t by Claim 2).

Efficient First-Order Model-Checking Using Short Labels 169

For m = 1, the proof is similar with γ a proper (distance-1) coloring and we
use Gi instead of Gi,j .

For the case m > 2, the proof is the same: one takes for γ a distance-m
proper coloring of the intersection graph, one considers graphs Gi1,...,im defined
as (disjoint) unions of sets U1 ∪ · · · ∪ Um for U1, . . . , Um in T , of respective
colors i1, . . . , im and cwd(G[U1 ∪ · · · ∪ Um]) ≤ g(m). This terminates the proof
of Theorem 4. ��

Let us ask a very general question: what can be done with O (log (n)) labels ?
Here is a fact that limits the extension of these results.

Fact 1. One cannot express adjacency in arbitrary graphs with labels of size
O (log (n)). It follows that one cannot handle all local or bounded FO queries for
graphs of arboricity at most 2 with O (log (n)) labels.

We now discuss extension to counting queries. Let ϕ (x1, . . . , xm, Y1, . . . , Yq) be
a MSO formula and S be a finite structure. For W1, . . . , Wq ⊆ DS we define

#Sϕ (W1, . . . , Wq) :=
∣∣∣{ (a1, . . . , am) ∈ Dm

S | S |= ϕ (a1, . . . , am, W1, . . . , Wq)
}∣∣∣

A counting query consists in determining #Sϕ (W1, . . . , Wq) for given
(W1, . . . , Wq). We will need the following extension of the results of [5].

Theorem 6. Let ϕ (x1, . . . , xm, Y1, . . . , Yq) be an MSO formula over labeled
graphs and k ∈ N. There exists an O

(
log2 (n)

)
-labeling scheme for graphs of

clique-width or tree-width at most k supporting the counting query #Gϕ. For
computing #Gϕ (W1, . . . , Wq) modulo some fixed integer s, or up to s (threshold
counting) we need only labels of size O (log (n)).

We now state our second main theorem. The proof is omitted because of space
constraints.

Theorem 7 (Second Main Theorem). There exists an O(log2(n))-labeling
scheme for counting queries based on FO formulas for nicely locally cwd-
decomposable classes. O(log(n)) is enough for modulo counting.

We conjecture that the results of Theorem 4 (3,4,5) extend to classes of graphs
excluding, or locally excluding a minor [6,11].

Question. Does there exist an O(log(n))-labeling scheme for FO formulas with
set arguments on locally cwd-decomposable classes ?

170 B. Courcelle, C. Gavoille, and M.M. Kanté

References

1. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Tree-width. SIAM J. Comput. 25(6), 1305–1317 (1996)

2. Courcelle, B., Gavoille, C., Kanté, M.M., Twigg, A.: Optimal Labeling for Con-
nectivity Checking in Planar Networks with Obstacles. (manuscript, 2008); An
extended abstract will appear in Electronic Notes in Discrete Mathematics. In: Pro-
ceedings of the first Conference Topological and Geometric Graph Theory, Paris
(2008)

3. Courcelle, B., Olariu, S.: Upper Bounds to the Clique-Width of Graphs. Discrete
Applied Mathematics 101(1-3), 77–114 (2000)

4. Courcelle, B., Twigg, A.: Compact Forbidden-Set Routing. In: Thomas, W., Weil,
P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 37–48. Springer, Heidelberg (2007)

5. Courcelle, B., Vanicat, R.: Query Efficient Implementation of Graphs of Bounded
Clique-Width. Discrete Applied Mathematics 131(1), 129–150 (2003)

6. Dawar, A., Grohe, M., Kreutzer, S.: Locally Excluding a Minor. In: 22nd IEEE
Symposium on Logic in Computer Science (LICS), pp. 270–279. IEEE Computer
Society, Los Alamitos (2007)

7. Durand, A., Grandjean, E.: First-Order Queries on Structures of Bounded Degree
are Computable with Constant Delay. ACM Trans. Comput. Log 8(4) (2007)

8. Frick, M.: Generalized Model-Checking over Locally Tree-Decomposable Classes.
Theory Comput. Syst. 37(1), 157–191 (2004)

9. Frick, M., Grohe, M.: Deciding First-Order Properties of Locally Tree-
Decomposable Structures. J. ACM 48(1), 1184–1206 (2001)

10. Gaifman, H.: On Local and Non-Local Properties. In: Proceedings of the Herbrand
Symposium Logic Colloquium 1981, pp. 105–135 (1982)

11. Grohe, M.: Logic, Graphs and Algorithms. In: Flum, Grädel, Wilke (eds.) Logic,
Automata, History and Perspectives, pp. 357–422. Amsterdam University Press
(2007)

12. Gavoille, C., Peleg, D.: Compact and Localized Distributed Data Structures. Dis-
tributed Computing 16(2-3), 111–120 (2003)

13. Hliněný, P., Oum, S.: Finding Branch-Decompositions and Rank-Decompositions.
In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 163–
174. Springer, Heidelberg (2007)

14. Lozin, V.: Clique-Width of Unit Interval Graphs. arXiv:0709.1935 (manuscript,
2007)

15. Nešetřil, J., Ossona de Mendez, P.: Linear Time Low Tree-Width Partitions and
Algorithmic Consequences. In: Kleinberg, J.M. (ed.) 38th Annual ACM Symposium
on Theory of Computing (STOC), pp. 391–400. ACM, New York (2006)

16. Robertson, N., Seymour, P.: Graph Minors V: Excluding a Planar Graph. J. Com-
bin. Theory Ser. B 41(1), 92–114 (1986)

17. Seese, D.: Linear Time Computable Problems and First-Order Descriptions. Math-
ematical Structures in Computer Science 6(6), 505–526 (1996)

	Introduction
	Notations and Definitions
	Graphs
	Locally Decomposable Classes
	Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

