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Abstract. Knödel graphs and Fibonacci graphs are two classes of bipar-
tite incident-graph of circulant digraphs. Both graphs have been exten-
sively studied for the purpose of fast communications in networks, and
they have deserved a lot of attention in this context. In this paper, we
show that there exists an O(n log5 n)-time algorithm to recognize Knödel
graphs, and that the same technique applies to Fibonacci graphs. The al-
gorithm is based on a characterization of the cycles of length six in these
graphs (bipartite incident-graphs of circulant digraphs always have cy-
cles of length six). A consequence of our result is that none of the Knödel
graphs are edge-transitive, apart those of 2k − 2 vertices. An open prob-
lem that arises in this field is to derive a polynomial-time algorithm for
any infinite family of bipartite incident-graphs of circulant digraphs in-
dexed by their number of vertices.

Keywords: graph isomorphism, circulant graphs, chordal rings, broad-
casting, gossiping.

1 Introduction

So-called Knödel graphs and Fibonacci graphs have been used by Knödel [12],
and Even and Monien [7] (see also [5,13,18]), respectively, for the purpose of
performing efficient communications in networks. More precisely, consider a net-
work of n nodes, and assume that communications among the nodes proceed by
a sequence of synchronous calls between neighboring vertices. A round is defined
as the set of calls performed at the same time. Knödel on one hand, and Even and
Monien on the other hand, were interested in computing the minimum number
of rounds necessary to perform a all-to-all broadcasting, also called gossiping,
between the nodes (see [8,9,11] for surveys on gossiping and related problems).
The communication constraints assume that a call involves exactly two neigh-
boring nodes, and that a node can communicate to at most one neighbor at a
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Fig. 1. A Knödel graph of 20 vertices (a), and a Fibonacci graph of 20 ver-
tices (b).

time. Knödel considered the 2-way mode (full-duplex) in which the two nodes
involved in the same call can exchange their information in one round, whereas
Even and Monien considered the 1-way mode (half-duplex) in which the infor-
mation can flow in one direction at a time, that is, during the call between x and
y, only y can receive information from x, or x can receive information from y, not
both. Under these hypotheses, it was shown in [12] that, for n even, one cannot
perform gossiping in less that �log2 n� rounds in the 2-way mode, and that there
are graphs, called here Knödel graphs, that allow gossiping to be performed in
�log2 n� rounds. Even and Monien have shown in [7] that, for n even, one cannot
perform gossiping in less than 2 + �log�

n
2 � rounds in the 1-way mode, where

� = 1+
√

5
2 , and that there are graphs, called here Fibonacci graphs, that allow

gossiping to be performed in that number of rounds (up to an additive factor of
one).

Knödel graphs and Fibonacci graphs are bipartite graphs G = (V1, V2, E)
of 2n vertices. Each partition has n vertices labeled from 0 to n − 1. In the
Knödel graphs, there is an edge between x ∈ V1 and y ∈ V2 if and only if
there exists i ∈ {0, 1, . . . , k} such that y = x + 2i − 1 (mod n), k = �log2 n�.
In the Fibonacci graphs, there is an edge between x ∈ V1 and y ∈ V2 if and
only if there exists i ∈ {0, 1, . . . , k} such that y = x + F (i + 1) − 1 (mod n),
k = F−1(n)−1, where F (i) denotes the ith Fibonacci number (F (0) = F (1) = 1,
and F (i) = F (i− 1) + F (i− 2) for i ≥ 2) and F−1(n) denotes the integer i for
which F (i) ≤ n < F (i + 1). Both graphs are Cayley graphs on the dihedral
group, and thus they are vertex-transitive. See Figure 1 for an example of a
Knödel graph and a Fibonacci graph. Note that graphs on Figure 1 look pretty
dense but Knödel graphs and Fibonacci graphs are of degree O(log n).

Knowing whether a graph G of n nodes allows gossiping to be performed
optimally, that is in �log2 n� rounds in the 2-way mode, and in (about) �log� n�
rounds in the 1-way mode, is NP-complete [5]. In particular there are graphs that
are not isomorphic to Knödel graphs (resp. Fibonacci graphs), and that allow
gossiping to be performed optimally in the 2-way mode (resp. 1-way mode). In
this paper, we want to recognize Knödel graphs and Fibonacci graphs. In other
words, given a graph G, we want to know whether G is isomorphic to a Knödel



Recognizing Bipartite Incident-Graphs of Circulant Digraphs 217

graph of the same order, or to know whether G is isomorphic to a Fibonacci
graph of the same order.

A closely related topic deals with circulant digraphs. Recall that a digraph
is circulant if nodes can be labeled so that the adjacency matrix is circulant,
that is node x has k + 1 out-neighbors x + ai (mod n) for i = 0, . . . , k for
some k and some constants ai’s independent of x. Circulant digraphs are Cayley
digraphs over Zn. Ponomarenko has given in [17] a polynomial-time algorithm
to decide whether a given tournament is a circulant digraph (a tournament is
a digraph obtained by giving an orientation to the edges of a complete graph).
More recently, Muzychuk and Tinhofer [15] have shown that one can decide in
polynomial-time whether a digraph of prime order is circulant. Deciding whether
two circulant digraphs are isomorphic is also a difficult problem. Ádám [1] con-
jectured that two circulant digraphs are isomorphic if and only if the generators
of one digraph can be obtained from the generators of the other digraph via a
product by a constant. This conjecture is wrong [6] although it holds in many
cases. For instance, Alspach and Parsons [2] have proved that Ádám’s conjecture
is true for values of n such as the product of two primes (see also [3,14,16]).

Nevertheless, even if they are closely related to circulant digraphs, Knödel
graphs and Fibonacci graphs are not circulant graphs but bipartite incident-
graphs of circulant digraphs, and they are thus sometimes called bi-circulant
graphs. (The bipartite incident-graph of a digraph H = (V,A) is a graph G =
(V1, V2, E) such that V1 = V2 = V , and for any x1 ∈ V1, and x2 ∈ V2, {x1, x2} ∈
E ⇔ (x1, x2) ∈ A. Note that two non isomorphic digraphs H and H ′ can
yield isomorphic bipartite incident-graphs, e.g., H = ({u, v}, {(u, u), (v, v)}) and
H ′ = ({u, v}, {(u, v), (v, u)}).) It is unknown whether there exists a polynomial-
time algorithm to decide whether a given graph is isomorphic to a given circulant
digraph or a given incident-graph of a circulant digraph. This is why we have
studied specific algorithms for the case of Knödel graphs and Fibonacci graphs.

The paper is organized as follows. In Section 2, we study the form of solutions
of equations involving powers of two. The characterization of these solutions
allows us to recognize Knödel graphs in O(n log5 n) time, as shown in Section 3.
This algorithm is optimal up to a polylogarithmic factor since Knödel graphs
have Θ(n log n) edges. Section 4 concludes the paper with some remarks on
bipartite incident-graphs of circulant digraphs defined by an arbitrary increasing
sequence (gi)i≥0 of integers, including Fibonacci graphs.

2 Preliminary Results

Let H = (V,A) be a circulant digraph of n vertices and of generators g0, . . . , gk,
and let G = (V1, V2, E) be the corresponding bipartite incident-graph. By
6-cycle, we mean an elementary cycle of length six.

Lemma 1. There is a 6-cycle in G if and only if one can find a sequence of six
generators

(gi0 , gi1 , gi2 , gi3 , gi4 , gi5)
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and α ∈ {0, 1, 2} such that
{
gi0 + gi2 + gi4 = gi1 + gi3 + gi5 + α n
gij �= gij+1 (mod 6) for any j ∈ {0, 1, 2, 3, 4, 5} (1)

Proof. Let (u0, u1, u2, u3, u4, u5) be a 6-cycle in G (all the ui’s are pairwise dis-
tinct), and assume without loss of generality that u0 = 0 ∈ V1. We have:



u1 = u0 + gi0

u1 = u2 + gi1 + α1 n
u3 = u2 + gi2 + α2 n
u3 = u4 + gi3 + α3 n
u5 = u4 + gi4 + α4 n
u5 = u0 + gi5

where αi ∈ {−1, 0} and gij �= gij+1 (mod 6) for any j ∈ {0, 1, 2, 3, 4, 5} since the
cycle uses six different edges. Therefore we have

gi0 + gi2 + gi4 = gi1 + gi3 + gi5 + α n

where α = (α1−α2)+(α3−α4), that is −2 ≤ α ≤ 2 by definition of the αi’s. By
possibly swapping even and odd g’s, we get the claimed result with 0 ≤ α ≤ 2.

Conversely, let (gi0 , gi1 , gi2 , gi3 , gi4 , gi5) be such that{
gi0 + gi2 + gi4 = gi1 + gi3 + gi5 + α n
gij �= gij+1 (mod 6) for any j ∈ {0, 1, 2, 3, 4, 5}

with α ∈ {0, 1, 2}. Then let u0 ∈ V1, and let


u1 = u0 + gi0 mod n
u2 = u1 − gi1 mod n
u3 = u2 + gi2 mod n
u4 = u3 − gi3 mod n
u5 = u4 + gi4 mod n
u6 = u5 − gi5 mod n

We have
u6 = u0 + (gi0 + gi2 + gi4)− (gi1 + gi3 + gi5) mod n.

Since
gi0 + gi2 + gi4 = gi1 + gi3 + gi5 (mod n),

we get u6 = u0, and therefore (u0, u1, u2, u3, u4, u5) is a cycle of length six in G.
This cycle is elementary because gij �= gij+1 (mod 6) for any j ∈ {0, 1, 2, 3, 4, 5}.


�
From Lemma 1, any bipartite incident-graph of a circulant digraph has 6-

cycles since gi0 = gi3 , gi1 = gi4 , and gi2 = gi5 is a solution of Equation 1. We
will solve Equation 1 to characterize 6-cycles of Knödel graphs and Fibonacci



Recognizing Bipartite Incident-Graphs of Circulant Digraphs 219

graphs, and to identify the possible generators of a candidate to be a Knödel
graph or a Fibonacci graph.

Let us start first with Knödel graphs. Let x0, x1, x2, x3, x4, x5 be six integers
in {0, . . . , k}, and let n be any integer such that 2k ≤ n < 2k+1. From Lemma 1,
we are interested in computing the solutions of the equation

{
2x0 + 2x2 + 2x4 = 2x1 + 2x3 + 2x5 + α n
xi �= xi+1 (mod 6) for any i ∈ {0, 1, 2, 3, 4, 5} (2)

where α ∈ {0, 1, 2}.

Lemma 2. For α = 0, Equation 2 has four types of solutions:
(x0, x1, x2, x3, x4, x5) =

a) (γ, γ′′, γ′, γ, γ′′, γ′) γ, γ′, γ′′ ∈ {0, . . . , k} γ �= γ′, γ′ �= γ′′, γ′′ �= γ
b) (γ, γ′, γ, γ′, γ′ + 1, γ + 1) γ, γ′ ∈ {0, . . . , k − 1} γ �= γ′

c) (γ, γ + 1, γ, γ′, γ′ + 1, γ′) γ, γ′ ∈ {0, . . . , k − 1} γ �= γ′

d) (γ, γ′, γ, γ + 1, γ′ + 1, γ′) γ, γ′ ∈ {0, . . . , k − 1} γ �= γ′

up to cyclic permutations1 of the xi’s.

Proof. The case x0, x2, x4 pairwise distinct generates the first type of solutions.
Assume x0 = x2 = γ and x4 = γ′ �= γ. There is an impossibility to solve
Equation 2 if γ = γ′ − 1 because it would imply either x0 = x1 or x0 = x5. If
γ �= γ′ − 1, we get a solution if two x2i+1’s are both equal to γ′ − 1, and the
third one is equal to γ + 1. This generates the three last types of solutions by
changing γ′ − 1 into γ′. 
�

The solutions of Lemma 2 induces cycles of length 6. These 6-cycles have
their edges labeled by dimensions as illustrated on Figure 2 (the generator 2i−1
induces edges in dimension i). However, cycle (b) and cycle (d) are isomorphic
(just travel (b) clockwise and (d) counterclockwise from the black node), that is
the second and the fourth types of solutions induces the same labeled cycle. In
the following, only cycles (a), (b), and (c) will be considered.
Notation. The number of blocks of consecutive 1’s in the binary representation
of n will be denoted by B1(n).

For instance B1((1101100111010)2) = 4, B1((100)2) = 1, B1((101)2) = 2,
and B1((0)2) = 0. Integers of the form

n = (1 00 . . . 00︸ ︷︷ ︸ 1 00 . . .00︸ ︷︷ ︸
︷ ︸︸ ︷
11 . . . 11 0

︷ ︸︸ ︷
11 . . .11 0

︷ ︸︸ ︷
11 . . .11 00 . . . 00︸ ︷︷ ︸)2

satisfy B1(n) = 5, and there is a solution to Equation 2 for α = 1 with x1, x3, x5

equal to the underlined bit-positions, and x0, x2, x4 equal to the over-lined bit-
positions. We have the following lemma:
1 A permutation σ of p symbols is a cyclic permutation if σ(x1, x2, . . . , xp) =
(x2, . . . , xp, x1).
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Fig. 2. The four types of solutions of Equation 2 for α = 0.

Lemma 3. If B1(n) ≥ 6, then Equation 2 has no solution for α �= 0.

Proof. If B1(n) ≥ 6, then the sum of n and three powers of two cannot result in
the sum of three powers of two. Indeed, the binary representation of 2x0+2x2+2x4

has at most three 1-entries, that is B1(2x0+2x2+2x4) ≤ 3. On the other hand, for
every n, and every y, B1(n+2y) ≥ B1(n)−1, and thus B1(n+2x1+2x3+2x5) ≥
B1(n) − 3. Moreover, for n such that B1(n) ≥ 6, the binary representation of
n+2x1+2x3+2x5 has at least four 1-entries. This completes the proof for α = 1.
The result holds for α = 2 too because B1(2n) = B1(n). 
�

Lemma 3 has an important consequence that is, for most of the integers n,
Knödel graphs of order 2n have 6-cycles only of the form given on Figure 2.
There are orders however for which Equation 2 has solutions for α �= 0. This is
typically the case for n = 2k. Actually, this special case deserves a particular
interest motivated by the simplicity of the solution.

Lemma 4. If n = 2k then every 4-cycle of the Knödel graph of order 2n is a
labeled cycle of type

(k, γ − 1, γ, γ − 1) for γ ∈ {1, . . . , k}.
Proof. By similar arguments as in the proof of Lemma 1, one can check that
4-cycles exist if and only if there exist four generators gi = 2xi − 1, 0 ≤ i ≤ 3,
xi �= xi+1 (mod 4), satisfying 2x0 + 2x2 = 2x1 + 2x3 + αn for α ∈ {0, 1}. The
equation 2x0 +2x2 = 2x1 +2x3 has no solution for xi �= xi+1 (mod 4). Therefore,
4-cycles exist only for solutions of 2x0 +2x2 = 2x1 +2x3 +2k, that is for x0 = k,
and x1 = x3 = x2 − 1, x2 ∈ {1, . . . , k}. Thus the solution is (x0, x1, x2, x3) =
(k, γ − 1, γ, γ − 1), up to a square-cyclic permutation2 of the xi’s. 
�

3 Recognizing Knödel Graphs

In order to recognize Knödel graphs, we use the following basic property:
2 A permutation σ of p symbols is a square-cyclic permutation if σ(x1, x2, x3 . . . , xp) =
(x3, . . . , xp, x1, x2).
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Fig. 3. The 4-cycles in a Knödel graph of order 2 · 2k.

Lemma 5. Let G be a graph whose some edges are colored by 0 or 1. G is a
Knödel graph whose edges in dimension 0 and 1 are colored 0 and 1 respectively
if and only if:

1. A path P using colors 0 and 1, alternatively, from an arbitrary node is Hamil-
tonian; and

2. Assuming the jth node of P is labeled (j + 1 mod 2, �j/2�), j ≥ 0, we have,
for every i and x, there is an edge connecting (0, x) with (1, x+2i−1 mod n),
and no extra edges.

Proof. Let G = (V1, V2, E) be a Knödel graph whose nodes are labeled (i, x),
i = 0, 1 and x ∈ {0, . . . , n − 1} so that V1 = {(0, x), x ∈ {0, . . . , n − 1}}, and
V2 = {(1, x), x ∈ {0, . . . , n− 1}}. Assume that the edges in dimension 0 and 1 of
G are colored 0 and 1 respectively. Then the path P is Hamiltonian. Let u be the
starting point of P . Since a Knödel graph is vertex-transitive, one can assume
w.l.g. that u = (1, 0). Therefore, the labeling induced by the path corresponds
to the connections of a Knödel graph.

Conversely, let G be a graph whose some edges are colored by 0 or 1. Let
P be a path using colors 0 and 1, alternatively, from an arbitrary node of G.
Assume P is Hamiltonian, label the vertices according to the rule of the second
property, and assume the connection rule fulfills. Then G is a Knödel graph by
definition. 
�

Let us start with n = 2k, k ≥ 2. From Lemma 4, we know that there is
only one type of labeled 4-cycle in a Knödel graph of order 2n, namely (k, γ −
1, γ, γ − 1), for γ ∈ {1, . . . , k}. Therefore, for any edge of dimension k, there are
k 4-cycles using that edge (see Figure 3(a)). For any edge of dimension k − 1,
there are two 4-cycles using that edge (see Figure 3(b) where cycle 2 and cycle 3
are the same). For any edge of dimension γ, γ ∈ {1, . . . , k − 2}, there are three
4-cycles using that edge (see Figure 3(b)). Finally, for any edge of dimension 0,
there are two 4-cycles using that edge (the cycle 1 in Figure 3(b) does not exist
for γ = 0). This counting yields the following corollary of Lemma 4:
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Corollary 1. There exists an O(n log3 n)-time algorithm to recognize Knödel
graphs of order 2n = 2k+1, k ≥ 1.

Proof. Assume k ≥ 4 (note that for any k ≤ k0 = O(1), recognizing Knödel
graphs of order 2k+1 can be done in constant time). Given an input graph G =
(V,E), we count the number C4(e) of 4-cycles passing through any edge e ∈ E.
From the counting of the number of 4-cycles passing through an edge in a Knödel
graph, if there is an edge e such that C4(e) �= 2, C4(e) �= 3, and C4(e) �= k then G
is not a Knödel graph. Otherwise, every edge e with C4(e) = 2 is a candidate to
be an edge of dimension 0 or dimension k − 1, and every edge e with C4(e) = k
(recall k �= 2 and k �= 3) is a candidate to be an edge of dimension k. From
Figure 3(b), edges in dimension γ = k − 1 are edges e such that C4(e) = 2 and
included in a 4-cycle containing an edge of dimension k which is not adjacent to e
in this cycle. This allows to distinguish dimensions 0 and k−1. From dimensions
0 and k, one can identify dimension 1 by considering all paths of type 0, k, 0.
The end vertices of each such path are connected by an edge of dimension 1
(see Figure 3(a)). Color the edge of dimension 0 and 1 of G by colors 0 and 1,
respectively, and check the conditions of Lemma 5.

This algorithm has a cost of O(n log3 n) because, for every edge e, counting
the number of 4-cycles using that edge takes at most a time ofO(log2 n) assuming
node-adjacency testing in constant time. (The two end-vertices of every edge are
both adjacent to O(log n) nodes. Thus, by testing all the possible edges between
these nodes, one can determine the 4-cycles in O(log2 n) time.) Checking the
conditions of Lemma 5 takes O(n log n) time. 
�

Let us carry on our study by considering integers n such that B1(n) ≥ 6. In
this case, one can apply Lemmas 2 and 3, and we are dealing with the four types
of cycles of Figure 2 (recall that cycles (b) and (d) are isomorphic). Figure 2(a)
implies that, for any edge of dimension γ, γ ∈ {0, . . . , k}, there are k(k − 1)
6-cycles of type (a) using that edge.

The contribution of cycles of type (b) in Figure 2 to each dimension is more
difficult to calculate. We proceed as for the 4-cycles studied in the case n = 2k.
The counting for n = 2k can be formalized as follows. Consider again Figure 3.
On Figure 3(c), there are four edges (whose one is of a fixed dimension, dimension
k), and two possible senses of travel, clockwise and counterclockwise. For any
γ such that 1 ≤ γ ≤ k − 1, there are potentially four positions for γ. However,
only three of them are valid because γ �= k. Moreover, once the position of γ has
been fixed, we have only two ways to travel around the cycle. This fact gives six
possible labeled cycles for any edge to belong to. However, only three of these
4-cycles are distinct because there is a symmetry along the axis perpendicular to
dimension k. This symmetry reduces the number of travels by a factor of 2: for
each travel of Figure 3(c), there is a corresponding travel in Figure 3(b) starting
in the direction indicated by the arrow.

Coming back to the 6-cycle of Figure 2(b), there are six edges, and two possi-
ble directions (clockwise and counterclockwise). Thus we get twelve possibilities
to travel along the edges of a labeled 6-cycle. However, we actually get only
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Fig. 4. (a) The six possible travels of the cycle of type (b) in Figure 2. (b) The
three possible travels of the cycle of type (c) in Figure 2.

six possibilities for cycle (b) of Figure 2 because of a symmetry along the axis
parallel to γ, γ′ (see Figure 4(a)).

These six possibilities are:

1. (γ γ′ γ γ′ γ′ + 1 γ + 1)
2. (γ γ + 1 γ′ + 1 γ′ γ γ′)
3. (γ γ′ γ γ + 1 γ′ + 1 γ′)
4. (γ γ′ γ′ + 1 γ + 1 γ γ′)


 γ, γ′ ∈ {0, . . . , k − 1}, γ �= γ′;

and

5. (γ γ − 1 γ′ γ − 1 γ′ γ′ + 1)
6. (γ γ′ + 1 γ′ γ − 1 γ′ γ − 1)

}
γ ∈ {1, . . . , k}, γ′ ∈ {0, . . . , k − 1}, γ′ �= γ − 1.

Note that solutions 1 and 3 are the same if γ′ = γ +1, solutions 2 and 4 are the
same if γ′ = γ + 1, solutions 3 and 4 are the same if γ′ = γ − 1, and solutions 5
and 6 are the same if γ′ = γ − 2.

We do the same analysis for 6-cycles of type (c) in Figure 2. The counting
uses the fact that Figure 2(c) is symmetric along the axis perpendicular to the
edges γ+1 and γ′+1, and along the axis parallel to γ+1, γ′+1 (see Figure 4(b)).
Therefore, we get three new possibilities:

7. (γ γ + 1 γ γ′ γ′ + 1 γ′)
8. (γ γ′ γ′ + 1 γ′ γ γ + 1)

}
γ, γ′ ∈ {0, . . . , k − 1}, γ �= γ′; and

9. (γ γ − 1 γ′ γ′ + 1 γ′ γ − 1) , γ ∈ {1, . . . , k}, γ′ ∈ {0, . . . , k − 1}, γ′ �= γ − 1.

Note that solutions 1 and 7 are the same if γ′ = γ +1, solutions 2 and 7 are the
same if γ′ = γ − 1, and solutions 3 and 7 are the same if γ′ = γ + 1. Similarly
solutions 1 and 8 are the same if γ′ = γ − 1, solutions 2 and 8 are the same if
γ′ = γ + 1, and solutions 4 and 8 are the same if γ′ = γ +1. Finally, solutions 5
and 9 are the same if γ′ = γ−2, and solutions 6 and 9 are the same if γ′ = γ−2.

Now we can count the number of 6-cycles using a given edge of a Knödel
graph.
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Lemma 6. Assume B1(n) ≥ 6, and let e be an edge of a Knödel graph of order
2n with k ≥ 4. Let C6(e) denote the number of 6-cycles using edge e. We have:

C6(n) =




k2 + 5k − 10 if e is of dimension 0
k2 + 8k − 16 if e is of dimension 1
k2 + 8k − 18 if e is of dimension γ, 2 ≤ γ ≤ k − 2
k2 + 8k − 14 if e is of dimension k − 1
k2 + 2k − 5 if e is of dimension k

Proof. Let e be an edge of dimension γ, 0 ≤ γ ≤ k. Let us count the contribution
to that edge of the nine travels identified in Figure 4. We get 6k − 10 cycles for
dimension 0, 9k − 16 cycles for dimension 1, 9k − 18 cycles for dimension γ,
2 ≤ γ ≤ k−2, 9k−14 cycles for dimension k−1, and 3k−5 cycles for dimension
k. Then add k(k− 1) cycles from the solutions of type (a) in Figure 2 to get the
claimed result. 
�

Corollary 2. There exists an O(n log5 n)-time algorithm to recognize Knödel
graphs of order 2n, for all n such that B1(n) ≥ 6.

Proof. Assume k ≥ 4. From Lemma 6, one can identify edges of dimensions 0
and 1 in O(n log5 n)-time. In time O(n logn), one can check the conditions of
Lemma 5. 
�

Theorem 1. There exists an O(n log5 n)-time algorithm to recognize Knödel
graphs of any order.

Sketch of the proof. (The complete proof is given in the full paper [4].) From
Corollaries 1 and 2, the theorem holds for n power of two, or n such that
B1(n) ≥ 6. Thus, assume that n satisfies B1(n) < 6, n �= 2k. Assume more-
over that n �= 2k+1−1 (this latter case deserves to be treated separately because
the Knödel graph with n = 2k+1 − 1 is edge-transitive [10]). The key argument
is that, for almost all such n, if C6(e) denotes the number of 6-cycles passing
through an edge e of a Knödel graph of order n, then C6(e) �= C6(e′) for any e and
e′ of dimensions 0 and k respectively, and C6(e) �= C6(e′) for any e dimension 0
or k, and any e′ of dimension i, i �= 0 and i �= k.

The difficulty of the proof comes from the fact that, if B1(n) < 6, then Equa-
tion 2 has solutions for α �= 0, and proceeding to a precise counting of the number
of 6-cycles passing through the edges of a Knödel graph is tricky. Anyway, we
were able to prove that dimension 0 and dimension k can be identified by such
counting. From the knowledge of the edges of dimension 0 and k, we have shown
that one can determine the set of edges of dimension 1. Then it remains only to
check the conditions of Lemma 5.

To summarize, the algorithm is the following:

Algorithm Recognize.
Input: a regular graph G = (V,E) of 2n vertices, and degree k = �log2 n�;
Output: tell whether or not G is isomorphic to the Knödel graph K of order 2n.
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Phase 1. For every i ∈ {0, . . . , k}, compute pi = number of 6-cycles passing
through any edge of dimension i of K;

Phase 2. For every e ∈ E, compute C6(e) = number of 6-cycles passing through
the edge e of G;

Phase 3. Identify the two sets S0 ⊂ E, and S1 ⊂ E, of edges of G that are
possibly edges of dimension 0 and 1 in K, respectively;

Phase 4. Check the conditions of Lemma 5.

The first phase has a cost of O(log5n), assuming node-adjacency testing
in constant time. The second phase has a cost at most O(n log5 n) because the
degree of every vertex is O(log n). The third and the fourth phase cost O(n log n)
time.

To prove the correctness of Algorithm Recognize, the difficult part is to prove
that Phase 3 is doable. This is formaly proved in the complete version of the
proof (see [4]). The case of Knödel graphs of order 2k+2−2 deserves a particular
attention due to the edge-transitivity of such graphs. We have proved that one
can identify dimensions 0 and k by counting the number of 6-cycles traversing
a path of length 3. 
�

Corollary 3. If n �= 2k+1 − 1, then Knödel graphs of order 2n are non edge-
transitive. (From [10], Knödel graphs of order 2k+2 − 2 are edge-transitive.)

Proof. The proof of correctness of Algorithm Recognize, given in [4], uses the
fact that, for n �= 2k+1 − 1, the number of 6-cycles using edges of different
dimensions is not the same. 
�

4 Conclusion and Further Research

In this paper, we have shown that Knödel graphs can be recognized in O(n log5 n)
time. The same result holds for Fibonacci graphs (see [4]). The natural question
arising in this field is to ask for which sequences gi the same result holds. Let
us formalize this question. Given an infinite and increasing sequence of integers
Γ = (gi)i≥0, consider the sequence (GΓ

n )n≥0 of circulant digraphs of order n
such that, for any n ≥ 0, GΓ

n has generators g0, g1, . . . , gk where k is the largest
integer such that gk ≤ n − 1 (in other words, gk ≤ n − 1 < gk+1). Then let
(HΓ

n )n≥0 be the corresponding sequence of bipartite incident-graphs of order
2n. The problem is the following:

Problem 1.
Instance: An integer n, and a graph G of 2n vertices;
Question: Is G isomorphic to HΓ

n ?

Note that the sequence Γ is fixed in Problem 1, and thus that this problem
is different from the problem of deciding whether a graph is isomorphic to the
bipartite incident-graph of a circulant digraph, or to decide whether two bipartite
incident-graphs of circulant digraphs are isomorphic. These two latter problems
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are known to be difficult, even if they might be simpler than the problem of
deciding whether a graph is a Cayley graph.

We have seen that Problem 1 can be solved polynomially if Γ = (2i − 1)i≥0

or if Γ = (F (i+1)−1)i≥0. The question is: for which family the techniques used
to solve the problem for Knödel graphs and Fibonacci graphs can be extended,
and how? Actually, as soon as we know how to solve Equation 1, then we are
able to enumerate the 6-cycles, and to use the same techniques as the techniques
used for Knödel graphs and Fibonacci graphs. We let as an open problem the
characterization of the sequences Γ for which Problem 1 can be solved using the
same techniques as for Knödel graphs and Fibonacci graphs.
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