
Local Constant Approximation for Dominating Set on Graphs
Excluding Large Minors

Marthe Bonamy
LaBRI, University of Bordeaux, CNRS

Bordeaux, France
marthe.bonamy@u-bordeaux.fr

Cyril Gavoille
LaBRI, University of Bordeaux, CNRS

Bordeaux, France
gavoille@labri.fr

Timothé Picavet
LaBRI, University of Bordeaux, CNRS

Bordeaux, France
timothe.picavet@u-bordeaux.fr

Alexandra Wesolek
Institut für Mathematik, Technische Universität Berlin

Berlin, Germany
wesolek@tu-berlin.de

Abstract

We show that graphs excluding 𝐾2,𝑡 as a minor admit a 𝑓 (𝑡)-round
50-approximation deterministic distributed algorithm forMinimum
Dominating Set. The result extends to Minimum Vertex Cover.
Though fast and approximate distributed algorithms for such prob-
lems were already known for 𝐻 -minor-free graphs, all of them
have an approximation ratio depending on the size of 𝐻 . To the
best of our knowledge, this is the first example of a large non-trivial
excluded minor leading to fast and constant-approximation dis-
tributed algorithms, where the ratio is independent of the size of 𝐻 .
A new key ingredient in the analysis of these distributed algorithms
is the use of asymptotic dimension.
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• Theory of computation→ Distributed computing models;
Graph algorithms analysis.
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1 Introduction

Minimum Dominating Set (MDS) (and its weaker version,Min-
imum Vertex Cover (MVC)) is a famous minimization prob-
lem on graphs, known to be NP-complete even in cubic planar
graphs [10, 15]. The goal is to find a smallest subset of vertices that
intersects all radius-1 balls (MDS) or all edges (MVC).

Applications of vertex covers, dominating sets, and other types
of covers can be found in the context of wireless sensor networks
[1, 6, 18]. There, the goal is to minimize energy by keeping as few
devices active as possible while maintaining the ability to awake
sleeping devices through an active neighbor. For this purpose, the
distributed version is also important.

The LOCAL Model. In this paper, we consider distributed algo-
rithms in the LOCAL model, popularized by Linial in his seminal
papers [23, 24]. In this model, the network is represented by an
undirected connected graph𝐺 , the edges representing reliable com-
munication links between computing devices (the vertices) that
work in synchronous rounds. At each round, a vertex can exchange
messages with each of its neighbors and perform arbitrary compu-
tations based on the information it has. Messages have no size limit,
in contrast to the CONGEST model. At the start of the algorithm,
the processors each have a copy of the algorithm and a𝑂 (log𝑛)-bit
identifier, where 𝑛 is the number of vertices in the graph 𝐺 . The
main complexity measure in the LOCAL model is the number of
rounds to achieve a given task, taken as the maximum over all
vertices. This measure gives an indication on the local nature of a
problem, as it captures the minimum value 𝑟 such that each vertex
can reach a good decision based on its radius-𝑟 neighborhood.

Fast Algorithms. In any 𝑛-vertex graph𝐺 , it is possible to (1+ 𝜀)-
approximate a MDS for 𝐺 in poly(𝜀−1 log𝑛) rounds by combin-
ing the techniques of [11] and of [26], see [26, Cor. 3.11]. For
more specific graphs, 𝑂 (log∗ 𝑛) rounds may suffice. This is for
instance the case in planar graphs [7], or more generally in 𝐾𝑡 -
minor-free graphs [8] and in sub-logarithmic expansion graphs [2]
– we emphasize that hidden constants in the big-𝑂 notation for
the number of rounds depend on 𝜀 and 𝑡 . Conversely, [7] showed
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that 𝑜 (log∗ 𝑛) rounds do not suffice for computing an (1 + 𝜀)-
approximation of MDS on a cycle in the LOCAL model. More gen-
erally, using a different technique inspired by Linial, [22] showed
that the approximation-ratio times the round-complexity must be
Ω(log∗ 𝑛) for any approximation LOCAL algorithm for MDS in
unit-disk graphs.

Constant-Round Algorithms. Because of the lower bound of
[20] in general graphs, achieving constant ratio approximation
in a constant number of rounds is not possible. More pre-
cisely, every constant-approximation LOCAL algorithm requires
Ω(

√︁
log𝑛/log log𝑛) rounds, and this holds for MDS and MVC.

Therefore, we need to focus on restricted graph classes to obtain
such results.

The literature is abundant in this direction. For instance, on reg-
ular graphs, i.e., graphs where all vertices have the same degree, we
achieve a 2-approximation for MVC in 0 rounds (take all vertices1).
Similarly, a 6-approximation in unit-disk graphs can be achieved by
taking all the vertices incident to an edge – See the excellent survey
of [28] and the references therein. For the more difficult MDS prob-
lem, distributed algorithms have been developed for various classes
of graphs, including (but not limited to): outerplanar graphs [4], pla-
nar graphs [13, 14, 21], bounded-genus graphs [2], graphs excluding
topological minors [8], graphs with sublogarithmic expansion [2] or
with bounded expansion [13, 19]. For instance, the approximation
ratio for MDS in planar graphs has been improved from 130 [21] to
52 [30], and recently down to 11 + 𝜀 [13].

𝐻 -minor-freeWith Large𝐻 . Most of the graph classes cited above
can be expressed as 𝐻 -minor-free graphs for some specific minor
𝐻 (cf. Table 1), but the results for graphs with bounded expansion
are more general. More precisely, [19] presented a constant-round
LOCAL algorithm with approximation ratio ∇1 (𝐺)O(𝑡∇1 (𝐺 ) ) if 𝐺
excludes𝐾𝑡,𝑡 as subgraph, where∇𝑟 (𝐺) is the maximal edge density
of a depth-𝑟 minor of𝐺 and 𝑡 = O(∇1 (𝐺)). [13] have improved the
approximation ratio to ∇0 (𝐺) · ∇1 (𝐺)O(𝑠∇1 (𝐺 ) ) if 𝐺 excludes 𝐾𝑠,𝑡
as subgraph, at the cost of a larger O𝑡 (1)-round complexity. If 𝐺
excludes 𝐾3,𝑡 as subgraph, the approximation ratio improves to
(2 + 𝜀) · (2∇1 (𝐺) + 1) for every 𝜀 > 0, where the round complexity
is O𝜀,𝑡 (1).

Obviously, if 𝐺 excludes 𝐻 as minor, it excludes 𝐻 as a depth-𝑟
minor. As a consequence, ∇𝑟 (𝐺) ⩽ 𝛿 (𝐻 ), where 𝛿 (𝐻 ) is the max-
imum edge density of a graph excluding 𝐻 as minor. It is well-
known [16, 29] that 𝛿 (𝐾𝑡 ) =Θ(𝑡

√︁
log 𝑡 ), andmore generally 𝛿 (𝐻 ) =

Θ(𝑡
√︁
log𝑑 ) [25], where 𝑡 = |𝑉 (𝐻 ) | and 𝑑 = |𝐸 (𝐻 ) |/𝑡 < pw(𝐻 ) + 1.

So, 𝛿 (𝐾𝑠,𝑡 ) = Θ(𝑡
√︁
log 𝑠 ). More specifically, 𝛿 (𝐾3,𝑡 ) ⩽ (𝑡 +3)/2 [17].

Therefore, for graphs excluding 𝐾𝑡 as minor, the result of [19]
implies an approximation ratio of 𝑡O(𝑡2

√
log 𝑡 ) with O(1)-round

complexity. For𝐾𝑠,𝑡 -minor-free, [13] implies an approximation ratio
of 𝑡O(𝑠𝑡

√
log 𝑠 ) with O𝑡 (1)-round complexity. For 𝐾3,𝑡 -minor free

graphs, the approximation ratio becomes (2+𝜀) · (𝑡 +4). See Table 1
for a compilation of best known results for various 𝐻 .

1This holds by observing that such a graph contains 𝑘𝑛/2 edges where 𝑘 is the degree
of each vertex, while a set on 𝑝 vertices intersects at most 𝑝𝑘 edges.

Our Contributions. In this paper we concentrate our attention on
𝐻 -minor-free graphs when 𝐻 has many vertices, that is, 𝑡 vertices
for some arbitrarily large parameter 𝑡 ∈ N. To the best of our knowl-
edge (see Table 1), no 𝑓 (𝑡)-round and constant-approximation LO-
CAL algorithm for MDS in𝐻 -minor-free graphs is known, excepted
perhaps for the trivial case where 𝐻 is a subgraph of a path with 𝑡
vertices. Indeed, in this case the graph𝐺 has diameter at most 𝑡 − 1,
and thus a MDS can be solved exactly in 𝑡 − 1 rounds2.

For MDS, we show that:

• 𝐾2,𝑡 -minor-free graphs have a 𝑂𝑡 (1)-round 50-
approximation LOCAL algorithm.
• These graphs also have a𝑂 (1)-round (2𝑡 +1)-approximation
LOCAL algorithm.

All the algorithms are deterministic, since in general constant-
round randomized LOCAL algorithms are not possible if high prob-
ability guarantee is required.

Our approach toward Theorem 4.1 is to design an algorithm
as simple as possible and push all the complexity to its analysis,
following a long tradition [4, 30]. The intuition here is that a highly-
connected 𝐾2,𝑡 -minor-free graph has bounded radius, so the diffi-
culty lies in handling small cuts, especially since we cannot decide
locally if a vertex belongs to a small cut. We treat all vertices that
are in a cut of size 1 or 2 in their small-distance neighborhood
as we would vertices that are in a cut of size 1 or 2 in the whole
graph (take all vertices in a cut of size 1, take all vertices in a cut of
size 2 except those which are clearly a bad idea), then argue what
remains5 is a number of connected components of bounded weak
radius, which we can thus solve optimally by brute-force. Though
the latter part comes with its own interesting challenges which
we thankfully mostly outsource6 to a paper of Ding [9], the major
conceptual contribution is in the analysis of the first part. To argue
that taking all vertices that are locally separating (and similarly for
vertices in a local cut of size 2) is not too costly, we need to give
some global discharging argument. We were able to do this using
recent results on the asymptotic dimension, a notion introduced
by Gromov in 1993 in the context of geometric group theory [12].
We believe this tool, which we detail in Section 3, will be of further
interest to the community of distributed graph algorithms.

Sketch of the Main Algorithm (Theorem 4.1). The algorithm com-
putes an approximation of Minimum Dominating Set in a 𝐾2,𝑡 -
minor-free graph 𝐺 . It has three main steps:

2In the LOCAL model, after 𝐷 rounds of communication, each vertex 𝑢 of a diameter-
𝐷 graph knows entirely𝐺 and its identifier in𝐺 . After this communication step, 𝑢
can therefore compute an optimal dominating set in a consistent way with centralized
brute-force and deterministic algorithm.
3If there are at least three vertices, take all vertices with degree at least two, cf. [4, 21].
This requires two rounds from the model, because the vertices do not know their
degree and need one round to count their neighbors (by counting the number of
received messages).
4Take all the vertices. Such graphs have degree at most 𝑡 − 1, thus this is a 0-round
𝑡 -approximation since every dominating set has size at least 𝑛/(Δ + 1) where Δ is the
maximum degree of the graph.
5While 3-connected 𝐾2,𝑡 -minor-free graphs may have unbounded radius, such graphs
admit many local 1- or 2-cuts, see Lemma 4.2.
6While the paper is only available as a preprint and has seemingly not gone through a
reviewing process, it seems to be generally considered to be correct and has even been
refined in a doctoral thesis [27]. For our own peace of mind, we have triple-checked
that the pieces we need from that paper really do hold.
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minor-free graphs approx. ratio #rounds references
trees (𝐾3) 3 2 Folklore3
outerplanar (𝐾4, 𝐾2,3) 5 2 [4]
planar (𝐾5, 𝐾3,3) 11 + 𝜀 𝑂𝜀 (1) [13]
𝐾1,𝑡 -minor-free 𝑡 0 Folklore4
𝐾2,𝑡 -minor-free 2𝑡 − 1 3 Theorem 4.4

𝐾2,𝑡 -minor-free 50 𝑂𝑡 (1) Theorem 4.1

𝐾𝑠,𝑡 -minor-free 𝑡𝑂 (𝑠𝑡
√
log 𝑠 ) 𝑂𝜀,𝑡 (1) [13]

𝐾𝑡 -minor-free 𝑡𝑂 (𝑡
2√log 𝑡 ) 7 [19]

Table 1: Constant-round approximation distributed algorithms forMinimum Dominating Set on 𝐻 -minor-free graphs, for

various 𝐻 . The bottom part of the table is about large 𝐻 , on 𝑡 vertices where 𝑡 may be arbitrarily large.

(1) Compute the set 𝑋 of all vertices in “local” 1-cuts, and add
them to the solution.

(2) Compute the set 𝐼 of all “interesting” vertices in “local” 2-cuts,
and add them to the solution.

(3) Compute an optimal dominating set of all other undominated
vertices in each component of𝐺 − (𝑋 ∪ 𝐼 ) using a brute-force
approach and add them to the solution.

Intuitively, a “local” 𝑘-cut is a minimal set of vertices that locally
(up to some bounded radius) looks like a standard 𝑘-cut. This radius
is a function of the size of 𝐻 and of 𝑘 ∈ {1, 2}. And, a vertex 𝑢
in a “local” 2-cut {𝑢, 𝑣} is “interesting” if 𝑣 does not dominate all
vertices, except for at most one component attached to {𝑢, 𝑣}. This
is a rough explanation, and all formal definitions of “local” 𝑘-cuts
and “interesting” vertices can be found in Section 2 and Section 3.

The main challenge is to accurately tune the above radii in Step 1
and 2 to show that the approximation ratio (namely 50) does not
depend on the size of𝐻 , but only on the asymptotic dimension of the
class and its control function (see Section 3). In contrast, the round
complexity essentially relies on the diameter of the components as
defined in Step 3, which is a function of the radii defined above.

2 Preliminaries

General Definitions. In a graph𝐺 , a set 𝑆 ⊆ 𝑉 (𝐺) is a dominating
set if and only if every vertex of 𝐺 is either in 𝑆 or adjacent to a
vertex in 𝑆 . We denote by MDS(𝐺) the minimum size of such a
set. Given some 𝐵 ⊆ 𝑉 (𝐺), a set 𝑆 ⊆ 𝑉 (𝐺) is 𝐵-dominating if and
only if every vertex of 𝐵 is either in 𝑆 or adjacent to a vertex in 𝑆 .
In particular, if 𝑁 [𝐵] denotes the closed neighbourhood of 𝐵, we
can assume that 𝑆 ⊆ 𝑁 [𝐵]. Similarly, we denote by MDS(𝐺, 𝐵) the
minimum size of such a set.

A graph without true twins is a graph such that no two distinct
vertices 𝑢 and 𝑣 are true twins, i.e. are such that 𝑁 [𝑢] = 𝑁 [𝑣]. The
true-twin-less graph associated to𝐺 is a largest subgraph of𝐺 with
no true twins. Notice that there is a unique such unlabelled graph
𝐺− and 𝐺− can be computed in a constant number of rounds in
the LOCAL model. Furthermore, MDS(𝐺−) = MDS(𝐺).

The weak diameter of a set 𝑆 ⊂ 𝑉 (𝐺) is the largest distance in𝐺
between two vertices 𝑢, 𝑣 ∈ 𝑆 .

Local Connectivity. The aim of this definition is to study cuts that
can be recognized using a LOCAL algorithm. Recall that a 𝑘-cut of a
graph 𝐺 is a minimal subset of 𝑘 vertices whose removal increases
the number of connected components of 𝐺 . E.g., 1-cuts are a.k.a
cut-vertices. On classes of bounded asymptotic dimension, the set
of local 𝑘-cuts is well-behaved for 𝑘 ⩽ 2 (see Section 3).

Here is a formal definition of a local cut7. By 𝑁 𝑟 [𝑣], we denote
the set of all vertices at distance at most 𝑟 of 𝑣 in 𝐺 .

Definition 2.1 (Local cut). A subset of vertices 𝐶 of a graph 𝐺

is a 𝑟 -local 𝑘-cut if all vertices of𝐶 are pairwise at distance at most 𝑟

in 𝐺 , and 𝐶 is a 𝑘-cut of 𝐺 [⋃𝑣∈𝐶 𝑁
𝑟 [𝑣]].

We say 𝐺 is 𝑟 -locally 𝑘-connected if 𝐺 has no 𝑟 -local 𝑘-cuts. If
there are no 𝑟 -local 𝑘-cuts, then there are no 𝑟 ′-local 𝑘-cuts for any
𝑟 ′ > 𝑟 . Note that a 𝑘-cut is a |𝑉 (𝐺) |-local 𝑘-cut. Therefore a locally
𝑘-connected graph is 𝑘-connected, that is, local connectivity is a
stronger notion than connectivity. All cuts that will be considered
from now on are minimal cuts, i.e., no proper subset of the cut is
also a cut with the “same” connected components. Intuition is not
always an ally when it comes to 𝑟 -local 𝑘-cuts, however we use the
notion in a fairly basic manner here.

3 Asymptotic Dimension

In this section, we focus on defining asymptotic dimension (a non-
trivial task, as it happens) and explaining how to exploit it, in the
hope that others may be able to exploit it in turn.

The first pitfall is that asymptotic dimension only makes sense
when defined for a whole graph class and not for a single graph.

Given a graph 𝐺 , we say 𝑆 ⊆ 𝑉 (𝐺) is 𝐷-bounded if 𝐺 [𝑆] has
weak diameter at most 𝐷 . An 𝑟 -component of 𝑆 is a maximal
subset 𝑆 ′ ⊆ 𝑆 such that for any two vertices 𝑢, 𝑣 ∈ 𝑆 ′, there is a
sequence of vertices 𝑢1 = 𝑢,𝑢2, 𝑢3, . . . , 𝑢𝑝 = 𝑣 in 𝑆 ′ such that any
two consecutive vertices are at distance at most 𝑟 of each other
in 𝐺 . Put differently, an 𝑟 -component of 𝑆 is exactly a connected
component of 𝐺𝑟 .

7We did not find this exact same notion anywhere else in the literature, though it was
probably considered previously.
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The asymptotic dimension of a graph class G is the least integer
𝑑 such that there exists a function 𝑓 that satisfies the following
conditions: For any graph 𝐺 ∈ G, for any 𝑟 > 0:

• 𝐺 has a cover 𝑉 (𝐺) = ⋃𝑑
𝑖=0 𝐵𝑖 ;

• each 𝑟 -component of 𝐵𝑖 is 𝑓 (𝑟 )-bounded.

A function 𝑓 witnessing that G has asymptotic dimension at
most 𝑑 is called the control function of G.

Note that any finite graph class has asymptotic dimension 0, as
one can always take 𝑓 to be constant, always set to the number of
vertices in a largest graph of G, then take 𝐵0 to be the whole graph
regardless of 𝑟 .

Trees, and more generally graph classes of bounded treewidth
(resp. layered treewidth) have asymptotic dimension 1 (resp. 2).
Planar graphs, and more generally the classes of 𝐻 -minor-free
graphs (for any fixed 𝐻 ) have asymptotic dimension 2 as shown
by [3]: the dependency in 𝐻 only shows in the control function 𝑓 .
Dense graph classes may also have small asymptotic dimension.
For example, it is sufficient that there is a quasi-isometry into a
class having small asymptotic dimension8. The class of chordal
graphs, being quasi-isometric to the class of trees, has asymptotic
dimension 1.

Asymptotic dimension is a large-scale generalisation of weak
diameter network decomposition which has been studied in dis-
tributed computing; a more refined notion of asymptotic dimension
is called Assouad-Nagata dimension and its algorithmic form is
related to weak sparse partition schemes. The interested reader is
referred to [3] for further details.

3.1 When Local Properties Can Replace Global

Properties

Let us give a first application of asymptotic dimension. We say that
a graph classD is 𝑟 -locally-C if for every 𝑣 ∈ 𝑉 (𝐺),𝐺 [𝑁 𝑟 [𝑣]] ∈ C.
We first prove that a dominating set for 𝑟 -locally-C classes can be
approximated with good approximation ratio if there is an approxi-
mation algorithm on C and if the graph class we are approximating
on has bounded asymptotic dimension. For a given graph 𝐺 and
a LOCAL algorithm A that returns a subset of vertices, we define
A(𝐺) as the set returned by A when run on 𝐺 .

Proposition 3.1. Let C be a hereditary class of graphs and 𝑘 ⩾ 0.
Let A be a local algorithm with round complexity 𝑟 ⩾ 1 and with

the following property: for every𝐺 ∈ C and 𝑆 ⊆ 𝑉 (𝐺), |A(𝐺) ∩𝑆 | ⩽
𝛼 ·MDS(𝐺, 𝑁𝑘 [𝑆]). LetD be a graph class with asymptotic dimension

𝑑 with control function 𝑓 , and that is (𝑓 (2𝑘 + 3) + 𝑘 + 𝑟 )-locally-C.
Then A is an 𝛼 (𝑑 + 1)-approximation algorithm on D.

The proof can be found in Subsection 5.1. We unfortunately
managed to simplify our algorithm so as not to use Proposition 3.1,
but we decided to include it anyways because it showcases the
interest of asymptotic dimension and may be of future use.

8It is conjectured in [3] that any graph class forbidding some graph as a fat minor
should also have asymptotic dimension at most 2.

3.2 Bounding the Number of Local 1-cuts and
2-cuts

Wefirst bound the number of vertices in local 1-cuts and the number
of vertices in so-called interesting local 2-cuts.

Lemma 3.2. For any 𝑑 ∈ N, and any graph class C of asymptotic

dimension at most 𝑑 , there exists 𝑐3.2 (𝑑) and𝑚3.2 (C) such that for

all graphs𝐺 ∈ C, the number of𝑚3.2 (C)-local 1-cuts in𝐺 is at most

𝑐3.2 (𝑑)MDS(𝐺).

The proof of this can be found in Subsection 5.2.
To extend Lemma 3.2 to 2-cuts, we need some restriction on the

2-cuts considered: for example, a large tree with a single vertex
adjacent to all its vertices admits many 2-cuts but has a dominating
set of size 1. This motivates the following definition, which we will
only use for 𝑟 ⩾ 2.

A vertex 𝑣 ∈ 𝐶 is 𝑟 -interesting if there exists some 𝑟 -local 2-cut
𝑐 = {𝑢, 𝑣} such that:

• 𝑁 [𝑣] ⊈ 𝑁 [𝑢] and
• at least two connected components of𝐺 [𝑁 𝑟 [𝑐]] − 𝑐 contain
each a vertex non-adjacent to 𝑢.

We are now ready to state the corresponding lemma for 2-cuts.

Lemma 3.3. For any 𝑑 ∈ N, and any graph class C of asymptotic

dimension at most 𝑑 , there exists 𝑐3.3 (𝑑) and𝑚3.3 (C) such that for

all graphs𝐺 ∈ C, the number of interesting vertices in𝑚3.3 (C)-local
2-cuts of 𝐺 is at most 𝑐3.3 (𝑑)MDS(𝐺).

The proof of this can be found in Subsection 5.3.

4 Constant Approximation for Minimum

Dominating Set

Intuition and Explanation. One can assume that the graph con-
tains no true twins, just like in the algorithm of Theorem 4.4. The
main idea of our algorithm is to take all vertices in 1-cuts and 2-cuts,
in order to reduce the problem to 3-connected graphs, where we can
solve Minimum Dominating Set in constant time 𝑂 (𝑡). However,
it is not possible to do this in constant round-complexity in the
LOCALmodel. Therefore, instead of considering 𝑘-cuts we consider
sets of 𝑘 vertices that resemble a 𝑘-cut locally. With a little luck,
those vertices are actually 1-cuts, but not all local 1-cuts are 1-cuts.
Indeed, consider a very long cycle. All vertices are local 1-cuts but
none are global 1-cuts. However, we can show that, if the graph has
bounded asymptotic dimension, there exists some constant 𝑟 (that
does not depend on the graph) such the number of 𝑟 -local 1-cuts
is bounded above by a function linear in MDS(𝐺). Therefore, our
algorithm can take all local 1-cuts in the returned set. The case of
local 2-cuts is more complicated: there are graphs with𝜔 (MDS(𝐺))
many vertices in 2-cuts. Indeed, consider a clique 𝐺 of size 𝑛. Take
an arbitrary vertex of the clique 𝑢, and for all vertices 𝑣 ≠ 𝑢 of
the clique, add a new vertex 𝑥𝑢𝑣 attached to {𝑢, 𝑣} = 𝑁 (𝑥𝑢𝑣). This
creates a graph 𝐺 which can be dominated solely by the vertex 𝑢.
However, all vertices of the original clique are in some minimal
2-cut, as {𝑢, 𝑣} separates 𝑥𝑢𝑣 from the rest of the clique – there is an
unbounded number of vertices in minimal 2-cuts. This leads us to
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the definition of interesting vertices in 2-cuts, which we mentioned
in Subsection 3.2 and recall here. A vertex 𝑣 ∈ 𝐶 is 𝑟 -interesting for
some 𝑟 ⩾ 2 if there exists some 𝑟 -local 2-cut 𝑐 = {𝑢, 𝑣} such that:

• 𝑁 [𝑣] ⊈ 𝑁 [𝑢] and
• at least two connected components of𝐺 [𝑁 𝑟 [𝑐]] − 𝑐 contain
each a vertex non-adjacent to 𝑢.

The first condition is intuitive: one better take 𝑢 instead of 𝑣 if
𝑁 [𝑣] ⊆ 𝑁 [𝑢]. The rough idea behind the second condition is that
it allows us to create a nice mapping from interesting vertices to
a minimum dominating set. In more detail, we give a tree-like
structure to the vertices in 2-cuts, and show the second condition
gives us the existence of some vertex 𝑑 in a MDS satisfying the
following property: 𝑑 is a successor of 𝑢 in the tree-like structure,
and is at bounded distance from 𝑢 in the tree-like structure. Now,
every interesting vertex 𝑢 can charge this vertex 𝑑 . We then show
that this 𝑑 does not receive too many charges, because of the tree-
like structure of the interesting 2-cuts, and this allows us to bound
the number of interesting vertices. Let us do a quick recap of what
the algorithm has done until now: it has taken all local minimal
1-cuts and all interesting vertices in local minimal 2-cuts. Let us
consider an arbitrary local minimal 2-cut {𝑢, 𝑣}. There are three
cases. First, if both 𝑢 and 𝑣 are interesting, the algorithm has taken
both vertices in its return set. All components attached to {𝑢, 𝑣}
can now be solved independently. Secondly, if 𝑢 is interesting and
𝑣 is not interesting, the algorithm has taken 𝑢 in its return set.
Either 𝑁 [𝑣] ⊆ 𝑁 [𝑢] and all components attached to {𝑢, 𝑣} can now
be solved independently, or 𝑢 dominates all but one component
attached to {𝑢, 𝑣}. In any case, all components attached to 𝑐 can now
be solved independently too, as only one undominated component
exists. Finally, if neither 𝑢 nor 𝑣 is interesting, then as the graph is
without true twins, one of 𝑢 or 𝑣 dominates all but one component
attached to {𝑢, 𝑣}. Therefore, all components attached to {𝑢, 𝑣}
can now be solved independently too. Now, one can prove that
the undominated vertices form connected components of bounded
diameter, and our algorithm can brute-force and 𝐺-dominate the
rest of the vertices in constant time.

The Algorithm. Let 𝑡 ⩾ 2 be an integer. The following algorithm
computes an approximation of Minimum Dominating Set on the
class C𝑡 of 𝐾2,𝑡 -minor-free graphs. The algorithm is divided into
four steps:

(1) Remove true twins from the graph.
(2) Compute the set 𝑋1 of all vertices in minimal𝑚3.2 (C𝑡 )-local

1-cuts, and add them to the returned Dominating Set.
(3) Compute the set 𝐼 of minimal𝑚3.3 (C𝑡 )-interesting vertices

in𝑚3.3 (C𝑡 )-local 2-cuts, and add them to the returned Dom-
inating Set.

(4) Let𝑈 be the set of already dominated vertices that have no
undominated neighbors. Dominate all other undominated
vertices, in every component of 𝐺 − (𝑋 ∪ 𝐼 ∪ 𝑈 ), using a
brute-force approach.

A more formal description of the algorithm is given below:
We can now state the main theorem of this section.

Algorithm 1 Constant approximation for Minimum Dominating
Set
Require: An integer 𝑡 , and 𝐺 a 𝐾2,𝑡 -minor-free graph
Ensure: 𝑆 is a dominating set of 𝐺 with |𝑆 | = 𝑂 (MDS(𝐺))
𝐺 ← true-twin-less graph associated to 𝐺
𝑆 ← {𝑣 ∈ 𝑉 (𝐺) | {𝑣} is a𝑚3.2 (C𝑡 )-local minimal 1-cut of 𝐺}
𝑆 ← 𝑆 ∪ {𝑣 ∈ 𝐶 | 𝑣 is a𝑚3.3 (C𝑡 )-interesting vertex of a

𝑚3.3 (C𝑡 )-local minimal 2-cut of 𝐺}
𝑆 ← 𝑆 ∪ (brute-forced minimum set of 𝐺 that dominates 𝐺 −
𝑁 [𝑆])

Theorem 4.1. For every integer 𝑡 ⩾ 2, Algorithm 1 is a 𝑂𝑡 (1)-
round 50-approximate deterministic LOCAL algorithm for Minimum

Dominating Set on 𝐾2,𝑡 -minor-free graphs.

Proof. Algorithm 1 clearly outputs a dominating set of 𝐺 . By
Lemmas 3.2 and 3.3, the approximation ratio of the algorithm is
𝑐3.2 (1) + 𝑐3.3 (1) + 1 = 50. □

It remains to argue that the number of rounds is bounded. To
do this, we need to argue that the brute-forcing performed takes
constant time.

Lemma 4.2. For every integer 𝑡 , if C𝑡 is the class of 𝐾2,𝑡 -minor-free

graphs, there exists𝑚4.2 (𝑡) such that for every 𝐺 ∈ C𝑡 , if 𝑋 is the

set of vertices in𝑚3.2 (C𝑡 )-local 1-cuts, 𝐼 is the set of𝑚3.3 (C𝑡 )-locally
interesting vertices of𝐺 , and𝑈 = {𝑢 ∈ 𝑁 [𝐼 ∪𝑋 ] | 𝑁 [𝑢] ⊆ 𝑁 [𝐼 ∪𝑋 ]},
then every connected component of 𝐺 \ (𝐼 ∪ 𝑋 ∪𝑈 ) has diameter at

most𝑚4.2 (𝑡).

The proof of this can be found in the full version of this paper [5].
The asymptotic dimension of 𝐾2,𝑡 -minor-free graphs is 1 by [3]

– 𝐾2,𝑡 is planar so 𝐾2,𝑡 -minor-free graphs have bounded treewidth
by the grid minor theorem. For C𝑡 the class of 𝐾2,𝑡 -minor-free
graphs, the running time is max{𝑚3.2 (C𝑡 ),𝑚3.3 (C𝑡 ),𝑚4.2 (𝑡)} =
3max {𝑓 (5) + 2, 𝑓 (11) + 5} + 𝑔(𝑡) + 3, where 𝑓 is the control func-
tion of the class of 𝐾2,𝑡 -minor-free graphs, and 𝑔 the linear function
given in [9, Lemma 6.3]. Choosing 𝑓 (𝑟 ) = (5𝑟 + 18)𝑡 suffices, see [3,
Lemma 7.1]; and the running time of the algorithm is linear in 𝑡 .

The observant reader may be struck by the fact that the roles
of 𝑡 and of the asymptotic dimension seem disjoint. This can
be highlighted with the following variant, which computes a
(𝑐3.2 (𝑑) + 𝑐3.3 (𝑑) + 1)-approximation ofMDS in a class of asymp-
totic dimension 𝑑 , given its control function, with running time
that depends on 𝑓 and the largest 𝐾2,𝑡 -minor of the input graph
but does not require prior knowledge of it.

We can now state the following stronger version of Theorem 4.1.

Theorem 4.3. For every integer 𝑑 and control function 𝑓 , Algo-

rithm 2 is a 𝑂𝑡 (1)-round (𝑐3.2 (1) + 𝑐3.3 (1) + 1)-approximate deter-

ministic LOCAL algorithm for Minimum Dominating Set on graphs

in a class of asymptotic dimension 𝑑 with control function 𝑓 , where 𝑡

is the (unknown) size of a largest 𝐾2,𝑡 -minor in the input graph.

As an added note, if one wishes to have an algorithm forMin-
imum Vertex Cover instead of Minimum Dominating Set, it

81



PODC ’25, June 16–20, 2025, Huatulco, Mexico Marthe Bonamy, Cyril Gavoille, Timothé Picavet, and Alexandra Wesolek

Algorithm 2 Constant approximation for Minimum Dominating
Set in a bounded asdim class
Require: An integer 𝑑 , a control function 𝑓 , and 𝐺 a graph in a

class G of asymptotic dimension 𝑑 with control function 𝑓
Ensure: 𝑆 is a dominating set of 𝐺 with |𝑆 | = 𝑂 (MDS(𝐺))
𝐺 ← true-twin-less graph associated to 𝐺
𝑆 ← {𝑣 ∈ 𝑉 (𝐺) | {𝑣} is a𝑚3.2 (G)-local minimal 1-cut of 𝐺}
𝑆 ← 𝑆 ∪ {𝑣 ∈ 𝐶 | 𝑣 is a𝑚3.3 (G)-interesting vertex of a

𝑚3.3 (G)-local minimal 2-cut of 𝐺}
𝑆 ← 𝑆 ∪ (brute-forced minimum set of 𝐺 that dominates 𝐺 −
𝑁 [𝑆])

suffices to take all𝑚3.3 (C𝑡 )-local 2-cuts instead of just𝑚3.3 (C𝑡 )-
interesting vertices. On the analysis side, one can prove a simpler
variant of Lemma 3.3 that bounds the number of vertices in local
2-cuts with respect to the size of a minimum vertex cover. There-
fore, both Theorem 4.1 and Theorem 4.3 extend to the context of
Minimum Vertex Cover.

We conclude the “non-technical” part of the paper with the
following result, which shows a different trade-off: linear approxi-
mation in constant number of rounds.

Theorem 4.4. For every integer 𝑡 ⩾ 2, there is a 3-round (2𝑡 − 1)-
approximate deterministic LOCAL algorithm (resp. 𝑡-approximate)

for Minimum Dominating Set (resp. Minimum Vertex Cover) on

𝐾2,𝑡 -minor-free graphs.

As outerplanar graphs are a subfamily of 𝐾2,3-minor-free graphs,
this result generalizes the 5-approximation algorithm of [4] on
outerplanar graphs in the case of the LOCAL model. The proof of
Theorem 4.4 can be found in the full version of this paper [5].

5 Proofs

5.1 Proof of Proposition 3.1: From Local to

Global

Let𝐺 ∈ D. By the definition of the asymptotic dimension applied to
𝐺 , there is a cover 𝐵0, 𝐵1, . . . , 𝐵𝑑 of𝐺 where each 2𝑘 +3-component
of a 𝐵𝑖 is 𝑓 (2𝑘 + 3)-bounded. Note that each 𝐵𝑖 contains distinct
2𝑘 + 3-components which are of distance at least 2𝑘 + 4 from each
other. With an abuse of notation, when we write 𝐵 ∈ 𝐵𝑖 we mean
that 𝐵 is a 2𝑘+3-component of 𝐵𝑖 . That is, we treat 𝐵𝑖 as the set of its
2𝑘 + 3-components. Let A be an 𝛼-approximation algorithm for C
with round complexity 𝑟 . Let us run the same algorithm on graphs
from D. By the covering property, |A(𝐺) | ⩽ ∑𝑑

𝑖=0 |A(𝐺) ∩ 𝐵𝑖 |.
Let 𝑖 ∈ {0, 1, . . . , 𝑑} and 𝐵 ∈ 𝐵𝑖 . We have the following:

Claim 5.1. 𝐺 [𝑁𝑘+1 [𝐵]] ∈ C.

Let 𝑣 ∈ 𝐵. Because D is (𝑓 (2𝑘 + 3) + 𝑘 + 𝑟 )-locally C, 𝐺 ′ =
𝐺 [𝑁 𝑓 (2𝑘+3)+𝑘+𝑟 [𝑣]] ∈ C. Moreover, 𝑁𝑘+1 [𝐵] ⊆ 𝐺 ′ because 𝐵 has
weak diameter at most 𝑓 (2𝑘 + 3) and because 𝑟 ⩾ 1. Therefore, as
C is hereditary, 𝐺 [𝑁𝑘+1 [𝐵]] ∈ C.

By assumption on A, |A(𝐺 ′) ∩ 𝐵 | ⩽ 𝛼 · MDS(𝐺 ′, 𝑁𝑘 [𝐵]) ⩽
𝛼 · MDS(𝐺, 𝑁𝑘 [𝐵]) as 𝐺 ′ contains 𝑁𝑘+1

𝐺
[𝐵]. As 𝑁 𝑟

𝐺
[𝐵] ⊆ 𝑉 (𝐺 ′),

vertices in 𝐵 have the same distance-𝑟 neighborhood in 𝐺 and 𝐺 ′.

Therefore, |A(𝐺) ∩𝐵 | = |A(𝐺 ′) ∩𝐵 | ⩽ 𝛼 ·MDS(𝐺, 𝑁𝑘 [𝐵]). Using
this, along with Lemma 5.2 and that every 𝐵𝑖 is partitioned into
2𝑘 + 3-components, we get for every 𝑖 ∈ {0, 1, . . . , 𝑑} that |A(𝐺) ∩
𝐵𝑖 | ⩽

∑
𝐵∈𝐵𝑖 𝛼 ·MDS(𝐺, 𝑁𝑘 [𝐵]) ⩽ 𝛼 ·MDS(𝐺). Putting everything

together we get

|A(𝐺) | ⩽
𝑑∑︁
𝑖=0
|A(𝐺) ∩ 𝐵𝑖 | ⩽ 𝛼 · (𝑑 + 1) ·MDS(𝐺) .

This completes the proof of Proposition 3.1.

5.2 Proof of Lemma 3.2: Bounding the Number

of Vertices in Local 1-cuts
We will need the following lemma for the rest of the proofs in this
section.

Lemma 5.2. Let𝐺 be a graph and let𝑅0, 𝑅1, . . . , 𝑅𝑘 ⊆𝑉 (𝐺) subsets
of vertices such that all 𝑁 [𝑅𝑖 ] are pairwise disjoint. Then

𝑘∑︁
𝑖=0

MDS(𝐺, 𝑅𝑖 ) ⩽ MDS(𝐺) .

Let us now prove Lemma 3.2.
We did not try to optimize the constants 𝑐3.2 (𝑑) and 𝑚3.2 (C).

Let 𝑓 be the 𝑑-dimensional control function of the graph class. We
prove the lemma for 𝑐3.2 (𝑑) = 3 · (𝑑 + 1) and𝑚3.2 (C) = 𝑓 (5) + 2.
Without loss of generality, we can assume 𝐺 is connected. We
will first prove there are not too many 1-cuts in some 𝑆 ⊆ 𝑉 (𝐺)
compared to MDS(𝑁 [𝑆]).

Claim 5.3. Let 𝐺 be a graph and 𝑆 ⊆ 𝑉 (𝐺). Let 𝐶 be the set of

minimal 1-cuts of 𝐺 . Then |𝐶 ∩ 𝑆 | ⩽ 3 ·MDS(𝐺, 𝑁 [𝑆]).

Let us prove this claim.Without loss of generality, we can assume
𝐺 is connected. Let 𝐶 be the set of 1-cuts of 𝐺 and 𝐵 the set of
maximal 2-connected components of𝐺 . Let𝑇 be the bipartite graph
with vertex set 𝐵∪𝐶 and with edge set 𝐸 (𝑇 ) = {(𝑏, 𝑐) ∈ 𝐵×𝐶 | 𝑐 ∈ 𝑏}.
𝑇 is sometimes called the block-cut tree of𝐺 and can be proven to be
a tree. Moreover, note that all leaves of𝑇 are in 𝐵. Let 𝑆 ⊆𝑉 (𝐺), and
𝐷 ⊆ 𝑁 2 [𝑆] a dominating set of𝑁 [𝑆]. We prove that |𝐶∩𝑆 | ⩽ 3|𝐷 |. If
𝐶 ∩𝑆 = ∅, we are done. Otherwise, root𝑇 at an arbitrary cut-vertex
𝑟 . We have the following:

Claim 5.4. Let 𝑐 ∈ 𝐶 ∩ 𝑆 . Then there exists 𝑏 such that 𝑐 ∈ 𝑏 ∈ 𝐵
such that 𝑏 ∩ 𝐷 ≠ ∅.

This is because all vertices of 𝐶 ∩ 𝑆 must be dominated by some
vertex of 𝐷 . Therefore, either 𝑐 ∈ 𝐷 and then we are done as there
exists some 𝑏 ∈ 𝐵 such that 𝑐 ∈ 𝑏, or either there exists 𝑎 ∈ 𝐷 ∩
𝑁 [𝑐]. This 𝑎 must be contained in some neighboring 2-connected
component, therefore there exists𝑏 ∈ 𝐵 such that 𝑎 ∈ 𝑏, i.e.𝑏∩𝐷 ≠ ∅.

In the following, we create a mapping from vertices of 𝐶 \ 𝐷 to
𝐷 . Consider 𝑐 ∈ 𝐶 \ 𝐷 . There are 3 different cases.

• Either 𝑐 has a child 𝑏 ∈ 𝐵 with some 𝑑 ∈ 𝑏 ∩ 𝐷 ∩ 𝑁 (𝑏), and
in this case, we map 𝑐 to 𝑑 .
• Or either 𝑐 has an descendant 𝑐′ ∈ 𝐶 ∩ 𝑁 (𝑐) (at distance
2 in 𝑇 ), and the previous claim still applies to 𝑐′: 𝑐′ has an
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descendant𝑏′ ∈ 𝐵 in𝑇 such that there exists𝑑 ∈ 𝑑∩𝐷∩𝑁 (𝑐′).
We map 𝑐 to 𝑑 .
• Or 𝑐 has no descendant in𝐶∩∩𝑁 (𝑐). In this case, as 𝑐 cannot
be a leaf of𝑇 , there exists a child 𝑏 ∈ 𝐵 of 𝑐 , with the property
that 𝑏 \𝐶 ≠ ∅. As 𝐷 dominates 𝑁 [𝑆], 𝑏 must contain a vertex
𝑑 ≠ 𝑐 of 𝐷 . We map 𝑐 to 𝑏.

Therefore, we created a mapping from vertices of 𝐶 \ 𝐷 to vertices
of𝐷 . Furthermore, each vertex from𝐷 can appear at most twice in a
preimage. Indeed, for some 𝑑 ∈ 𝐷 , only an ancestor in𝐶 at distance
1 or 3 in𝑇 can be mapped to it. In conclusion, |𝐶 | ⩽ |𝐶∩𝐷 |+ |𝐶\𝐷 | ⩽
|𝐷 | + 2|𝐷 | = 3|𝐷 |.

We can now get a bound on the number of local 1-cuts.

Claim 5.5. Let 𝐺 be a graph of asymptotic dimension 𝑑 with

control function 𝑓 . Then, the number of (𝑓 (5) + 2)-local 1-cuts is
bounded by 3(𝑑 + 1) ·MDS(𝐺).

This will directly imply the statement of the lemma. Let 𝑟 a
positive integer and 𝐶 be the set of (𝑓 (5) + 2)-local cuts of 𝐺 . Fix
𝐵 ⊆ 𝑉 (𝐺) such that 𝐺 [𝐵] has weak diameter 𝑓 (5). We claim the
following:

Claim 5.6. Every (𝑓 (5) + 2)-local 1-cut of 𝐺 that is in 𝐵 is also a

1-cut of 𝐺 [𝑁 2 [𝐵]].

Indeed, let 𝑣 ∈ 𝐵 be a (𝑓 (5) + 2)-local 1-cut of𝐺 and 𝑎, 𝑏 ∈ 𝑁 (𝑣)
separated by 𝑣 , i.e. every 𝑎𝑏-path of 𝐺 of 𝑁 𝑓 (5)+2 [𝑣] contains 𝑣 .
Notice that 𝑁 2 [𝐵] ⊆ 𝑁 𝑓 (5)+2 [𝑣] because 𝐵 has weak diameter at
most 𝑓 (5). 𝑎 and 𝑏 are separated by 𝑣 in 𝐺 [𝑁 2 [𝐵]], because 𝑎, 𝑏 ∈
𝑁 2 [𝐵] and because no 𝑎𝑏-path in 𝑁 [𝐵] \ {𝑣} exists. Therefore,
Claim 5.6 is proven.

Using this fact and with the help of Claim 5.3, we can bound the
number of 1-cuts of𝐺 [𝑁 2 [𝐵]] in 𝐵 by 3 ·MDS(𝐺 [𝑁 2 [𝐵]], 𝑁 [𝐵]) ⩽
3 ·MDS(𝐺, 𝑁 [𝐵]). By the definition of the asymptotic dimension,
there is a cover 𝐵0, 𝐵1, . . . , 𝐵𝑑 of𝐺 where the 5-components of a 𝐵𝑖
are 𝑓 (5)-bounded. Note that each𝐵𝑖 contains distinct 5-components
which are of distance at least 6 from each other. With an abuse of no-
tation, when we write 𝐵 ∈ 𝐵𝑖 wemean that 𝐵 is a 5-component of 𝐵𝑖 .
That is, we treat 𝐵𝑖 as the set of its 5-components. As 𝐵0, 𝐵1, . . . , 𝐵𝑑
is a cover of 𝑉 (𝐺) by subsets of diameter at most 𝑓 (5), we can
bound the number of (𝑓 (5) + 2)-local 1-cuts of 𝐺 by summing the
number of 1-cuts of all the 𝐺 [𝑁 2 [𝐵𝑖 ]]’s. We get

|𝐶 | ⩽
𝑑∑︁
𝑖=0

∑︁
𝐵∈𝐵𝑖

3 ·MDS(𝐺, 𝑁 [𝐵]) .

Notice that because the 𝐵𝑖 ’s are partitioned into their 5-components,
all elements of {𝑁 2 [𝐵] | 𝐵 connected component of 𝐵𝑖 } are pair-
wise disjoint.

Therefore by Lemma 5.2, we get

|𝐶 | ⩽
𝑑∑︁
𝑖=0

3 ·MDS(𝐺) = 3(𝑑 + 1) ·MDS(𝐺) .

This finishes the proof of Lemma 3.2.

5.3 Proof of Lemma 3.3: Bounding the Number

of Interesting Vertices

When discussing global 2-cuts and not local ones, we say 𝑣 is inter-
esting if there exists a 2-cut 𝑐 = {𝑢, 𝑣} such that:

• 𝑁 [𝑣] ⊈ 𝑁 [𝑢] and
• at least two connected components of 𝐺 − 𝑐 contain each a
vertex non-adjacent to 𝑢.

Moreover, 𝑣 is called a friend of 𝑢, and a 2-cut {𝑢, 𝑣} where 𝑢 is
interesting and 𝑣 is a friend of 𝑢 is called interesting. If 𝑢 only has
the second property, it is called almost-interesting.

Two 2-cuts 𝑐1, 𝑐2 of 𝐺 are said to be crossing the two following
conditions are verified:

• the two vertices of 𝑐1 are in different components of 𝐺 − 𝑐2,
and
• the two vertices of 𝑐2 are in different components of 𝐺 − 𝑐1.

Before bounding the number of interesting vertices in local 2-
cuts, we first need to arrange the interesting cuts in a tree-like
fashion, i.e. we want to build a bounded number of families of 2-
cuts such that eachmember of the family contains interesting 2-cuts
that are all pairwise non-crossing, and such that each interesting
vertex appears in one family member, along with one of its friends.

One can easily see that a family of size 2 does not suffice by
considering 𝐶6. If we want to only take interesting cuts in this
graph, we need to take the 3 opposing cuts. In more detail, if the
vertices {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 } of𝐶6 appear in clockwise order 𝑎,𝑏,𝑐 ,𝑑 ,𝑒 and
𝑓 , then we need to take the interesting cuts {𝑎, 𝑑}, {𝑏, 𝑒} and {𝑐, 𝑓 }.

To create our new 2-cut forest for interesting vertices, we need
to introduce SPQR trees.

SPQR Trees. An SPQR tree is a tree data structure that represents
the decomposition of a 2-connected graph into its 3-connected
components. The construction of an SPQR tree can be accomplished
in linear time and SPQR are known to have applications in dynamic
graph algorithms and graph drawing.

An SPQR tree 𝑇 is an unrooted tree where each node 𝜇 corre-
sponds to an undirected skeleton graph 𝐺𝜇 that can be one of the
following four types.

• 𝑺-node:𝐺𝜇 is a cycle containing three or more vertices. This
represents series composition in series-parallel graphs.
• 𝑷-node: 𝐺𝜇 corresponds to a dipole graph, a multigraph
with two vertices and three or more edges, analogous to
parallel composition.
• 𝑸-node: 𝐺𝜇 corresponds to a dipole connected by two par-
allel edges: one real and one virtual. This serves as a trivial
case for graphs with two parallel edges. We will not consider
these types of nodes.
• 𝑹-node: 𝐺𝜇 is a 3-connected graph that is neither a cycle
nor a dipole.

Edges 𝑥𝑦 between nodes in the SPQR tree are associated with
two directed virtual edges, one from 𝐺𝑥 and the other from 𝐺𝑦 .
Each edge in 𝐺𝑥 can be a virtual edge for at most one edge in the
SPQR tree.
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The SPQR tree represents a 2-connected graph𝐺𝑇 , constructed as
follows. If 𝑥𝑦 ∈ 𝐸 (𝑇 ) is associated with the virtual edge 𝑎𝑏 ∈ 𝐸 (𝐺𝑥 ),
and with the virtual edge 𝑐𝑑 ∈ 𝐸 (𝐺𝑦), then identify 𝑎 with 𝑐 and 𝑏
with 𝑑 , and delete the two virtual edges. Notably, no two adjacent
𝑆 or 𝑃 nodes are allowed, ensuring the uniqueness of the SPQR
tree representation for a graph 𝐺 . When such conditions are met,
the graphs 𝐺𝑥 associated with the nodes of the SPQR tree are the
triconnected components of 𝐺 .

Proposition 5.7 (folklore). Let 𝑇 be a SPQR tree of a graph

𝐺 (without 𝑄 nodes) and let {𝑢, 𝑣} be a 2-cut of 𝐺 . Then one of the

following holds:

• 𝑢, 𝑣 are two endpoints of a virtual edge of a 𝑅-node, or
• 𝑢, 𝑣 are the two vertices of a 𝑃-node that has at least two virtual
edges, or

• 𝑢, 𝑣 are two endpoints of a virtual edge of a 𝐶-node, or
• 𝑢, 𝑣 are two non-adjacent vertices of a 𝐶-node.

We can now build our tree-like structure for interesting vertices.

Interesting 2-cuts Forests. An interesting 2-cut forest 𝐹 =

(𝑇1,𝑇2,𝑇3) of 𝐺 consists of three trees 𝑇1,𝑇2 and 𝑇3 whose vertices
contain subsets of 𝑉 (𝐺). Like SPQR trees, 𝑇𝑖 contains nodes that
are induced subgraphs with some virtual edges added. Every 𝑇𝑖
has nodes can be of three types: 𝐴-nodes, for 1-cuts, 𝐶-nodes, for
interesting 2-cuts, and 𝑅-nodes for the rest.𝑇2 has still𝐶-nodes and
𝑅-nodes.

If 𝐺 is has no 1-cut or interesting 2-cut, 𝑇𝑖 consists of a 𝑅 single
node 𝜇 = 𝐺 .

If 𝐺 has a 1-cut 𝑣 , we construct 𝑇𝑖 inductively. First, we add a
𝐴-node 𝜇 to 𝑇𝑖 . The graph associated to 𝜇 consists of the vertex 𝑣 .
Secondly, let 𝐶1,𝐶2, . . . ,𝐶𝑘 be the connected components of 𝐺 − 𝑣 .
Let 𝐺 𝑗 be the graph 𝐺 [𝐶 𝑗 ∪ {𝑣}]. Build a corresponding 2-cut tree
𝑇𝐺 𝑗

for the graph𝐺 𝑗 . Let 𝜇 𝑗 be the (unique) node in𝑇𝐺 𝑗
that contains

𝑣 . We can now construct 𝑇𝑖 by taking the union of all 𝑇𝐺 𝑗
’s and

connecting all 𝜇 𝑗 ’s to 𝜇.
Now, let us handle the case of interesting 2-cuts. We do this by

going through a SPQR tree 𝑇 of𝐺 and building sets of 2-cuts 𝑃1, 𝑃2
and 𝑃3 with the following properties:

• for every globally almost-interesting vertex 𝑢 of 𝐺 , there
exist some 𝑖 and some friend 𝑣 of 𝑢 such that {𝑢, 𝑣} ∈ 𝑃𝑖 , and
• for every 𝑖 , the 2-cuts in 𝑃𝑖 are pairwise non-crossing.

The second property allows us to transform 𝑃𝑖 into a 2-cut tree 𝑇𝑖 ,
as follows. First, take some arbitrary 𝑐 ∈ 𝑃𝑖 and a 𝐶-node 𝜇 to 𝑇𝑖 .
The graph associated to 𝜇 consists of vertices of 𝑐 = {𝑢, 𝑣} and a
real (respectively virtual) edge 𝑢𝑣 if 𝑢𝑣 is a real (resp. virtual) edge
of G. Secondly, let 𝐶1,𝐶2, . . . ,𝐶𝑘 be the connected components of
𝐺 − 𝑐 . Let 𝐺 𝑗 be the graph 𝐺 [𝐶 𝑗 ∪ 𝑐] to which we add a real edge
𝑢𝑣 if 𝑢𝑣 ∉ 𝐺 [𝐶 𝑗 ∪ 𝑐]. Build a corresponding interesting 2-cut tree
𝑇𝐺 𝑗

for the graph 𝐺 𝑗 . Let 𝜇 𝑗 be the (unique) node in 𝑇𝐺 𝑗
where 𝑢𝑣

is real. We can now construct 𝑇𝑖 by taking the union of all 𝑇𝐺 𝑗
’s,

making 𝑢𝑣 virtual in all 𝜇 𝑗 ’s, and connecting all 𝜇 𝑗 ’s to 𝜇.
We first build the sets 𝑃1, 𝑃2 and 𝑃3. We then prove the two

wanted properties in Proposition 5.8.

Add the vertices 𝑢 and 𝑣 to 𝑃1 if:

• 𝑢, 𝑣 are two endpoints of a virtual edge of a 𝑅-node of 𝑇 , or
if
• 𝑢, 𝑣 are the two vertices of a 𝑃-node of 𝑇 that has at least
two virtual edges.

Let us now handle the case of 𝐶-nodes. Let 𝜇 be a 𝐶 node of the 𝑇 .
If 𝜇 contains more than 6 nodes. Let 𝑣0, 𝑣1, . . . , 𝑣𝑘−1 be the nodes of
𝜇 in the order of the cycle. First, put all {𝑢, 𝑣} in 𝑃1 if 𝑢𝑣 is a virtual
edge. Secondly, we add some 2-cuts to the 𝑃𝑖 ’s depending on the
values of 𝑘 :

(1) If 𝑘 ⩾ 8 and 𝑘 is even: add to 𝑃1 the 2-cuts {𝑣0, 𝑣𝑘−3},
{𝑣1, 𝑣𝑘−4}, . . . , and {𝑣 (𝑘/2)−3, 𝑣𝑘/2}, and to 𝑃2 the 2-cuts
{𝑣 (𝑘/2)−2, 𝑣𝑘−1} and {𝑣 (𝑘/2)−1, 𝑣𝑘−2}.

(2) If 𝑘 ⩾ 8 and 𝑘 is odd: add to 𝑃1 the 2-cuts
{𝑣0, 𝑣𝑘−3}, {𝑣1, 𝑣𝑘−4}, . . . , {𝑣 ( (𝑘−1)/2)−3, 𝑣 (𝑘+1)/2}
and {𝑣 ( (𝑘−1)/2)−3, 𝑣 (𝑘−1)/2}. Add to 𝑃2 the 2-cuts
{𝑣 ( (𝑘−1)/2)−2, 𝑣𝑘−1} and {𝑣 ( (𝑘−1)/2)−1, 𝑣𝑘−2}.

(3) If 𝑘 = 7, add to 𝑃1 the 2-cut {𝑣0, 𝑣3} and {𝑣0, 𝑣4}, to 𝑃2 the
2-cut {𝑣1, 𝑣5} and to 𝑃3 the 2-cut {𝑣2, 𝑣6}.

(4) If 𝑘 = 6, add to 𝑃1 the 2-cut {𝑣0, 𝑣3}, to 𝑃2 the 2-cut {𝑣1, 𝑣4}
and to 𝑃3 the 2-cut {𝑣2, 𝑣5}.

(5) If 𝑘 ⩽ 5 but 𝐺 ≠ 𝐶𝑘 , suppose without loss of generality that
the edge 𝑣0𝑣1 is virtual. Moreover, suppose that it is the only
virtual edge of the𝐶-node. If𝑘 = 5, add to 𝑃1 the 2-cut {𝑣0, 𝑣2}
and to 𝑃2 the 2-cut {𝑣1, 𝑣4}.

(6) If 𝑘 ⩽ 5 but𝐺 ≠𝐶𝑘 and the edges 𝑣0𝑣1 and 𝑣0𝑣𝑘−1 are virtual:
add to 𝑃1 all the 2-cuts {𝑣0, 𝑣𝑖 } for 𝑖 = 2, 3, . . . , 𝑘−2. Moreover,
if 𝑘 = 5, add to 𝑃2 the 2-cut {𝑣1, 𝑣𝑘−1}.

(7) If 𝑘 ⩽ 5 but𝐺 ≠ 𝐶𝑘 and there exists 𝑖 ∈ {2, 3, . . . , 𝑘 − 2} such
that the edges 𝑣0𝑣1 and 𝑣𝑖𝑣𝑖+1 are virtual: add to 𝑃1 all the
2-cuts {𝑣0, 𝑣 𝑗 } for 𝑗 = 2, 3, . . . , 𝑖 , and add to 𝑃2 all the 2-cuts
{𝑣1, 𝑣 𝑗 } for 𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑘 − 1.

Proposition 5.8. Let 𝑃1, 𝑃2 and 𝑃3 be built as described above.

Then the two following properties are verified:

• for every globally interesting vertex 𝑢 of 𝐺 , there exist some 𝑖

and some friend 𝑣 of 𝑢 such that {𝑢, 𝑣} ∈ 𝑃𝑖 , and
• for every 𝑖 , the 2-cuts in 𝑃𝑖 are pairwise non-crossing.

Proof. One can easily see that 2-cuts of 𝑃𝑖 in the same 𝐶-node
are taken in such a way that they do not cross. This also applies
2-cuts inside the same nodes inside the same 𝑃 or 𝑅-node. Moreover,
2-cuts inside the different nodes of the SPQR tree cannot cross by
Proposition 5.7. Therefore, the second property is proven.

We will show that every globally interesting vertex 𝑢 of 𝐺 ap-
pears in some 𝑃𝑖 with one of its friends. As we take all 2-cuts in
𝑅-nodes and 𝑃-nodes, then by Proposition 5.7 the only case where
we could have not taken an interesting vertex with its friend is
inside a 𝐶-node. We prove that is however not the case. Let us
consider a𝐶-node 𝜇 with 𝑘 vertices. We go through all the possible
cases.

• If 𝑘 ⩾ 8 and 𝑘 is even: one can verify that all 2-cuts chosen
are interesting, and that every vertex of the cycle is in one
of the chosen cycles. Therefore we are done with this case.
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• The same applies if 𝑘 ⩾ 8 and 𝑘 is odd, or if 𝑘 = 7, 6, by
checking each case.
• If 𝐺 = 𝐶𝑘 with 𝑘 ⩽ 5, there are no interesting vertices.
• If 𝑘 ⩽ 5 but 𝐺 ≠ 𝐶𝑘 , and the only virtual edge of 𝜇 is 𝑣0𝑣1.
Consider the node connected to 𝜇 by this virtual edge. If it
is not a 𝑃-node, name this node 𝜇′. If it is a 𝑃-node, let 𝜇′
be one of its neighbor different from 𝜇 (it exists as every
𝑃-node has degree at least 2 in 𝑇 ). Let us handle the case
𝑘 = 5 first. Notice that by definition,𝑉 (𝜇′) \𝑉 (𝜇) ≠ ∅. Let us
prove that 2-cuts {𝑣0, 𝑣2} and {𝑣1, 𝑣4} are interesting. First,
their one component in 𝜇 is not fully dominated by either
of the vertices of the cuts. Moreover, in each of the two 2-
cuts, one of the vertices is not connected to any vertex of
𝑉 (𝜇′) \𝑉 (𝜇). Finally, 𝑁 [𝑣1] ⊈ 𝑁 [𝑣4], 𝑁 [𝑣0] ⊈ 𝑁 [𝑣2], and
inversely. Therefore the 2-cuts {𝑣0, 𝑣2} and {𝑣1, 𝑣4} are in-
deed interesting. The only vertex that needs checking is now
𝑣3. We claim that 𝑣3 is not interesting. Indeed, any 2-cut in
𝜇 containing 𝑣3 is not interesting. Moreover, 𝑣3 cannot have
a friend outside of 𝑉 (𝜇) by Proposition 5.7. Therefore, 𝑣3
is not interesting. All interesting vertices are now taken in
some 𝑃𝑖 , and all chosen 2-cuts in 𝜇 are chosen. We are done
with this case. If 𝑘 = 4 (resp. 𝑘 = 3) then for similar reasons,
vertices 𝑣2 and 𝑣3 (resp. 𝑣2) are not interesting. In both cases,
all possibly interesting vertices are taken in the 2-cut {𝑣0, 𝑣1}
(taken because the edge 𝑣0𝑣1 is virtual). All other 2-cuts in 𝜇
containing either 𝑣0 or 𝑣1 are not interesting. Therefore, we
are done with this case.
• If 𝑘 ⩽ 5 but𝐺 ≠𝐶𝑘 , and the edges 𝑣0𝑣1 and 𝑣0𝑣𝑘−1 are virtual.
Consider the node connected to 𝜇 by the virtual edge 𝑣0𝑣1. If
it is not a 𝑃-node, name this node 𝜇′1. If it is a 𝑃-node, let 𝜇

′
1 be

one of its neighbor different from 𝜇 (it exists as every 𝑃-node
has degree at least 2 in𝑇 ). Define similarly the node 𝜇′2 for the
virtual edge 𝑣0𝑣𝑘−1. Let 𝑣 ′𝑖 ∈𝑉 (𝜇

′
𝑖
)\𝑉 (𝜇). For 𝑖 = 2, 3, . . . , 𝑘−2,

the 2-cuts {𝑣0, 𝑣𝑖 } are interesting because 𝑣𝑖 is not adjacent to
𝑣 ′1 nor 𝑣

′
2, and𝑁 [𝑣0] ⊈ 𝑁 [𝑣𝑖 ], and inversely. If𝑘 = 5, the 2-cut

{𝑣1, 𝑣𝑘−1} is interesting because 𝑣1𝑣 ′2 ∉ 𝐸 (𝐺), 𝑣1𝑣3 ∉ 𝐸 (𝐺)
and 𝑁 [𝑣𝑘−1] ⊈ 𝑁 [𝑣1], and 𝑁 [𝑣1] ⊈ 𝑁 [𝑣𝑘−1]. If 𝑘 = 5, all
vertices are taken in interesting 2-cuts. If 𝑘 = 4, 𝑣0 and 𝑣2
are taken in interesting 2-cuts. All other 2-cuts contained
only in 𝜇 containing either 𝑣0 or 𝑣1 are not interesting. The
2-cuts {𝑣0, 𝑣1} and {𝑣0, 𝑣3} are taken anyway, so it they are
interesting, we took them in 𝑃1. Otherwise, it does notmatter:
if there is an interesting 2-cut containing 𝑣1 or 𝑣3, it will be
taken in another node. The case 𝑘 = 3 is similar.
• If 𝑘 ⩽ 5 but𝐺 ≠ 𝐶𝑘 and there exists 𝑖 ∈ {2, 3, . . . , 𝑘 − 2} such
that the edges 𝑣0𝑣1 and 𝑣𝑖𝑣𝑖+1 are virtual. Without loss of
generality, we can consider that 𝑖 = 2 and 𝑘 ∈ {4, 5}. Consider
the node connected to 𝜇 by the virtual edge 𝑣0𝑣1. If it is not a
𝑃-node, name this node 𝜇′1. If it is a 𝑃-node, let 𝜇

′
1 be one of

its neighbor different from 𝜇 (it exists as every 𝑃-node has
degree at least 2 in 𝑇 ). Define similarly the node 𝜇′2 for the
virtual edge 𝑣𝑖𝑣𝑖+1. Let 𝑣 ′𝑖 ∈ 𝑉 (𝜇

′
𝑖
) \𝑉 (𝜇). If 𝑘 = 5, for similar

reasons as in the last case, because of the existence of 𝑣 ′1
and 𝑣 ′2, the cuts {𝑣0, 𝑣2}, {𝑣1, 𝑣3} and {𝑣1, 𝑣4} are interesting.
Therefore if 𝑘 = 5, all vertices are taken in interesting 2-cuts
and we are done. If 𝑘 = 4, the 2-cut {𝑣0, 𝑣2} (resp. {𝑣1, 𝑣3}) is
interesting if and only if 𝑁 [𝑣0] ⊈ 𝑁 [𝑣2] or 𝑁 [𝑣2] ⊈ 𝑁 [𝑣0]

(resp. 𝑁 [𝑣1] ⊈ 𝑁 [𝑣3] or 𝑁 [𝑣3] ⊈ 𝑁 [𝑣1]). If they are inter-
esting, we took them, otherwise it does not matter: we have
taken all possibly interesting 2-cuts. We are done with this
case.

Therefore, the first property is proved. □

We say that 𝑇𝑖 displays the vertices 𝑢 and 𝑣 through the node 𝜇.
A vertex that is part of an interesting minimal 2-cut but that is not
displayed by 𝑇 is called hidden. 𝐹 displays 𝑢 if at least one of the
𝑇𝑖 ’s displays 𝑢.

Corollary 5.9. Let𝐺 be a 2-connected graph, 𝑆 ⊆ 𝑉 (𝐺) and 𝑘 be

a constant depending on the graph. Suppose that for any interesting

2-cut tree, the number of vertices 𝑢 ∈ 𝑆 that appear with some friend

𝑣 such that {𝑢, 𝑣} is an interesting cut displayed by 𝑇 is bounded by

𝑘 . Then if 𝐶 is the set of interesting vertices in 2-cuts, |𝐶 ∩ 𝑆 | ⩽ 3𝑘 .

Bounding the Number of Interesting Vertices. We now can prove
Lemma 3.3. We did not try to optimize the constants 𝑐3.3 (𝑑) and
𝑚3.3 (C). Let 𝑓 be the 𝑑-dimensional control function of the graph
class. We prove the lemma for 𝑐3.3 (𝑑) = 22 · (𝑑 + 1) and𝑚3.3 (𝑑) =
𝑓 (11) + 4.

Without loss of generality, one can assume that the graph is
2-connected. Indeed, if it is not, one can split 𝐺 into 2-connected
component and do the analysis on those components. Let 𝑇 be a
2-cut tree of 𝐺 , rooted at an arbitrary 𝐶 node. Let 𝐷 be a dominat-
ing set of 𝑁 4 [𝑆] in 𝐺 using vertices in 𝑁 5 [𝑆]. Let 𝐼 be the set of
interesting vertices displayed in 𝑇 and 𝐼 ′ = 𝐼 ∩ 𝑆 . Let us prove this
claim first.

Claim 5.10. |𝐼 ′ | ⩽ 6 ·MDS(𝐺, 𝑁 4 [𝑆]).

Let𝑢 ∉𝐷 be an interesting vertex displayed in𝑇 and 𝑣 be a friend
of𝑢, i.e. a vertex such that 𝑐 = {𝑢, 𝑣} is a 2-cut with two components
of 𝐺 − 𝑐 not dominated entirely by 𝑣 , and with 𝑁 [𝑢] ⊈ 𝑁 [𝑣]. Let
us first prove the following claim:

Claim 5.11. There exists 𝑑 ∈ 𝐷 such that 𝑑𝐺 (𝑢,𝑑) ⩽ 5 and 𝑑 is

lower in𝑇 than𝑢. Moreover, the interesting-ness of a vertex is certified

by vertices at distance at most 4.

Let 𝜇 a node of 𝑇 below 𝑐 that is contained in a component 𝐶
of 𝐺 − 𝑐 not fully dominated by 𝑣 . Let 𝑤 ∈ 𝐶 a vertex that is not
dominated by 𝑣 and that minimizes 𝑑𝐺 (𝑢,𝑤).𝑤 will be our witness
of interesting-ness of one of the components. If one wishes to get
the witness of another component 𝐶′, one can apply the same
technique on𝑤 ′ ∈ 𝐶 , a vertex not dominated by 𝑣 that minimizes
𝑑𝐺 (𝑢,𝑤 ′). Note that 𝑤 is well-defined by definition of 𝐶 . Let us
first prove that 𝑑𝐺 (𝑢,𝑤) ⩽ 4. Note that 𝑤 ∈ 𝐶 and therefore 𝑤 is
lower in 𝑇 than 𝑢. If there exists some 𝑥 ∈ (𝑁 (𝑢) \ 𝑁 (𝑣)) ∩𝐶 , one
can take𝑤 = 𝑥 and then 𝑑𝐺 (𝑢,𝑤) = 1. Otherwise, take 𝑦 ∈ 𝑁 (𝑤)
such that 𝑑𝐺 (𝑢,𝑦) < 𝑑𝐺 (𝑢,𝑤). By minimality of 𝑑 (𝑢,𝑤), 𝑦 ∈ 𝑁 (𝑣).
Take 𝑥 ∈ (𝑁 (𝑢) ∩ 𝑁 (𝑣)) ∩𝐶 . Such a 𝑥 always exists, because 𝑐 is a
minimal 2-cut (i.e. 𝑁 (𝑢) ∩𝐶 ≠ ∅). The path𝑤𝑦𝑣𝑥𝑢 exists, therefore
𝑑 (𝑢,𝑤) ⩽ 4. One can chose a dominating vertex of 𝐷 adjacent to𝑤
if𝑤 ∉ 𝐷 , or 𝑑 = 𝑤 if𝑤 ∈ 𝐷 . By the triangle inequality, 𝑑 (𝑢, 𝑣) ⩽ 5,
and Claim 5.11 is proven.

Let 𝑞 : 𝐼 ′ \𝐷 → 𝐷 a function that we define later as our charging
function. Let 𝑑 ∈ 𝐷 be a vertex of a node lower than 𝑢 in 𝑇 and
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such that 𝑑 (𝑢,𝑑) ⩽ 5, chosen to be one of the highest in 𝑇 among
all possible candidates. Note that 𝑑 is well-defined by Claim 5.11.
We set 𝑞(𝑢) := 𝑑 and say that 𝑢 charges 𝑑 . Now, we bound the size
of the preimages of 𝑞.

For a fixed 𝑑 ∈ 𝑞(𝐼 ′∩𝑆), choose𝑢 ∈ 𝑞−1 ({𝑑}) highest in𝑇 . Again,
by Proposition 5.8 there exists 𝑣 a friend of 𝑢 displayed in the same
node as 𝑢. 𝑣 can be chosen highest-in-𝑇 among all the possible
candidates. Let 𝜇𝑢 := {𝑢, 𝑣} and 𝜇𝑑 be the highest-in-𝑇 𝑅-node that
contains 𝑑 . Notice that even though 𝑑 may appear lower in 𝑇 than
𝜇𝑑 , there cannot be any interesting vertex charging 𝑑 lower than 𝜇𝑑 ,
as this would mean some interesting vertex charges a vertex higher
than itself, which is not possible. Let 𝜇′ the lowest-in-𝑇 𝐶-node that
is higher than 𝜇𝑑 . Let 𝐹 be the set of𝐶-nodes of𝑇 that are between
𝜇𝑢 and 𝜇′ (both non-included), that form interesting 2-cuts, and
such that one of the interesting vertices in the cut is in 𝑆 \ {𝑢}.
There are two possible cases.

• Either there exists some 𝑐 ∈ 𝐹 such that 𝑐∩𝑁 [𝑣] = 𝑐∩ 𝜇′ = ∅.
In this case, let 𝑤 be the interesting vertex of 𝑐 . We get a
contradiction because 𝑤 cannot be dominated by 𝑣 nor a
vertex below it, as 𝑑 is lower than 𝜇′.
• Therefore, all 𝑐 ∈ 𝐹 either contain some𝑤 ∈ 𝜇′ or contain a
vertex dominated by 𝑣 . Notice that if 𝑤 exists, it is unique
for all 𝑐 ∈ 𝐹 . Therefore, 𝐹 is partitioned in two sets: 𝐹2, the
set of 𝑐 ∈ 𝐹 that contain𝑤 , and 𝐹1, the set of 𝑐 ∈ 𝐹 \ 𝐹2 that
contain some vertex dominated by 𝑣 . Furthermore, all the
𝑐 ∈ 𝐹1 appear higher in the tree than the 𝑐 ∈ 𝐹2. We claim that
𝑞−1 ({𝑑}) ⊆ 𝜇𝑢 ∪ 𝜇′ ∪ 𝜇𝑐 for some 𝜇𝑐 ∈ 𝐹 ∪ {∅}. Let us first
prove that then all 𝑐 ∈ 𝐹1 but one 2-cut contain 𝑣 . Let 𝜇𝑐 be
the highest 𝐶-node of 𝐹1 that does not contain 𝑣 , if it exists.
If it does not exist, set 𝜇𝑐 = ∅. Suppose there exists a 𝑐′ ∈ 𝐹1
strictly below 𝜇𝑐 . All vertices of 𝑐′ cannot be dominated by
𝑣 . We are not in the first case, therefore 𝑐′ must contain
some vertex of 𝜇′, i.e. 𝑐 ∈ 𝐹2. Let 𝑐 ∈ 𝐹1 \ {𝜇𝑐 } if 𝜇𝑐 exists,
else let 𝑐 ∈ 𝐹1. Let 𝑥 ∈ 𝑞−1 ({𝑑}) be an interesting vertex in 𝑐
different from 𝑢. 𝑥 and its neighbors can only be dominated
by 𝑣 , therefore 𝑁 [𝑥] ⊆ 𝑁 [𝑣] and 𝑥 cannot be interesting, i.e.
𝑥 does not exist. Similarly, let 𝑐 ∈ 𝐹2 and let 𝑥 ∈ 𝑞−1 ({𝑑}) be
an interesting vertex in 𝑐 that is not in 𝜇𝑐 ∪ 𝜇′, if it exists.
𝑥 and its neighbors can only be dominated by𝑤 , therefore
𝑁 [𝑥] ⊆ 𝑁 [𝑤] and 𝑥 cannot be interesting, i.e. 𝑥 does not
exist.

We therefore get that |𝑞−1 ({𝑑}) | ⩽ 6 · MDS(𝐺, 𝑁 4 [𝑆]). This
proves Claim 5.10. Moreover, by Corollary 5.9, we get the following
claim.

Claim 5.12. The number of interesting vertices of𝐺 in 𝑆 is at most

19 ·MDS(𝐺, 𝑁 4 [𝑆]).

We can now get a bound on the number of interesting vertices
in local 2-cuts.

Claim 5.13. Let 𝐺 be a graph of asymptotic dimension 𝑑 with

control function 𝑓 . Then, the number of (𝑓 (11) + 5)-local interesting
vertices is bounded by 22(𝑑 + 1) ·MDS(𝐺).

This will directly imply the statement of the lemma. Fix 𝐵 ⊆𝑉 (𝐺)
such that 𝐺 [𝐵] has diameter 𝑓 (11). We claim the following:

Claim 5.14. Every vertex in a (𝑓 (11) + 5)-local 2-cut of 𝐺 that is

in 𝐵 is also a in a 1-cut or a 2-cut of 𝐺 [𝑁 5 [𝐵]].

Indeed, let 𝑣 ∈ 𝐵 such that 𝑐 = {𝑢, 𝑣} is a (𝑓 (11) + 5)-local 2-cut
of 𝐺 . Let 𝑎, 𝑏 ∈ 𝑁 (𝑣) \ 𝑐 two distinct vertices separated by 𝑣 , i.e.
there are not two internally-disjoint 𝑎𝑏-paths in𝐺 [𝑁 𝑓 (11)+5 [𝑐]]−𝑐 .
Notice that 𝑁 [𝐵] ⊆ 𝑁 𝑓 (11)+5 [𝑐] because 𝐵 has weak diameter at
most 𝑓 (11). 𝑎𝑏 are separated by 𝑐 in𝐺 [𝑁 [𝐵]], because 𝑎, 𝑏 ∈ 𝑁 [𝐵]
and because no two disjoint 𝑎𝑏-paths in 𝑁 [𝐵] ⊆ 𝑐 exist. Therefore,
Claim 5.14 is proven.

Every interesting vertex of 𝐵 is either a 1-cut of 𝐺 [𝑁 5 [𝐵]] or
in a 2-cut of 𝐺 [𝑁 5 [𝐵]] and interesting in 𝐺 [𝑁 5 [𝐵]]. Indeed, by
Claim 5.11, the interesting-ness of a vertex is certified by a vertex
at distance at most 4.

By Claim 5.3, we can bound the number of vertices in 1-cuts
of𝐺 [𝑁 5 [𝐵]] in 𝐵 by 3MVC(𝐺 [𝑁 5 [𝐵]], 𝑁 [𝐵]) ⩽ 3MVC(𝐺, 𝑁 [𝐵]),
and by Claim 5.12, we can bound the number of interesting ver-
tices of 2-cuts of 𝐺 [𝑁 5 [𝐵]] in 𝐵 by 19MVC(𝐺 [𝑁 5 [𝐵]], 𝑁 4 [𝐵]) ⩽
19MVC(𝐺, 𝑁 4 [𝐵]).

By the definition of the asymptotic dimension, there is a cover
𝐵0, 𝐵1, . . . , 𝐵𝑑 of 𝐺 where the 11-components of 𝐵𝑖 are 𝑓 (11)-
bounded. Note that each 𝐵𝑖 contains distinct 11-components which
are of distance at least 12 from each other. With an abuse of nota-
tion, when we write 𝐵 ∈ 𝐵𝑖 we mean that 𝐵 is a 11-component of 𝐵𝑖 .
That is, we treat 𝐵𝑖 as the set of its 11-components. As 𝐵0, 𝐵1, . . . , 𝐵𝑑
is a cover of 𝑉 (𝐺) by subsets of diameter at most 𝑓 (11), we can
bound the number of (𝑓 (11) + 5)-local 2-cuts of 𝐺 by summing
the number of 2-cuts of all the 𝐺 [𝑁 4 [𝐵𝑖 ]]’s. Let 𝐼 be the set of
interesting vertices in (𝑓 (11) + 5)-local 2-cuts of 𝐺 . We get

|𝐼 | ⩽
𝑑∑︁
𝑖=0

∑︁
𝐵∈𝐵𝑖
(3 ·MDS(𝐺, 𝑁 [𝐵]) + 19 ·MDS(𝐺, 𝑁 4 [𝐵])) .

Notice that because the 𝐵𝑖 ’s are partitioned into
their 11-components, all elements of {𝑁 5 [𝐵] |
𝐵 connected component of 𝐵𝑖 } are pairwise disjoint. There-
fore by Lemma 5.2, we get

|𝐼 | ⩽
𝑑∑︁
𝑖=0

22 ·MDS(𝐺) = 22(𝑑 + 1) ·MDS(𝐺) .

This finishes the proof of Lemma 3.3.
The full version of this paper is available on arXiv, see [5].

Acknowledgments

• The first three authors have been partially supported by the
French ANR projects ENEDISC (ANR-24-CE48-7768) and
TEMPOGRAL (ANR-22-CE48-0001). The fourth author was
supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy – The Berlin Mathematics Research Center MATH+
(EXC-2046/1, project ID:390685689).
• The authors would like to thank Linda Cook and Sergey
Norin for inspiring discussions, and the reviewers for helpful
comments.

86



Local Constant Approximation for Dominating Set on Graphs Excluding Large Minors PODC ’25, June 16–20, 2025, Huatulco, Mexico

References

[1] Sharareh Alipour, Ehsan Futuhi, and Shayan Karimi. 2021. On Distributed Algo-

rithms for Minimum Dominating Set problem, from theory to application. Technical
Report. arXiv:2012.04883 [cs.DC] https://arxiv.org/abs/2012.04883

[2] Saeed Akhoondian Amiri, Stefan Schmid, and Sebastian Siebertz. 2019. Dis-
tributed Dominating Set Approximations beyond Planar Graphs. ACM Transac-

tions on Algorithms 15, 3 (2019), Article No. 39, pp. 1–18. https://doi.org/10.1145/
3093239

[3] Marthe Bonamy, Nicolas Bousquet, Louis Esperet, Carla Groenland, Chun-Hung
Liu, François Pirot, and Alexander Scott. 2024. Asymptotic dimension of minor-
closed families and Assouad–Nagata dimension of surfaces. Journal of the Euro-
pean Mathematical Society 26, 10 (2024), 3739–3791.

[4] Marthe Bonamy, Linda Cook, Carla Groenland, and Alexandra Wesolek. 2021. A
Tight Local Algorithm for the Minimum Dominating Set Problem in Outerplanar
Graphs. In 35th International Symposium on Distributed Computing (DISC) (Paris,
France) (LIPIcs, Vol. 209), Seth Gilbert (Ed.). 13:1–13:18. https://doi.org/10.4230/
LIPIcs.DISC.2021.13

[5] Marthe Bonamy, Cyril Gavoille, Timothé Picavet, and Alexandra Wesolek. 2025.
Local Constant Approximation for Dominating Set on Graphs Excluding Large

Minors. Technical Report. arXiv:2504.01091 [cs.DC] https://arxiv.org/abs/2504.
01091 Full version of this paper.

[6] Krishnendu Chakrabarty, S. Sitharama Iyengar, Hairong Qi, and Eungchun Cho.
2002. Grid coverage for surveillance and target location in distributed sensor
networks. IEEE Trans. Comput. 51, 12 (Dec. 2002), 1448–1453. https://doi.org/10.
1109/TC.2002.1146711

[7] Andrzej Czygrinow, Michał Hańćkowiak, and Wojciech Wawrzyniak. 2008. Fast
Distributed Approximations in Planar Graphs. In 22nd International Symposium

on Distributed Computing (DISC) (Lecture Notes in Computer Science, Vol. 5218).
Springer, 78–92. https://doi.org/10.1007/978-3-540-87779-0_6

[8] Andrzej Czygrinow, Michał Hańćkowiak, and Wojciech Wawrzyniak. 2018. Dis-
tributed Approximation Algorithms for the Minimum Dominating Set in 𝐾ℎ-
Minor-Free Graphs. In 29th International Symposium on Algorithms and Com-

putation (ISAAC) (Jiaoxi, Yilan, Taiwan) (LIPIcs, Vol. 123). 22:1–22:12. https:
//doi.org/10.4230/LIPIcs.ISAAC.2018.22

[9] Guoli Ding. 2017. Graphs without large 𝐾2,𝑛-minors. https://doi.org/10.48550/
ARXIV.1702.01355

[10] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability - A

Guide to the Theory of NP-Completeness. W.H. Freeman.
[11] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. 2017. On the Complexity of

Local Distributed Graph Problems. In 49th Annual ACM Symposium on Theory of

Computing (STOC) (Montreal, Canada). ACM Press, 784–797. https://doi.org/10.
1145/3055399.3055471

[12] Mikhael Gromov. 1993. Geometric Group Theory: Asymptotic invariants of infinite

groups. Cambridge University Press.
[13] Ozan Heydt, Simeon Kublenz, Patrice Ossona de Mendez, Sebastian Siebertz,

and Alexandre Vigny. 2025. Distributed domination on sparse graph classes.
European Journal of Combinatorics 123 (Jan. 2025), 103773. https://doi.org/10.
1016/j.ejc.2023.103773

[14] Miikka Hilke, Christoph Lenzen, and Jukka Suomela. 2014. Brief Announcement:
local approximability of minimum dominating set on planar graphs. In 33rd

Annual ACM Symposium on Principles of Distributed Computing (PODC) (Paris,

France). ACM Press, 344–346. https://doi.org/10.1145/2611462.2611504
[15] Tohru Kikuno, Noriyoshi Yoshida, and Yoshiaki Kakuda. 1980. The NP-

Completeness of the Dominating Set Problem in Cubic Planar Graphs. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-

ences E63-E, 6 (1980), 443–444.
[16] Alexandr V. Kostochka. 1984. A lower bound for the Hadwiger number of

graphs by the average degree. Combinatorica 4, 4 (Dec. 1984), 307–316. https:
//doi.org/10.1007/BF02579141

[17] Alexandr V. Kostochka and Noah Prince. 2010. Dense graphs have 𝐾3,𝑡 minors.
Discrete Mathematics 310, 20 (Oct. 2010), 2637–2654. https://doi.org/10.1016/j.
disc.2010.03.026

[18] Bhaskar Krishnamachari. 2005. Networking Wireless Sensors. Cambridge Univer-
sity Press.

[19] Simeon Kublenz, Sebastian Siebertz, and Alexandre Vigny. 2021. Constant Round
Distributed Domination on Graph Classes with Bounded Expansion. In 28th

International Colloquium on Structural Information & Communication Complexity

(SIROCCO) (Wrocław, Poland) (Lecture Notes in Computer Science, Vol. 12810),
Tomasz Jurdziński and Stefan Schmid (Eds.). Springer, Cham, 334–351. https:
//doi.org/10.1007/978-3-030-79527-6_19

[20] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 2016. Local Compu-
tation: Lower and Upper Bounds. J. ACM 63, 2 (March 2016), Article No. 17, pp.
1–44. https://doi.org/10.1145/2742012

[21] Christoph Lenzen, Yvonne-Anne Pignolet, and Roger Wattenhofer. 2013. Dis-
tributed minimum dominating set approximations in restricted families of graphs.
Distributed Computing 26, 2 (March 2013), 119–137. https://doi.org/10.1007/
s00446-013-0186-z

[22] Christoph Lenzen and Roger Wattenhofer. 2008. Leveraging Linial’s Locality
Limit. In 22nd International Symposium on Distributed Computing (DISC) (Lecture

Notes in Computer Science, Vol. 5218). Springer, 394–407. https://doi.org/10.1007/
978-3-540-87779-0_27

[23] Nathan Linial. 1987. Distributive graph algorithms – Global solutions from local
data. In 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society Press, 331–335. https://doi.org/10.1109/SFCS.1987.20

[24] Nathan Linial. 1992. Locality in Distributed Graphs Algorithms. SIAM J. Comput.

21, 1 (1992), 193–201. https://doi.org/10.1137/0221015
[25] Bruce A. Reed and David R. Wood. 2016. Forcing a sparse minor. Combinatorics,

Probability and Computing 25, 2 (March 2016), 300–322. https://doi.org/10.1017/
S0963548315000073

[26] Václav Rozhoň and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic
Network Decomposition and Distributed Derandomization. In 52nd Annual ACM

Symposium on Theory of Computing (STOC) (Chicago, IL, USA). ACM Press,
350–363. https://doi.org/10.1145/3357713.3384298

[27] Ryan Solava. 2019. On the fine structure of graphs avoiding certain complete

bipartite minors. Ph. D. Dissertation. Vanderbilt University.
[28] Jukka Suomela. 2013. Survey of Local Algorithms. Comput. Surveys 45, 2 (Feb.

2013), Article No. 24, pp. 1–40. https://doi.org/10.1145/2431211.2431223
[29] Andrew Thomason. 2001. The Extremal Function for Complete Minors. Journal

of Combinatorial Theory, Series B 81, 2 (March 2001), 318–338. https://doi.org/10.
1006/jctb.2000.2013

[30] Wojciech Wawrzyniak. 2014. A strengthened analysis of a local algorithm for
the minimum dominating set problem in planar graphs. Inform. Process. Lett. 114,
3 (March 2014), 94–98. https://doi.org/10.1016/j.ipl.2013.11.008

87

https://arxiv.org/abs/2012.04883
https://arxiv.org/abs/2012.04883
https://doi.org/10.1145/3093239
https://doi.org/10.1145/3093239
https://doi.org/10.4230/LIPIcs.DISC.2021.13
https://doi.org/10.4230/LIPIcs.DISC.2021.13
https://arxiv.org/abs/2504.01091
https://arxiv.org/abs/2504.01091
https://arxiv.org/abs/2504.01091
https://doi.org/10.1109/TC.2002.1146711
https://doi.org/10.1109/TC.2002.1146711
https://doi.org/10.1007/978-3-540-87779-0_6
https://doi.org/10.4230/LIPIcs.ISAAC.2018.22
https://doi.org/10.4230/LIPIcs.ISAAC.2018.22
https://doi.org/10.48550/ARXIV.1702.01355
https://doi.org/10.48550/ARXIV.1702.01355
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1016/j.ejc.2023.103773
https://doi.org/10.1016/j.ejc.2023.103773
https://doi.org/10.1145/2611462.2611504
https://doi.org/10.1007/BF02579141
https://doi.org/10.1007/BF02579141
https://doi.org/10.1016/j.disc.2010.03.026
https://doi.org/10.1016/j.disc.2010.03.026
https://doi.org/10.1007/978-3-030-79527-6_19
https://doi.org/10.1007/978-3-030-79527-6_19
https://doi.org/10.1145/2742012
https://doi.org/10.1007/s00446-013-0186-z
https://doi.org/10.1007/s00446-013-0186-z
https://doi.org/10.1007/978-3-540-87779-0_27
https://doi.org/10.1007/978-3-540-87779-0_27
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://doi.org/10.1017/S0963548315000073
https://doi.org/10.1017/S0963548315000073
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/2431211.2431223
https://doi.org/10.1006/jctb.2000.2013
https://doi.org/10.1006/jctb.2000.2013
https://doi.org/10.1016/j.ipl.2013.11.008

	Abstract
	1 Introduction
	2 Preliminaries
	3 Asymptotic Dimension
	3.1 When Local Properties Can Replace Global Properties
	3.2 Bounding the Number of Local 1-cuts and 2-cuts

	4 Constant Approximation for Minimum Dominating Set
	5 Proofs
	5.1 Proof of Proposition 3.1: From Local to Global
	5.2 Proof of Lemma 3.2: Bounding the Number of Vertices in Local 1-cuts
	5.3 Proof of Lemma 3.3: Bounding the Number of Interesting Vertices

	Acknowledgments
	References

