

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. © 2022 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 2082--2099

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS\ast

MARTHE BONAMY\dagger , CYRIL GAVOILLE\ddagger , AND MICHA\L PILIPCZUK\S

Abstract. An adjacency labeling scheme for a given class of graphs is an algorithm that, for
every graph G from the class, assigns bit strings (labels) to vertices of G so that for any two vertices
u, v, whether u and v are adjacent can be determined by a fixed procedure that examines only their
labels. It is known that planar graphs with n vertices admit a labeling scheme with labels of bit length
(2+o(1)) logn. In this work we improve this bound by designing a labeling scheme with labels of bit
length (4

3
+ o(1)) logn. All the labels of the input graph can be computed in polynomial time, while

adjacency can be decided from the labels in constant time. In graph-theoretical terms, this implies an
explicit construction of a graph on n4/3+o(1) vertices that contains all planar graphs on n vertices as
induced subgraphs, improving the previous best upper bound of n2+o(1). Our labeling scheme can be
generalized to larger classes of topologically constrained graphs, for instance, to graphs embeddable
in any fixed surface or to k-planar graphs for any fixed k, at the cost of larger second-order terms.

Key words. planar graphs, labeling scheme, universal graphs

MSC codes. 68R10, 05C85

DOI. 10.1137/20M1330464

1. Introduction. When representing graphs, say with adjacency lists or ma-
trices, vertex identifiers usually do not play any particular role with respect to the
structure of the graph: they are essentially just pointers in the data structure. In
contrast, a graph is implicitly represented when each vertex of the graph is associated
to more information so that adjacency, for instance, can be efficiently determined
from the identifiers without the need of any global data structure (cf. [40, 51]). For
example, if G is an interval graph with n vertices, one can associate with each vertex u
some interval I(u) \subseteq [1, 2n] with integer endpoints so that u, v are adjacent if and only
if I(u) \cap I(v) \not = \varnothing . Clearly, no adjacency lists or matrices are required anymore. Al-
though G may have a quadratic number of edges, such an implicit representation uses
2 log n+O(1) bits per vertex,1 regardless of its degree, which is asymptotically opti-
mal [34]. Compact representations have several advantages, not only for the memory
storage but also from algorithmic perspectives. For instance, given a succinct repre-
sentation, breadth-first search (BFS) traversal can be done in O(n) time [46, 3], even
if the graph has \Omega (n2) edges. Speedups due to succinct representations are ubiquitous
in the design of algorithms and data structures.

Formally introduced by Peleg [44, 45], informative labeling schemes present a way
to formalize implicit representations of graphs. For a given function \Pi defined on pairs

\ast Received by the editors April 8, 2020; accepted for publication (in revised form) May 6, 2022;
published electronically August 31, 2022. A preliminary version of this work [15] was presented at
the 31st Symposium on Discrete Algorithms, SODA 2020.

https://doi.org/10.1137/20M1330464
Funding: The work of the first and second authors is partially funded by the French ANR

projects ANR-16-CE40-0023 (DESCARTES) and ANR-17-CE40-0015 (DISTANCIA). The work of
the third author is a part of project TOTAL that received funding from the European Research
Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant

agreement 677651).
\dagger CNRS-LaBRI, University of Bordeaux, Bordeaux, France (marthe.bonamy@u-bordeaux.fr).
\ddagger LaBRI, University of Bordeaux, Bordeaux, France (gavoille@labri.fr).
\S Institute of Informatics, University of Warsaw, Warsaw, Poland (michal.pilipczuk@mimuw.

edu.pl).
1Throughout the paper, by logn we denote the binary logarithm of n.

2082

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/20M1330464
mailto:marthe.bonamy@u-bordeaux.fr
mailto:gavoille@labri.fr
mailto:michal.pilipczuk@mimuw.edu.pl
mailto:michal.pilipczuk@mimuw.edu.pl

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2083

of vertices of a graph from some given class of graphs, an informative labeling scheme
has two components: an encoding algorithm that associates with each vertex a piece of
information (label) and a decoding algorithm that computes \Pi (u, v,G), the value of \Pi
applied on vertices u, v of the graph G. The input of the decoding algorithm consists
solely of the labels of u and of v, with no other information provided. So, finding
an implicit representation of a graph G can be restated as computing an adjacency
labeling scheme for G, that is, an informative labeling scheme where \Pi (u, v,G) is
true if and only if u, v are adjacent in G.

In this paper we will focus on such adjacency labeling schemes (referred to as
labeling schemes from now on), but many functions \Pi other than adjacency are of
great interest. Among them there are labeling schemes designed for ancestry [31] and
lowest common ancestors in rooted trees [9, 10], distances [38, 37, 8, 32] and forbidden-
set distances [1], compact routing [30, 53, 48], flow problems [41], and many others.
We refer to [35], and references therein, for a survey of informative labeling schemes
and their applications in distributed computing, and also to [49] for a survey on recent
developments in labeling schemes specialized for trees.

Planar graphs. Planar graphs are perhaps one of the most studied class of graphs
in this area, due to the wide variety of their implicit representations. To mention just
a few, planar graphs are contact graphs of circles [42], of three-dimensional boxes [52],
of triangles [22], and more recently, of L-shapes [39]. They also have 1-string repre-
sentations [20], and their incidence graphs form posets of dimension three [50]. Each
of these representations leads to a labeling scheme where each vertex can be encoded
using a label consisting of O(log n) bits, independent of its degree.

The first explicit bound on the label length, given by Kannan, Naor, and
Rudich [40], was 4 \lceil log n\rceil bits. Using the fact that planar graphs have arboricity at
most three together with a labeling scheme for forests with label length log n+o(log n),
one can achieve also a similar 3 log n+ o(log n) upper bound for planar graphs, where
the lower-order term o(log n) directly depends on the second-order term of the bound
for forests. It was a challenging question to optimize this second-order term for forests.
It has been successively reduced from O(log log n) [21] to O(log\ast n) [12], and then
to a constant only recently by Alstrup, Dahlgaard, and Knudsen [7]. As explained
above, this leads to an upper bound of 3 log n+ O(1) for planar graphs. By improv-
ing the labeling scheme for bounded treewidth graphs, namely, from O(k log n) [40] to
log n+O(k log log n), Gavoille and Labourel [33] showed that partitioning the edges of
a planar graph into two bounded treewidth subgraphs, rather than into three forests,
leads to a shorter representation with labels consisting of 2 log n + O(log log n) bits.
Until this work, this has been the best known upper bound for planar graphs.

Known results for several subclasses of planar graphs are reported in Table 1.
Our contribution. In this work we present a new labeling scheme for planar graphs

that uses labels of length bounded2 by 4
3 log n. Note that improves this not only the

previously best known bound of 2 log n for general planar graphs [33] but even the
refined bound of 3

2 log n for the case of planar graphs of maximum degree 4 [4].
The main ingredient of our result is the recent product structure theorem of

Dujmovi\'c et al. [25], which says the following: Every planar graph G is a subgraph of
a graph of the form H \boxtimes P , where H is a graph of treewidth at most 8, P is a path,
and \boxtimes denotes the strong graph product (see section 2 for a definition). Moreover,
H, P , and a subgraph embedding witnessing this can be found in polynomial time.

2For brevity, in this informal exposition we ignore additive terms of lower order o(logn).

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2084 M. BONAMY, C. GAVOILLE, AND M. PILIPCZUK

Table 1
Adjacency labeling schemes on planar graphs and some subclasses. The state of the art reflects

the time of publication of the conference version of this work [15]; see the paragraph on subsequent
work for further results. The bounds from references [21, 29, 18] come from induced-universal graphs,
whereas all the others come from labeling schemes. The only known lower bound for planar graphs
is logn + \Omega (1).

Graph classes Upper bound References

(with n vertices) (label length in bits)

maximum degree-2 logn + O(1) [2, 18, 29]

caterpillars logn + O(1) [16]

bounded degree trees logn + O(1) [21]

bounded depth trees logn + O(1) [31]

trees logn + O(1) [7]

bounded degree outerplanar logn + O(1) [21, 4]

outerplanar logn + O(log logn) [33]

bounded treewidth planar logn + O(log logn) [33]

maximum degree-4 planar 3
2

logn + O(log logn) [4]

bounded degree planar 2 logn + O(1) [21]

planar 2 logn + O(log logn) [33]

planar 4
3

logn + O(log logn) [this paper]

The first step in our proof is the design of an auxiliary labeling scheme with labels
of length log n+log d, assuming that the graph G in question is given together with an
embedding into H \boxtimes P , where H has bounded treewidth and P is a path of length d.
This parameterized bound is never worse than the currently best known bound of
2 log n, because we may always assume d < n, but later in the general case we use
it for d = O(n1/3). We remark that the proof of the product structure theorem of
Dujmovi\'c et al. [25] in fact yields a subgraph embedding into H \boxtimes P where P has
length bounded by the diameter of the considered graph G, so as a side result we
obtain a labeling scheme for planar graphs with diameter d that uses labels of length
bounded by log n+ log d.

The second step---the main case---relies on the layering technique applied on the
structure provided by the product structure theorem. Precisely, for a given planar
graph G we compute a subgraph embedding \varphi of G into H \boxtimes P , where H is a graph
of bounded treewidth and P is a path (with no nontrivial bound on its length). We
choose a parameter d \geqslant 3 (which will be set later) and divide H \boxtimes P into blocks
of width d; that is, each block is of the form H \boxtimes Q, where Q is a subpath of P
consisting of d consecutive vertices. By mapping the blocks through \varphi - 1 back to G,
we thus divide G into strips, where each strip can be embedded into H \boxtimes Q where Q
has length d - 1. These strips are separated by borders whose union is a graph on
O(n/d) = O(n2/3) vertices and of constant treewidth. Using the known bounds for
graphs of bounded treewidth [33], for this border graph we can compute a labeling \lambda 1

with labels of length log (n/d). On the other hand, to the union of strips we can apply
the auxiliary labeling scheme explained in the previous paragraph and thus obtain a
labeling \lambda 2 for the strips with labels of length log n+ log d.

At this point, superposing the two schemes \lambda 1 and \lambda 2 would give a labeling scheme
of length 2 log n. This is because vertices appearing at the borders of strips have to
inherit labels from both labelings: log (n/d) from \lambda 1 and log n+ log d from \lambda 2, which
sums up to 2 logn. So far, this yields no improvement over the previous results.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2085

However, by revisiting the scheme for graphs of bounded treewidth we are able to
show that for vertices at the borders---whose number is O(n/d)---the labeling \lambda 2 can
use much shorter labels: only of length log (n/d) instead of log n+ log d. Hence, the
combined labels of border vertices are of length at most 2 log (n/d), implying that
every vertex receives a label of length bounded by

max \{ log n+ log d , 2 log (n/d)\} .

This expression is minimized for d = n1/3 and then evaluates to 4
3 log n, the de-

sired bound.
Finally, we observe that the only property implied by planarity that we used

in our labeling scheme is the product structure given by the theorem of Dujmovi\'c
et al. [25]. Precisely, if we assume that we work with a class of graph C such that
every graph G \in C admits a polynomial-time computable subgraph embedding into
a graph H \boxtimes P , where H has constant treewidth and P is a path, then the whole
reasoning goes through. We call such graph classes efficiently flat and choose to work
throughout the paper with this abstract property alone, instead of the concrete case
of planar graphs. The reason for this is that following the result of Dujmovi\'c et al. [25]
for planar graphs, many more general classes of graphs have been rendered efficiently
flat, for instance, graphs embeddable into any fixed surface [25] or k-planar graphs
for any fixed k [26] (see section 2 for more examples). Consequently, our result gives
a labeling scheme of length 4

3 log n for all these classes.
In all our labeling schemes, given the input graph we can compute the labeling

of its vertices in polynomial time, while the adjacency can be determined from the
labels in constant time.

Connections with universal graphs. It has been observed in [40] that the design of
labeling schemes with short labels is tightly connected with the construction of small
induced-universal graphs. Recall that a graph U is induced-universal for a given set
of graphs S if every graph G \in S is isomorphic to some induced subgraph of U.
Then graphs from S admit a labeling scheme with k-bit labels if and only if S has
an induced-universal graph U with at most 2k vertices; see [40]. Thus, our labeling
scheme provides an explicit construction of an induced-universal graph for n-vertex
planar graphs that has n4/3+o(1) vertices, improving upon the previously best known
bound of n2+o(1), derived from [33].

The search for optimum bounds on the sizes of induced-universal graphs is a
well-studied topic; see, for example, the recent developments for general n-vertex
graphs [6, 11] and for n-vertex trees [7]. See the introductory section of the work of
Alstrup et al. [11] for an overview.

Apart from induced-universal graphs, there is also an alternative definition: edge-
universal graphs. Here, we say that U is edge-universal for a set of graph S if every
graph from S is a subgraph of U (not necessarily induced). As far as edge-universal
graphs for n-vertex planar graphs are concerned, there are much more concise con-
structions than in the induced setting. Babai et al. [13] gave a construction with
O(n3/2) edges, which was very recently improved to n1+o(1) by Esperet, Joret, and
Morin [28] (in case of planar graphs with maximum degree bounded by a constant,
the number of edges can be reduced even to O(n) [19]). However, in general it is un-
clear how edge-universal graphs can be turned into induced-universal graphs without
a significant explosion in the size; see, e.g., the discussion in [21].

Subsequent work. After the publication of the conference version of this work [15],
Dujmovi\'c et al. [23] gave a construction of labeling schemes for any efficiently flat class
of graphs with length log n + O(

\surd
log n log log n). Their approach also relies on the

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2086 M. BONAMY, C. GAVOILLE, AND M. PILIPCZUK

structure theorem of [25] but is much more involved than the one presented here. The
original scheme of Dujmovi\'c et al. had a non--constant-time implementation of the
Decoder, but very recently Gawrychowski and Janczewski [36] showed how to improve
and simplify the approach of [25] to achieve constant decoding time and an improved
bound of log n+O(

\surd
log n) on the length.

In the conference version of this work [15] we concentrated on the case of pla-
nar graphs and, more generally, graphs embeddable into any fixed surface. Instead
of using the product structure abstractly, we relied on a more hands-on combinato-
rial understanding via BFS layerings and partitions with bounded treewidth quotient
graphs. In particular, in several places we relied on auxiliary properties of the consid-
ered classes, like being minor-closed. The version presented here relies on the product
structure alone and thus is more general. Also, the proof of Lemma 5 presented here
is simpler than the one included in [15].

Organization. In section 2 we recall the main definitions and results regarding
labeling schemes, tree decompositions, and the product structure theorem of Dujmovi\'c
et al. [25]. Then in section 3 we revisit and strengthen the labeling scheme for graphs
of bounded treewidth of Gavoille and Labourel [33]. In section 4 we give an auxiliary
scheme for graphs for which the product structure theorem yields an embedding into
the strong product of a bounded treewidth graph and a short path. This result is
then used in section 5 to treat the general case of graphs from an efficiently flat class.
We conclude in section 6 by discussing some further research directions.

2. Preliminaries. We use standard graph notation. For a graph G, the vertex
and edge sets of G are denoted by V (G) and E(G), respectively. For A \subseteq V (G),
we write G[A] for the subgraph of G induced by A and G - A for the subgraph of
G induced by V (G) \setminus A. A subgraph embedding of a graph H into a graph G is an
injective function \varphi : V (H) \rightarrow V (G) such that uv \in E(H) entails \varphi (u)\varphi (v) \in E(G).

Labeling schemes. The following definition formalizes the concept of labeling
schemes.

Definition 1. Let C be a class of graphs. An adjacency labeling scheme for C is
a pair \langle \lambda , \xi \rangle of functions such that, for every graph G \in C, it holds that

\bullet \lambda is the Encoder that assigns to every vertex u of G a different binary string
\lambda (u,G), and

\bullet \xi is the Decoder that decides adjacency from the labels taken from G. More
precisely, for every pair u, v of vertices of G, \xi (\lambda (u,G), \lambda (v,G)) is true if
and only if u, v are adjacent in G.

The length of the labeling scheme \langle \lambda , \xi \rangle is the function \ell : \BbbN \rightarrow \BbbN that maps every
n \in \BbbN to the maximum length, expressed in the number of bits, of labels assigned by
the Encoder in n-vertex graphs from C.

In the above definition we measure the length only in terms of the vertex count n,
but we can extend the definition to incorporate auxiliary graph parameters, like di-
ameter or treewidth, in a natural way. Whenever G is clear from the context, we
write \lambda (u) as a shorthand for shorthand for \lambda (u,G).

When speaking about the complexity of Encoder and Decoder, we assume a RAM
model with machine words of bit length O(log n) and unit cost arithmetic operations.

Tree decompositions. A tree decomposition of a graph G is a pair (T, \beta), where T
is a tree and \beta maps every node x of T to its bag \beta (x) \subseteq V (G) so that for every edge
uv of G there exists a node x satisfying \{ u, v\} \subseteq \beta (x), and for every vertex u of G,
the set \{ x \in V (T) : u \in \beta (x)\} induces a nonempty, connected subtree of T . The width

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2087

of (T, \beta) is maxx\in V (T) | \beta (x)| - 1, while the treewidth of G is the minimum possible
width of a tree decomposition of G.

Flatness. For two graphs G and H, the strong product of G and H, denoted
G \boxtimes H, is the graph on vertex set V (G) \times V (H), where two different vertices (u, v)
and (u\prime , v\prime) are adjacent if and only if vertices u and u\prime are equal or adjacent in G
and vertices v and v\prime are equal or adjacent in H. The following definition describes
the key structural property discovered by Dujmovi\'c et al. [25].

Definition 2. A class of graph C is flat if there exists w \in \BbbN such that every
graph G \in C is a subgraph of some graph of the form H \boxtimes P , where H has treewidth
at most w and P is a path.

Note that in the above definition one may assume that | V (H)| \leqslant | V (G)| , as one
can remove every vertex v of H such that no element of the fiber \{ (v, i) : i \in V (P)\}
participates in the subgraph embedding of G into H \boxtimes P . Similarly, we may assume
that | V (P)| \leqslant | V (G)| .

As proved by Dujmovi\'c et al. [25], planar graphs are flat. (See [54] for an improve-
ment of the constant w = 8 reported in [25] to 6.) However, this property carries over
to more general classes of topologically constrained graphs, as the following classes
are flat as well:

\bullet graphs of Euler genus g for every fixed g \in \BbbN [25];
\bullet every apex-minor-free class [25];
\bullet every proper minor-closed class with bounded maximum degree [25];
\bullet (0, g, k, p)-nearly embeddable graphs for all fixed g, k, p \in \BbbN [25];
\bullet k-planar graphs for every fixed k [26].

See also [26] for several other examples of flat classes and [27] for a survey of the area.
In our proofs we will need to assume algorithmic aspects of flatness. Precisely,

we shall say that a flat class of graph C is efficiently flat if given G \in C, one can in
polynomial time compute a graph H of treewidth at most w for a constant w \in \BbbN , a
path P , and a subgraph embedding of G into H\boxtimes P . Fortunately, a close inspection of
the proofs in [25] shows that all the above-mentioned flat classes are actually efficiently
flat, so our results apply to all of them. In the case of planar graphs, the embedding
can be computed even in O(n) time [17, 43].

Throughout the paper we will focus on proving the following result, from which
all the corollaries discussed in section 1 follow.

Theorem 1. Every efficiently flat class of graphs admits a labeling scheme of
length 4

3 log n + O(log log n). The Encoder runs in polynomial time and the Decoder
in constant time.

3. Bounded treewidth graphs. Like the construction of [33] for planar graphs,
our result relies on the labeling scheme developed for bounded treewidth graphs.

Theorem 2 (see [33]). For any fixed k \in \BbbN , graphs of treewidth at most k admit
a labeling scheme of length log n + O(k log log n). The Encoder runs in O(n log n)
time, and the Decoder runs in constant time.

In later sections we significantly rely on the combinatorics behind the proof of
Theorem 2. We will need two ingredients:

(1) an understanding of how encoding and decoding works in the labeling scheme
and

(2) a strengthening of the result, where we can assume that a prescribed set of at
most q vertices receives shorter labels, namely, of length log q+O(k log log n).

These two properties are formally stated as follows.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2088 M. BONAMY, C. GAVOILLE, AND M. PILIPCZUK

Theorem 3. For any fixed k \in \BbbN , the class of graphs of treewidth at most k ad-
mits a labeling scheme \langle \lambda , \varphi \rangle of length log n+ O(k log log n) with the following prop-
erties:

(P1) From any label a one can extract in time O(1) an identifier \iota (a) so that the
Decoder may be implemented as follows: given a label a, one may compute
in time O(k) a set \Gamma (a) consisting of at most k identifiers so that \varphi (a, b) is
true if and only if \iota (a) \in \Gamma (b) or \iota (b) \in \Gamma (a).

(P2) If the input graph G is given together with a vertex subset Q, then the scheme
can assign to the vertices of Q labels of length log | Q| +O(k log log n).

The Encoder works in time O(n log n), while the Decoder works in constant time.

The proof of Theorem 3 largely follows the approach of Gavoille and Labourel [33].
In particular, their scheme achieves property (P1) without any modifications. How-
ever, to achieve property (P2) we need to replace a crucial combinatorial element of
the proof with a new argument.

The remainder of this section is devoted to the presentation of the proof of Theo-
rem 3, which largely follows the approach of Gavoille and Labourel [33]. In section 3.1
we recall this approach and explain that property (P1) follows from it without any
modifications. In section 3.2 we replace a crucial ingredient of [33] with a new argu-
ment in order to achieve property (P2) as well.

3.1. Encoding and decoding. We start with a brief presentation of the ap-
proach of Gavoille and Labourel [33]. Our presentation is a bit simplified compared to
that of [33] because we choose not to optimize the label length as much as there (e.g.,
Gavoille and Labourel actually provide an upper bound of log n + O(k log log (n/k))
instead of log n+O(k log log n) by a more precise analysis).

First, since the input graph G has treewidth at most k, one can obtain a chordal
supergraph G+ of G on the same vertex set such that G+ also has treewidth at most k.
This can be done as follows: take a tree decomposition of G of width at most k and
turn every bag into a clique. Since for fixed k such a tree decomposition can be
computed in linear time [14], G+ can be computed in linear time.

Next, it is well-known that since G+ is chordal and of treewidth at most k, in
linear time we can compute an orientation \vec{}G of G+ such that every vertex u has
at most k out-neighbors in \vec{}G, and moreover u together with those out-neighbors
form a clique in G+. For every u \in V (G), let Ku be the set consisting of u and its

out-neighbors in \vec{}G.
The key idea of the approach of Gavoille and Labourel is to compute a bidecom-

position of the graph G+, which is a notion roughly resembling tree decompositions
but actually quite different. In a rooted tree, two vertices are related if they are equal
or one is an ancestor of the other.

Definition 3. A bidecomposition of a graph H is a pair (T, \alpha), where T is a
binary rooted tree and \alpha maps vertices H to nodes of T , so that for every edge uv of
H, \alpha (u) and \alpha (v) are related.

As proved in [33], graphs of bounded treewidth admit bidecompositions with small
parts. This is the key combinatorial ingredient of the proof.

Lemma 4 (cf. Lemma 1 in [33]). Let G be an n-vertex graph of treewidth at
most k. Then there exists a bidecomposition (T, \alpha) of G satisfying the following:

(A1) | \alpha - 1(x)| = O(k log n) for every node x of T , and
(A2) T has depth at most log n.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2089

Moreover, for every fixed k, given G, such a bidecomposition can be constructed in
time O(n log n).

We apply Lemma 4 to the graph G+, thus getting a suitable bidecomposition
(T, \alpha). Based on this, a labeling is constructed as follows.

Consider any u \in V (G). Since Ku is a clique in G+, it follows that nodes
\{ \alpha (v)\} v\in Ku

are pairwise related. Hence, there exists a path Pu in T starting at
the root that contains all nodes \alpha (v) for v \in Ku. The second endpoint of Pu is the
deepest among nodes \{ \alpha (v)\} v\in Ku

. Let P \prime
u be the prefix of Pu from the root of T

to \alpha (u).
For each node x of T fix an arbitrary enumeration of \alpha - 1(x) using an index taken

from [0, | \alpha - 1(x)|). Now, the identifier of vertex u consists of the following pieces of
information:

1. The encoding of the path P \prime
u as a bit string of length | V (P \prime

u)| - 1 that encodes,
for consecutive nonroot vertices of P \prime

u, whether they are left or right children.
2. The index of u within \alpha - 1(\alpha (u)).
3. The depth of \alpha (u) in T .

Since T has depth at most log n and | \alpha - 1(x)| = O(k log n) for every node x of T , we
conclude that the identifier has total length log n + log k + O(log log n). In addition
to the identifier, the label of u contains the following pieces of information:

1. Encoding of the suffix of Pu that is not contained in P \prime
u; this, together with

the information from the identifier, adds up to the encoding of Pu.
2. For every v \in Ku \setminus \{ u\} , the depth of \alpha (v) in T , the index of v within

\alpha - 1(\alpha (v)), and whether the edge uv belongs to E(G) (it may belong to
E(G+) \setminus E(G)).

As shown in [33], the above information, together with the identifier, can be encoded
in log n + O(k log log n) bits, resulting in the promised upper bound on the label
length. Moreover, given the bidecomposition (T, \alpha) the labeling can be computed in
linear time, assuming k is fixed.

It is now straightforward to see that from the label of u one can derive the
identifiers of the out-neighbors of u in G+. Indeed, for every v \in Ku \setminus \{ u\} the depth
of \alpha (v) and the index of v in \alpha - 1(\alpha (v)) are directly stored in the label of u, while the
encoding of the path P \prime

v can be obtained by taking the encoding of Pu and trimming
it to the prefix of length equal to the depth of \alpha (v). With every such out-neighbor v
we have also stored the information of whether the edge uv is contained in G or was
added when modifying G to G+. Hence, given the label \lambda (u) we can compute a set
of at most k identifiers of neighbors of u, which is a suitable set \Gamma (\lambda (u)). This proves
property (P1).

3.2. Saving on labels of a small set of vertices. We now explain how the
general approach of Gavoille and Labourel [33], presented in the previous section, can
be amended to achieve property (P2) as well. The difference is that we replace the
usage of Lemma 4 with the following Lemma 5.

Lemma 5. Let G be an n-vertex graph of treewidth at most k and S \subseteq V (G).
Then there exists a bidecomposition (T, \alpha) of G satisfying the following:

(B1) | \alpha - 1(x)| = O(k log n) for every node x of T ;
(B2) T has depth at most log n+ 1; and
(B3) for every u \in S, \alpha (u) is at depth at most log | S| + 1 in T .

Moreover, for every fixed k, given G and S, such a bidecomposition can be constructed
in time O(n log n).

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2090 M. BONAMY, C. GAVOILLE, AND M. PILIPCZUK

Consider the set Q of prescribed vertices as in property (P2), and apply Lemma 5
to G+ with

S =
\bigcup
u\in Q

Ku.

We have | S| \leqslant (k + 1) \cdot | Q| . Hence, in the notation of the previous section, for every
u \in Q we have that Pu has at most log | S| + 1 = log | Q| + O(log k) nodes, while for
every other vertex u we have that Pu has at most log n + 1 nodes. Plugging this
into the analysis of the previous section gives the desired bounds on the lengths of
labels in the constructed labeling. Note that thus, property (P1) still holds, while
property (P2) is achieved.

We are left with proving Lemma 5. We would like to stress that this is not a
simple modification of the proof of Lemma 4 presented in [33]. The general idea is
to recursively decompose the graph, where at each step we use a separator of size
O(k log n) to split the graph into two parts, each containing (roughly) at most half of
the remaining vertices and at most half of the remaining vertices of S. In [33] only
the first objective---halving the total number of vertices---was necessary, and this was
relatively easy to achieve using a separator of size O(k log n). However, the strategy
used in [33] does not generalize to achieving both objectives at the same time.

So our splitting step is based on a different argument. The key idea is captured
by the following lemma.

Lemma 6. Let G be an n-vertex graph of treewidth at most k and S \subseteq V (G).
Then there exists a partition (L,X,R) of the vertex set of G such that

\bullet | X| \leqslant O(k log n),
\bullet | L| \leqslant n/2 and | R| \leqslant n/2, and
\bullet | L \cap S| \leqslant | S| /2 and | R \cap S| \leqslant | S| /2.

Moreover, for a fixed k, given G and S, such a partition can be constructed in
time O(n).

Proof. We first focus on proving the existential statement. Then we discuss the
algorithmic aspects of the proof.

It is well-known that a graph of treewidth at most k has pathwidth O(k log n);
hence let (P, \beta) be a path decomposition of G of width O(k log n). Let f : V (G) \rightarrow
V (P) be any function that maps each vertex u of G to a node of P whose bag
contains u.

Let p be the number of nodes of P . Place the nodes of P at the vertices of a
regular p-gon in the plane in the order in which they appear in P . Define the following
two discrete measures \mu 1, \mu 2 in the plane concentrated on the nodes of P : for a node x,
we set

\mu 1(\{ x\}) =
| f - 1(x)|

n
and \mu 2(\{ x\}) =

| f - 1(x) \cap S|
| S|

.

By the ham sandwich theorem, there is a line \ell in the plane such that each of the two
open half-planes HL, HR obtained by removing \ell from the plane satisfies \mu 1(HQ) \leqslant
1/2 and \mu 2(HQ) \leqslant 1/2, Q \in \{ L,R\} .

Note that for every vertex u of G, the set of nodes whose bags contain u forms a
contiguous interval on the perimeter of the p-gon. Let X be the set of all vertices u
of G satisfying the following property: there is no Q \in \{ L,R\} such that HQ contains
all the nodes of P whose bags contain u. It is easy to see that X is contained in
the union of two bags of (P, \beta) (these bags correspond to the two intersections of \ell
with the perimeter of the polygon); hence | X| \leqslant O(k log n). Next, let L comprise

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2091

all vertices of G contained only in the bags of nodes contained in HL, and define R
analogously for HR. That L and R satisfy the required properties follows immediately
from the bounds on the \mu 1- and \mu 2-measures of HL and HR.

We are left with turning the argument presented above into an algorithm with
running time O(n), assuming k is fixed. This is rather standard, so we keep the
description brief.

We are given a graph G on n vertices and with treewidth at most k. Note that
G has at most kn = O(n) edges. We first use the algorithm of Bodlaender [14] to
compute a tree decomposition (T, \beta 0) of G of width at most k in time O(n). Clearly,
T will have no more than O(n) nodes, as this is a bound on the running time of the
algorithm producing it (actually, the algorithm of [14] can be implemented so that
it outputs a tree decomposition with at most n nodes). Next, we can turn (T, \beta 0)
into a path decomposition (P, \beta) of width O(k log n) as follows. First, we apply the
algorithm of Sch\"affer that in time O(n) computes3 an optimum-depth elimination
tree T \prime of T : it is a rooted tree with the same node set as T such that whenever
xy is an edge in T , x and y are related to T \prime . It is well-known that the treedepth
of an n-vertex tree---the least possible depth of an elimination tree---is bounded by
O(log n), hence T \prime will have depth O(log n). Now, construct a path decomposition
(P, \beta) as follows: order the leaves of T \prime by any preorder in T \prime , let P be the path on
those leaves in this order, and for a leaf x define \beta (x) =

\bigcup
y \beta 0(y), where the union

ranges over all ancestors y of x in T \prime (including x itself). It is easy to check that (P, \beta)
is a path decomposition of G. Also, we have | \beta (x)| \leqslant O(log n) \cdot (k + 1) = O(k log n)
for every leaf x as above; hence (P, \beta) has width O(k log n). We remark that we do
not construct (P, \beta) explicitly, as this would take time O(n log n), but rather for every
vertex u of G we remember the two extreme nodes of P whose bags contain u. It
is easy to see that such a representation can be computed in time O(n) from (T, \beta 0)
and T \prime . Once (P, \beta) is constructed, we can easily construct the measures \mu 1, \mu 2 in
time O(n).

Next, we need to make the construction of the partition (L,X,R) algorithmic. For
a pair x, y of distinct vertices of the polygon (nodes of P), let \ell x,y be the line passing
through x and y, let Ix,yL consists of all nodes z /\in \{ x, y\} such that x, z, y appear in this
clockwise order on the perimeter of the polygon, and let Ix,yR = V (P) \setminus \{ x, y\} \setminus Ix,yL .
In the application of the ham sandwich theorem we may assume that the line \ell passes
through two distinct vertices of the polygon, that is, \ell = \ell x,y for two distinct nodes x, y
of P . Therefore, it suffices to find nodes x, y such that \mu i(I

x,y
Q) \leqslant 1/2 for all i \in \{ 1, 2\}

and Q \in \{ L,R\} ; then a suitable partition (L,X,R) can be easily reconstructed in
linear time.

For a node x \in V (P), call a node y reasonable for x if \mu 1(I
x,y
L) \leqslant 1/2 and

\mu 1(I
x,y
R) \leqslant 1/2. Let y - (x) and y+(x) be the nodes that are reasonable for x, and,

subject to that, Ix,yL is minimal, respectively maximal. Observe we may in time O(n)
iterate through all x \in V (P) in order while maintaining pointers to y - (x) and y+(x).
Indeed, we first fix x to be the first node of P and compute y - (x) and y+(x) for this
x in time O(n). Then we iteratively increment x (i.e., move the pointer to x to the
clockwise next vertex) while adjusting y - (x) and y+(x) by incrementing them as long
as necessary. Each of y - (x) and y+(x) will be incremented at most n times in total;
hence this procedure runs in time O(n). During the iteration we may also maintain

the measures \mu 2(I
x,y - (x)
L) and \mu 2(I

x,y+(x)
R) by updating them during increments of

3The algorithm of Sch\"affer actually computes an equivalent object called a vertex ranking; it is
easy to turn a vertex ranking into an elimination forest in linear time.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2092 M. BONAMY, C. GAVOILLE, AND M. PILIPCZUK

the pointers. The ham sandwich theorem ensures that at some point during the scan

we will encounter a node x such that \mu 2(I
x,y - (x)
L) \leqslant 1/2 and \mu 2(I

x,y+(x)
R) \leqslant 1/2. It

then suffices to iterate through all nodes y lying clockwise between y - (x) and y+(x)
to find one for which \mu 2(I

x,y
L) \leqslant 1/2 and \mu 2(I

x,y
R) \leqslant 1/2. Now the pair x, y satisfies

all the required properties.

We remark that in the proof of Lemma 6, one can replace the usage of the ham
sandwich theorem with a well-known result of Alon about splitting necklaces [5].

Now Lemma 5 follows from a straightforward recursive application of Lemma 6.

Proof of Lemma 5. Consider the following recursive procedure: Given a graph G,
\bullet run the algorithm of Lemma 6 to find a suitable partition (L,X,R);
\bullet apply the procedure recursively to G[L] and G[R] to find bidecompositions

(TL, \alpha L) and (TR, \alpha R) of those graphs; and
\bullet construct a bidecomposition (T, \alpha) by setting T to be the union of TL and
TR with their roots made into children of a new root r, and taking \alpha to be
the union of \alpha L and \alpha R extended by setting \alpha (r) = X.

That \alpha has depth at most log n + 1 and for every vertex of u \in S we have that the
depth of \alpha (u) is at most log | S| + 1 follows immediately from the properties of the
partition (L,X,R) provided by Lemma 6.

As for the running time, for every i the graphs handled at level i of the recursion
are vertex-disjoint subgraphs of G. Since every recursive call uses internal work linear
in the size of the considered graph, we conclude that the total work spent by calls at
level i of the recursion is O(n). Since the recursion has depth at most log n, the total
running time is O(n log n).

4. Case of a short path. We now move to the first step of the proof of Theo-
rem 1. Hence, from now on we fix an efficiently flat class C, and we let w \in \BbbN be the
constant given by the efficient flatness of C. In the following we treat w as a constant;
hence all the constants hidden in the O(\cdot)-notation may depend on w.

We now use our understanding of schemes for graphs of bounded treewidth
in order to lift it to graphs from C that can be embedded into H \boxtimes P , where
H has bounded treewidth and P is a relatively short path. This intermedi-
ate result will be exploited in the next section in the general labeling scheme
for C.

Lemma 7. Graphs from C admit a labeling scheme of length log n + log d +
O(log log n), where we assume that the Encoder is given a graph G \in C together
with a subgraph embedding of G into a graph H \boxtimes P , where H has treewidth at most
w and P is a path of length d. The Encoder runs in polynomial time and the Decoder
in constant time.

Moreover, if the graph G is provided together with a vertex subset Q, then the
Encoder may assign to the vertices of Q labels of length at most log | Q| + log d +
O(log log n).

Proof. We first focus on proving the initial statement without the additional
vertex subset Q. At the end we shall argue how the refined statement can be obtained
using property (P2) of Theorem 3.

Let G \in C be the input graph, where G has n vertices. We assume that we are
also given a subgraph embedding \varphi of G into H \boxtimes P , where H has treewidth at most
w and P has length d. As argued, by removing vertices not participating in the image
of G under \varphi , we may assume that | V (H)| \leqslant n and | V (P)| = d+ 1 \leqslant n. We identify
the vertices of P with numbers \{ 0, 1, . . . , d\} .

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2093

Since H has treewidth w = O(1), we may apply Theorem 3 to H. Thus, in
polynomial time we can compute a labeling \kappa (\cdot) defined on vertices of H with labels
of length log n+O(log log n), for which we have a Decoder working in constant time.

Now, we define a labeling \lambda (\cdot) of G as follows. Take any u \in V (G), and let
(v, i) = \varphi (u), where v \in V (H) and i \in \{ 0, 1, . . . , d\} . Then the label \lambda (u) consists of

\bullet the label \kappa (v);
\bullet the number i, written in binary;
\bullet a 3(w + 1)-bit adjacency code, which we define in a moment.

The first two pieces of information above are of variable length, so we add to the
label a prefix of (fixed) length 2 log log n that encodes their lengths, so that they can
be extracted from the label in constant time. Clearly, the total length of any label
constructed in this way is bounded by log n+ log d+O(log log n).

It remains to describe the adjacency code and how the decoding is going to be
performed based on it. Recall that, by property (P1), every vertex of v of H is
assigned an identifier \iota (\kappa (v)) so that from \kappa (v) one can compute a set \Gamma (\kappa (v)) of at
most w identifiers with the following property: v and v\prime are adjacent in H if and only
if \iota (\kappa (v)) \in \Gamma (\kappa (v\prime)) or \iota (\kappa (v)) \in \Gamma (\kappa (v\prime)). By ordering identifiers lexicographically,
we may assume that sets returned by \Gamma (\cdot) are organized as lists.4 Observe that two
vertices u and u\prime of G may be adjacent only if the following two assertions hold:
denoting \varphi (u) = (v, i) and \varphi (u\prime) = (v\prime , i\prime), we must have that

\bullet v and v\prime are equal or adjacent in H, and
\bullet | i - i\prime | \leqslant 1.

Hence, the adjacency code assigned to a vertex u of G stores the following information:
denoting (v, i) = \varphi (u), for each v\prime \in \{ v\} \cup \Gamma (\kappa (v)) and t \in \{ - 1, 0, 1\} , we record
whether u is adjacent to the unique vertex u\prime with \varphi (u\prime) = (v\prime , i + t), provided it
exists. Note that there is at most one u\prime as above, because \varphi is injective.

Given the above description, the decoding can be performed as follows. Suppose
we are given labels \lambda (u) and \lambda (u\prime) of two vertices u, u\prime \in V (G). Denoting (v, i) = \varphi (u)
and (v\prime , i\prime) = \varphi (u\prime), from these labels we may consecutively compute

\bullet numbers i and i\prime ,
\bullet labels \kappa (v) and \kappa (v\prime),
\bullet lists \Gamma (\kappa (v)) and \Gamma (\kappa (v\prime)), and
\bullet identifiers \iota (\kappa (v)) and \iota (\kappa (v\prime)).

Next, we check whether \iota (\kappa (v)) = \iota (\kappa (v\prime)), or \iota (\kappa (v)) \in \Gamma (\kappa (v\prime)), or \iota (\kappa (v\prime)) \in
\Gamma (\kappa (v)). If this is not the case, then u and u\prime are not adjacent in G, because v and v\prime

are neither equal nor adjacent in H. Otherwise, we check whether i - i\prime \in \{ - 1, 0, 1\} .
Again, if this is not the case, then u and u\prime are not adjacent in G, because i and i\prime

are neither equal nor adjacent in P . Otherwise, whether u and u\prime are adjacent can
be read from the adjacency code of \lambda (u) or of \lambda (u\prime), depending on which identifier
belongs to which list.

From the above description it is clear that the Encoder for this labeling scheme
runs in polynomial time, while the Decoder runs in constant time. This concludes the
proof of the initial statement without the additional vertex subset Q. For the addi-
tional statement, we simply apply the following modification: we use property (P2)
of Theorem 3 to ensure that in the labeling \kappa (\cdot), the vertices of H that appear on
the first coordinates of \varphi (Q) receive labels of length log | Q| + O(log log n). Thus,

4In the original scheme of [33], \Gamma (\cdot) sets are organized into a dictionary so that membership can
be tested in constant time, independently of the size of \Gamma (\cdot). This refinement does not matter here
since the size is bounded by w = O(1).

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2094 M. BONAMY, C. GAVOILLE, AND M. PILIPCZUK

in \lambda (\cdot) the vertices of Q receive labels of total length at most log | Q| + log d +
O(log log n).

Remark 1. In the labeling scheme of Lemma 7, we reserve \lceil log(d+ 1)\rceil bits in
the label of each vertex u to store the P -coordinate of \varphi (u), that is, the number i
where \varphi (u) = (v, i). Observe that we may modify the scheme so that for vertices the
P -coordinate i is either 0 or d, this piece of information takes O(1) bits. Namely,
using the 3 first bits we store whether i is equal to 0, 1, d - 1, d, or lies between 2 and
d - 2. Then the value of i is recorded using \lceil log(d+ 1)\rceil additional bits only when it is
between 1 and d - 1. It is easy to see that using this way of storing the P -coordinates,
the Decoder can verify whether two given P -coordinates (decoded from the labels)
differ by at most 1 (and then what is their difference), even when the Decoder does
not know the value of d in advance. We will use this optimization in the next section.

Remark 2. The proof of flatness of planar graphs given by Dujmovi\'c et al. [24]
actually provides a subgraph embedding of every planar graph G into a graph of the
form H\boxtimes P , where H is a graph of treewidth at most 8 and P is a path whose length is
bounded by the diameter of G; the same applies to the improved construction of [54]
that gives H of treewidth at most 6. Hence, from Lemma 7 we can infer that planar
graphs admit a labeling scheme of length log n + log d + O(log log n), where d is the
diameter of the input graph.

Remark 3. Again in the case of planar graphs, the algorithm of Bose, Morin, and
Odak [17] is able to find a subgraph embedding \varphi of G into H \boxtimes P in time O(n)
(note that the graph H \boxtimes P is never written explicitly, as it has a superlinear size).
Running the algorithm of Theorem 3 takes time O(n log n). Further, by storing the
fibers \varphi (V (G))\cap (\{ v\} \times V (P)) for v \in V (G) using any kind of balanced search trees, it
is not hard to implement the computation of adjacency codes in total time O(n log n).
So in the case of planar graphs, the Encoder can be implemented so that it runs in
time O(n log n).

5. General case. Finally, we are ready to prove our main result, Theorem 1.

Proof of Theorem 1. Let G = (V,E) \in C be the input graph on n vertices. Let

d =
\Bigl\lceil
n1/3

\Bigr\rceil
.

Without loss of generality, we assume that d \geqslant 3 (or n > 8).
By efficient flatness of C, we may compute in polynomial time a graph H of

treewidth at most w, a path P , and a subgraph embedding \varphi of G into H \boxtimes P .
As before, by removing unnecessary vertices we may assume that | V (H)| \leqslant n and
| V (P)| \leqslant n. Letting \ell be the length of P , we again identify the vertices of P with
numbers \{ 0, 1, . . . , \ell \} .

For i \in \{ 0, 1, . . . , \ell \} let

Li = \varphi - 1(\{ (v, i) : v \in V (H)\}),

and for a \in \{ 0, . . . , d - 1\} let

Wa =
\bigcup

i\in \BbbN : i\equiv a mod d

Li.

Note that \{ L0, L1, . . . , L\ell \} and \{ W0,W1, . . . ,Wd - 1\} are partitions of V .
When speaking about sets Wa, we consider indices modulo d. Then one of the

sets Wa \cup Wa+1 is small in the following sense.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2095

Claim 1. There exists a \in \{ 0, . . . , d - 1\} such that | Wa \cup Wa+1| \leqslant 2n2/3.

Proof. Observe that
\sum

a\in [0,d) | Wa \cup Wa+1| = 2n because every vertex belongs

to exactly two of the sets Wa \cup Wa+1. Hence, for some a \in \{ 0, . . . , d - 1\} we have
| Wa \cup Wa+1| \leqslant 2n/d \leqslant 2n2/3.

Partition the edges of G into E1 and E2 as follows:
\bullet E1 comprises all edges with one endpoint in Wa and the other in Wa+1;
\bullet E2 comprises all the remaining edges.

Next, define subgraphs G1 and G2 of G as follows:

G1 = (Wa \cup Wa+1, E1) and G2 = (V,E2).

We first show that G1 is a very simple and small graph.

Claim 2. The graph G1 has at most 2n2/3 vertices and treewidth at most 2w+1.

Proof. The bound on the number of vertices of G1 is directly implied by Claim 1.
For the treewidth bound, note that every connected component of G1 is a sub-

graph of the graph G[Li \cup Li+1] for some i \in \BbbN . Next, observe that mapping \varphi
restricted to Li \cup Li+1 witnesses that G[Li \cup Li+1] is a subgraph of H \boxtimes K2, where
K2 is the graph consisting of two adjacent vertices. It is easy to see that if H has
treewidth at most w, then H \boxtimes K2 has treewidth at most 2w + 1: in a tree decom-
position of H of width at most w just replace every vertex v with the two copies of v
in H \boxtimes K2. Since treewidth does not grow under taking subgraphs, we conclude that
G[Li \cup Li+1] has treewidth at most 2w+ 1. Hence every connected component of G1

has treewidth at most 2w + 1, so we can conclude the same about the whole G1.

We now analyze the graph G2. The idea is to apply Lemma 7, so we need to find
a subgraph embedding of G2 into a graph H \prime \boxtimes P \prime , where H \prime has bounded treewidth
while P \prime is a short path. We do it as follows.

Claim 3. In polynomial time one can compute a graph H \prime of treewidth at most w
and a subgraph embedding \varphi \prime of G2 into H \prime \boxtimes P \prime , where P \prime is a path of length d - 1.
Moreover, we have

Wa = \varphi \prime - 1(\{ (v, d - 1) : v \in V (H \prime)\}) and Wa+1 = \varphi \prime - 1(\{ (v, 0) : v \in V (H \prime)\}).

Proof. Let H \prime be the graph obtained by taking n disjoint copies of H; clearly the
treewidth of H \prime is at most w. We assume that every vertex of H \prime is represented as
a pair (v, j), where v \in V (H) and j \in \{ 0, . . . , n - 1\} is the index of the copy of H
in H \prime . Let P \prime be the path of length d - 1, whose vertices are indexed with numbers
0, 1, . . . , d - 1. Consider the following mapping \varphi \prime from V (G) to V (H \prime \boxtimes P \prime): for
u \in V (G), denoting (v, i) = \varphi (u) and j = i+ d - a - 1, we set

\varphi \prime (u) = ((v , j div d) , j mod d),

where j div d = \lfloor j/d\rfloor . Note that the assertion that Wa = \varphi \prime - 1(\{ (v, d - 1) : v \in
V (H \prime)\}) and Wa+1 = \varphi \prime - 1(\{ (v, 0) : v \in V (H \prime)\}) follows directly from the definition.

It is straightforward to verify that \varphi \prime is a subgraph embedding from G2 to H \prime \boxtimes P \prime :
the subgraphG2[L0\cup . . .\cup La] is mapped to the first copy ofH (times P \prime), the subgraph
G2[La+1 \cup . . .\cup La+d] is mapped to the second copy of H (times P \prime), and so on. Note
here that in G2 there are no edges between La and La+1, nor between Ld+a and
Ld+a+1, and so on.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2096 M. BONAMY, C. GAVOILLE, AND M. PILIPCZUK

We can now use Claims 2 and 3 to give the promised labeling scheme. First, by
Claim 2 and Theorem 2, for the graph G1 we may compute a labeling \lambda 1 with labels
of length at most 2

3 log n+O(log log n). Second, by Claim 3 and Lemma 7, for G2 we
may compute5 a labeling \lambda 2 with labels of length at most log n+log d+O(log log n) =
4
3 log n + O(log log n). Moreover, we may construct this labeling so that all vertices
of Wa \cup Wa+1 receive shorter labels, namely, of length at most 2

3 log n+O(log log n).
Here, we use Remark 1 together with the second statement of Claim 3 in order to
reduce the log d summand to O(1), and we use Q = Wa \cup Wa+1 as the prescribed set
of at most 2n2/3 vertices in order to reduce the log n summand to 2

3 log n+O(1).
Now, for any vertex u of G, we define its label \lambda (u) as follows:
\bullet If u /\in Wa \cup Wa+1, then \lambda (u) = \lambda 2(u).
\bullet If u \in Wa \cup Wa+1, then \lambda (u) is the concatenation of \lambda 1(u) and \lambda 2(u).

In the second case, in order to be able to decode \lambda 1(u) and \lambda 2(u) from \lambda (u), we append
log log n bits that indicate the length of \lambda 1(u). Also, we add one bit indicating the
case into which the vertex u falls.

Thus, in the first case \lambda (u) is of length 4
3 log n+O(log log n), while in the second

it is of length

2

3
log n+O(log log n) +

2

3
log n+O(log log n) + log log n =

4

3
log n+O(log log n) .

Hence, the length of the labeling scheme is as claimed. For the implementation of the
Decoder, given labels of two vertices u and u\prime , we simply read labels of u and u\prime in
\lambda 2 and \lambda 1 (if applicable) and check whether they are adjacent either in G1 or in G2.
This concludes the construction of the labeling scheme.

The above construction can be directly translated to an implementation of the
Encoder in polynomial time and the Decoder in constant time. In case of Claim 1,
note that an index a satisfying the claim can be found in polynomial time by checking
all the integers between 0 and d - 1 one by one.

Remark 4. Note that the statement of Theorem 1 considers the class C fixed;
hence the factors hidden in the O(\cdot) notation depend on the constant w given by
the efficient flatness of C. It is not hard to verify that the obtained dependence
on w is linear, that is, the length of the labeling scheme provided by Theorem 1 is
4
3 log n+ c \cdot w \cdot log log n for some absolute constant c \in \BbbN .

Remark 5. A careful inspection of the proof of Theorem 1 shows that in the case
of planar graphs, one can implement the Encoder so that it runs in O(n log n) time.
Indeed, the algorithm of Bose, Morin, and Odak [17] provides a subgraph embedding
\varphi of G intoH\boxtimes P in time O(n), and in Remark 3 we argued that the Encoder provided
by Lemma 7 runs in time O(n log n) in the planar setting. It is easy to implement all
the other constructions used in the proof in time O(n log n); we leave the details to
the reader.

6. Conclusions. We gave an upper bound of (43 + o(1)) log n for the length of
labeling schemes for any efficiently flat class of graphs. This result applies to the
class of planar graphs---which were our main motivation---but also encompasses more
general classes such as graphs embeddable in a fixed surface, or k-planar graphs

5A careful reader might be worried at this point that the graph H\prime produced by Claim 3 may
have as many as \Omega (n2) vertices. However, since G has at most n vertices, we may again remove
vertices of H\prime that do not participate in the image of G under \varphi \prime , thus bringing | V (H\prime)| to at most n.
In fact, this is what happens at the beginning of the proof of Lemma 7.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2097

for any fixed k. In subsequent work, Dujmovi\'c et al. [23] and Gawrychowski and
Janczewski [36] improved the bound on the length to (1 + o(1)) log n.

So far, the extent of these results is delimited by the flatness of the considered
classes of graphs. As discussed in [25], this property is unfortunately not enjoyed
by every proper minor-closed graph class but holds for every class of nearly embed-
dable graphs without apices (formally, (0, g, k, p)-nearly embeddable graphs for fixed
g, k, p \in \BbbN). Such graphs are the basic building blocks in the structure theorem
for proper minor-closed classes of Robertson and Seymour [47]. This gives hope for
extending the existence of labeling schemes of length (1 + o(1)) log n to all proper
minor-closed classes through the structure theorem. In fact, such a line of reason-
ing was successfully applied in [25] to obtain upper bounds on the queue number in
proper minor-closed classes. In the case of labeling schemes, combining the label-
ings along a tree decomposition into nearly embeddable parts seems to be the main
issue.

Acknowledgments. We are grateful to Vida Dujmovi\'c for pointing out that
our original proof, which was tailored to the cases of planar graphs and of graphs
embeddable in a fixed surface, can be also performed on the level of generality of
arbitrary flat classes of graphs. Apart from generalizing the results, this greatly
clarified and streamlined the presentation of the reasoning. We are also thankful to
an anymous referee for a suggestion of a simplification of the proof of Lemma 5.

A part of this research was completed at the 7th Annual Workshop on Geometry
and Graphs held at Bellairs Research Institute in March 2019.

REFERENCES

[1] I. Abraham, S. Chechik, C. Gavoille, and D. Peleg, Forbidden-set distance labels for
graphs of bounded doubling dimension, ACM Trans. Algorithms, 12 (2016), pp. 22:1--22:17,
https://doi.org/10.1145/2818694.

[2] M. Abrahamsen, S. Alstrup, J. Holm, M. B. T. Knudsen, and M. St\"ockel, Near-optimal
induced universal graphs for cycles and paths, Discrete Appl. Math., 282 (2020), pp. 1--13,
https://doi.org/10.1016/j.dam.2019.10.030.

[3] H. Acan, S. Chakraborty, S. Jo, and S. R. Satti, Succinct encodings for fami-
lies of interval graphs, Algorithmica, 83 (2021), pp. 776--794, https://doi.org/10.1007/
s00453-020-00710-w.

[4] D. Adjiashvili and N. Rotbart, Labeling schemes for bounded degree graphs, in 41st Inter-
national Colloquium on Automata, Languages and Programming, ICALP 2014, Lecture
Notes in Comput. Sci. 8573, Springer, Cham, 2014, pp. 375--386, https://doi.org/10.1007/
978-3-662-43951-7 32.

[5] N. Alon, Splitting necklaces, Adv. Math., 63 (1987), pp. 247--253, https://doi.org/10.1016/
0001-8708(87)90055-7.

[6] N. Alon, Asymptotically optimal induced universal graphs, Geom. Funct. Anal., 27 (2017),
pp. 1--32, https://doi.org/10.1007/s00039-017-0396-9.

[7] S. Alstrup, S. Dahlgaard, and M. B. T. Knudsen, Optimal induced universal graphs and
adjacency labeling for trees, J. ACM, 64 (2017), pp. 27:1--27:22, https://doi.org/10.1145/
3088513.

[8] S. Alstrup, C. Gavoille, E. B. Halvorsen, and H. Petersen, Simpler, faster and shorter la-
bels for distances in graphs, in Proceedings of the 27th Symposium on Discrete Algorithms,
SODA 2016, ACM-SIAM, 2016, pp. 338--350, https://doi.org/10.1137/1.9781611974331.
ch25.

[9] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe, Nearest common ancestors: A survey
and a new algorithm for a distributed environment, Theory of Comput. Syst., 37 (2004),
pp. 441--456, https://doi.org/10.1007/s00224-004-1155-5.

[10] S. Alstrup, E. B. Halvorsen, and K. Green Larsen, Near-optimal labeling schemes for
nearest common ancestors, in Proceedings of the 25th Symposium on Discrete Algorithms,
SODA 2014, ACM-SIAM, 2014, pp. 972--982, https://doi.org/10.1137/1.9781611973402.72.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1145/2818694
https://doi.org/10.1016/j.dam.2019.10.030
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1007/978-3-662-43951-7_32
https://doi.org/10.1007/978-3-662-43951-7_32
https://doi.org/10.1016/0001-8708(87)90055-7
https://doi.org/10.1016/0001-8708(87)90055-7
https://doi.org/10.1007/s00039-017-0396-9
https://doi.org/10.1145/3088513
https://doi.org/10.1145/3088513
https://doi.org/10.1137/1.9781611974331.ch25
https://doi.org/10.1137/1.9781611974331.ch25
https://doi.org/10.1007/s00224-004-1155-5
https://doi.org/10.1137/1.9781611973402.72

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2098 M. BONAMY, C. GAVOILLE, AND M. PILIPCZUK

[11] S. Alstrup, H. Kaplan, M. Thorup, and U. Zwick, Adjacency labeling schemes and induced-
universal graphs, SIAM J. Discrete Math., 33 (2019), pp. 116--137, https://doi.org/10.1137/
16M1105967.

[12] S. Alstrup and T. Rauhe, Small induced-universal graphs and compact implicit graph repre-
sentations, in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2002, 2002, pp. 53--62, https://doi.org/10.1109/SFCS.2002.1181882.

[13] L. Babai, F. R. K. Chung, P. Erd\H os, R. L. Graham, and J. H. Spencer, On graphs which
contain all sparse graphs, in Theory and Practice of Combinatorics, P. L. Hammer, A.
Rose, G. Sabidussi, and S. Turgeon, eds., Ann. Discrete Math. 12 Elsevier, Amsterdam,
1982, pp. 21--26, https://doi.org/10.1016/S0304-0208(08)73486-8.

[14] H. L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth,
SIAM J. Comput., 25 (1996), pp. 1305--1317, https://doi.org/10.1137/S0097539793251219.

[15] M. Bonamy, C. Gavoille, and M. Pilipczuk, Shorter labeling schemes for planar graphs,
in Proceedings of the 31st Symposium on Discrete Algorithms, SODA 2020, ACM-SIAM,
2020, pp. 446--462, https://doi.org/10.1137/1.9781611975994.27.

[16] N. Bonichon, C. Gavoille, and A. Labourel, Short labels by traversal and jumping, in
13th International Colloquium on Structural Information \& Communication Complexity,
SIROCCO 2006, Lecture Notes in Comput. Sci. 4056, Springer, Cham, 2006, pp. 143--156,
https://doi.org/10.1007/11780823 12.

[17] P. Bose, P. Morin, and S. Odak, An Optimal Algorithm for Product Structure in Planar
Graphs, preprint, arXiv:2202.08870v1 [cs.DS], 2022, https://doi.org/10.48550/arXiv.2202.
08870.

[18] S. Butler, Induced-universal graphs for graphs with bounded maximum degree, Graphs Com-
bin., 25 (2009), pp. 461--468, https://doi.org/10.1007/s00373-009-0860-x.

[19] M. R. Capalbo, Small universal graphs for bounded-degree planar graphs, Combinatorica, 22
(2002), pp. 345--359, https://doi.org/10.1007/s004930200017.

[20] J. Chalopin, D. Gon\c calves, and P. Ochem, Planar graphs have 1-string representations, Dis-
crete Comput. Geom., 43 (2010), pp. 626--647, https://doi.org/10.1007/s00454-009-9196-9.

[21] F. R. K. Chung, Universal graphs and induced-universal graphs, J. Graph Theory, 14 (1990),
pp. 443--454, https://doi.org/10.1002/jgt.3190140408.

[22] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl, On triangle contact graphs,
Combinatorics, Probability \& Computing, 3 (1994), pp. 233--246, https://doi.org/10.1017/
S0963548300001139.

[23] V. Dujmovi\'c, L. Esperet, C. Gavoille, G. Joret, P. Micek, and P. Morin, Adjacency
labelling for planar graphs (and beyond), Journal of the ACM, 68 (2021), pp. 42:1--42:33,
https://doi.org/10.1145/3477542, https://doi.org/10.1145/3477542.

[24] V. Dujmovi\'c, L. Esperet, G. Joret, B. Walczak, and D. R. Wood, Planar graphs have
bounded nonrepetitive chromatic number, Adv. Combin., (2020), 5, https://doi.org/10.
19086/aic.12100.

[25] V. Dujmovi\'c, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood, Planar
graphs have bounded queue-number, J. ACM, 67 (2020), pp. 22:1--22:38, https://doi.org/
10.1145/3385731.

[26] V. Dujmovi\'c, P. Morin, and D. R. Wood, Graph Product Structure for Non-Minor-Closed
Classes, preprint, arXiv:1907.05168 [math.CO], 2020.

[27] Z. Dvo\v r\'ak, T. Huynh, G. Joret, C. Liu, and D. R. Wood, Notes on Graph Product Structure
Theory, preprint, arXiv:2001.08860 [math.CO], 2020.

[28] L. Esperet, G. Joret, and P. Morin, Sparse Universal Graphs for Planarity, preprint,
arXiv:2010.05779v1 [math.CO], 2021.

[29] L. Esperet, A. Labourel, and P. Ochem, On induced-universal graphs for the class of
bounded-degree graphs, Inform. Process. Lett., 108 (2008), pp. 255--260, https://doi.org/
10.1016/j.ipl.2008.04.020.

[30] P. Fraigniaud and C. Gavoille, Routing in trees, in 28th International Colloquium on Au-
tomata, Languages and Programming, ICALP 2001, Lecture Notes in Comput. Sci. 2076,
Springer, Cham, 2001, pp. 757--772, https://doi.org/10.1007/3-540-48224-5 62.

[31] P. Fraigniaud and A. Korman, An optimal ancestry labeling scheme with applications to
XML trees and universal posets, J. ACM, 63 (2016), pp. 6:1--6:31, https://doi.org/10.
1145/2794076.

[32] O. Freedman, P. Gawrychowski, P. K. Nicholson, and O. Weimann, Optimal distance
labeling schemes for trees, in Proceedings of the 36th Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC 2017, 2017, pp. 185--194, https://doi.org/10.1145/
3087801.3087804.D

ow
nl

oa
de

d
07

/1
0/

23
 to

 1
47

.2
10

.1
29

.2
09

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/16M1105967
https://doi.org/10.1137/16M1105967
https://doi.org/10.1109/SFCS.2002.1181882
https://doi.org/10.1016/S0304-0208(08)73486-8
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/1.9781611975994.27
https://doi.org/10.1007/11780823_12
https://doi.org/10.48550/arXiv.2202.08870
https://doi.org/10.48550/arXiv.2202.08870
https://doi.org/10.1007/s00373-009-0860-x
https://doi.org/10.1007/s004930200017
https://doi.org/10.1007/s00454-009-9196-9
https://doi.org/10.1002/jgt.3190140408
https://doi.org/10.1017/S0963548300001139
https://doi.org/10.1017/S0963548300001139
https://doi.org/10.1145/3477542
https://doi.org/10.1145/3477542
https://doi.org/10.19086/aic.12100
https://doi.org/10.19086/aic.12100
https://doi.org/10.1145/3385731
https://doi.org/10.1145/3385731
https://doi.org/10.1016/j.ipl.2008.04.020
https://doi.org/10.1016/j.ipl.2008.04.020
https://doi.org/10.1007/3-540-48224-5_62
https://doi.org/10.1145/2794076
https://doi.org/10.1145/2794076
https://doi.org/10.1145/3087801.3087804
https://doi.org/10.1145/3087801.3087804

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SHORTER LABELING SCHEMES FOR PLANAR GRAPHS 2099

[33] C. Gavoille and A. Labourel, Shorter implicit representation for planar graphs and bounded
treewidth graphs, in 15th Annual European Symposium on Algorithms, ESA 2007, Lecture
Notes in Comput. Sci. 4698, Springer, Cham, 2007, pp. 582--593, https://doi.org/10.1007/
978-3-540-75520-3 52.

[34] C. Gavoille and C. Paul, Optimal distance labeling for interval graphs and related graphs
families, SIAM J. Discrete Math., 22 (2008), pp. 1239--1258, https://doi.org/10.1137/
050635006.

[35] C. Gavoille and D. Peleg, Compact and localized distributed data structures, Distrib. Com-
put., 16 (2003), pp. 111--120, https://doi.org/10.1007/s00446-002-0073-5.

[36] P. Gawrychowski and W. Janczewski, Simpler adjacency labeling for planar graphs with
B-trees, in Proceedings of the 5th Symposium on Simplicity in Algorithms, SOSA 2022,
SIAM, 2022, pp. 24--36, https://doi.org/10.1137/1.9781611977066.3.

[37] P. Gawrychowski, A. Kosowski, and P. Uzna\'nski, Sublinear-space distance labeling using
hubs, in 30th International Symposium on Distributed Computing, DISC 2016, Lecture
Notes in Comput. Sci. 9888, Springer, Cham, 2016, pp. 230--242, https://doi.org/10.1007/
978-3-662-53426-7 17.

[38] P. Gawrychowski and P. Uzna\'nski, A Note on Distance Labeling in Planar Graphs, preprint,
arXiv:1611.06529v1 [cs.DS], 2016, https://doi.org/10.48550/arXiv.1611.06529.

[39] D. Gon\c calves, L. Isenmann, and C. Pennarun, Planar graphs as L-intersection or L-contact
graphs, in Proceedings of the 29th Symposium on Discrete Algorithms, SODA 2018, ACM-
SIAM, 2018, pp. 172--184, https://doi.org/10.1137/1.9781611975031.12.

[40] S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs, in Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 334--343,
https://doi.org/10.1145/62212.62244.

[41] M. Katz, N. A. Katz, A. Korman, and D. Peleg, Labeling schemes for flow and connectivity,
SIAM J. Comput., 34 (2004), pp. 23--40, https://doi.org/10.1137/S0097539703433912.

[42] P. Koebe, Kontaktprobleme der konformen abbildung, Berichte Ber. Verhand. S\"achsische Akad.
Wiss. Leipzig Math. Phys., 88 (1936), pp. 141--164.

[43] P. Morin, A fast algorithm for the product structure of planar graphs, Algorithmica, 83 (2021),
pp. 1544--1558, https://doi.org/10.1007/s00453-020-00793-5.

[44] D. Peleg, Informative labeling schemes for graphs, in 25th International Symposium on Math-
ematical Foundations of Computer Science, MFCS 2000, Lecture Notes in Comput. Sci.
1893, Springer, Cham, 2000, pp. 579--588, https://doi.org/10.1007/3-540-44612-5 53.

[45] D. Peleg, Informative labeling schemes for graphs, Theoret. Comput. Sci., 340 (2005), pp. 577--
593, https://doi.org/10.1016/j.tcs.2005.03.015.

[46] C. J. Rhee, Y. D. Liang, S. K. Dhall, and S. Lakshmivarahan, Efficient algorithms for
finding depth-first and breadth-first search trees in permutation graphs, Inform. Process.
Lett., 49 (1994), pp. 45--50, https://doi.org/10.1016/0020-0190(94)90053-1.

[47] N. Robertson and P. D. Seymour, Graph minors. XX. Wagner's conjecture, J. Combin.
Theory Ser. B, 92 (2004), pp. 325--357, https://doi.org/10.1016/j.jctb.2004.08.001.

[48] L. Roditty and R. Tov, New routing techniques and their applications, in Proceedings of
the 34th Annual ACM Symposium on Principles of Distributed Computing, PODC 2015,
pp. 23--32, https://doi.org/10.1145/2767386.2767409.

[49] N. Rotbart, New Ideas on Labeling Schemes, Ph.D. thesis, University of Copenhagen, 2016,
http://www.academia.edu/33855491/New Ideas on Labeling Schemes.

[50] W. Schnyder, Planar graphs and poset dimension, Order, 5 (1989), pp. 323--343, https://doi.
org/10.1007/BF00353652.

[51] J. P. Spinrad, Efficient Graph Representations, Fields Inst. Monogr. 19, American Mathemat-
ical Society, Providence, RI, 2003.

[52] C. Thomassen, Interval representations of planar graphs, J. Combin. Theory Ser. B, 40 (1986),
pp. 9--20, https://doi.org/10.1016/0095-8956(86)90061-4.

[53] M. Thorup and U. Zwick, Compact routing schemes, in Proceedings of the 13th Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA 2001, pp. 1--10, https:
//doi.org/10.1145/378580.378581.

[54] T. Ueckerdt, D. R. Wood, and W. Yi, An Improved Planar Graph Product Structure Theo-
rem, preprint, arXiv:2108.00198v1 [math.CO], 2021, https://doi.org/10.48550/arXiv.2108.
00198.

D
ow

nl
oa

de
d

07
/1

0/
23

 to
 1

47
.2

10
.1

29
.2

09
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1007/978-3-540-75520-3_52
https://doi.org/10.1007/978-3-540-75520-3_52
https://doi.org/10.1137/050635006
https://doi.org/10.1137/050635006
https://doi.org/10.1007/s00446-002-0073-5
https://doi.org/10.1137/1.9781611977066.3
https://doi.org/10.1007/978-3-662-53426-7_17
https://doi.org/10.1007/978-3-662-53426-7_17
https://doi.org/10.48550/arXiv.1611.06529
https://doi.org/10.1137/1.9781611975031.12
https://doi.org/10.1145/62212.62244
https://doi.org/10.1137/S0097539703433912
https://doi.org/10.1007/s00453-020-00793-5
https://doi.org/10.1007/3-540-44612-5_53
https://doi.org/10.1016/j.tcs.2005.03.015
https://doi.org/10.1016/0020-0190(94)90053-1
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1145/2767386.2767409
http://www.academia.edu/33855491/New_Ideas_on_Labeling_Schemes
https://doi.org/10.1007/BF00353652
https://doi.org/10.1007/BF00353652
https://doi.org/10.1016/0095-8956(86)90061-4
https://doi.org/10.1145/378580.378581
https://doi.org/10.1145/378580.378581
https://doi.org/10.48550/arXiv.2108.00198
https://doi.org/10.48550/arXiv.2108.00198

	Introduction
	Preliminaries
	Bounded treewidth graphs
	Encoding and decoding
	Saving on labels of a small set of vertices

	Case of a short path
	General case
	Conclusions
	References

