
Shorter Labeling Schemes for Planar Graphs

Representation of a Graph

adjacency list

1 (2,5 2 1,3 3 2,4,5 4 3 5 (1,3) matrix

12345

 $\begin{array}{c|cccc}
1 & 01001 \\
2 & 10100 \\
3 & 01011 \\
4 & 00100 \\
5 & 10100
\end{array}$

1 node = 1 pointer in the data-structure (it does not carry any specific information)

Implicit Representation

To associate with the nodes more information, typically adjacency, and to remove the data-structure.

Interval graphs: $u \mapsto I(u) \subseteq [1,2n]$

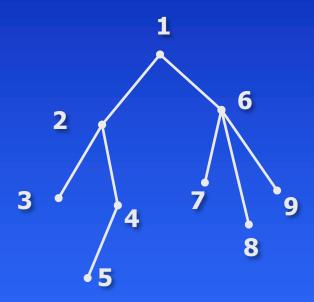
Edges: $u-v \Leftrightarrow I(u) \cap I(v) \neq \emptyset$

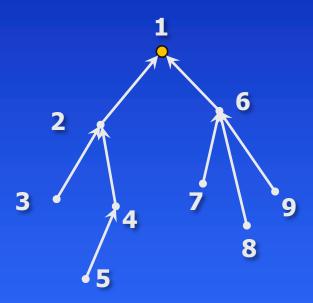
Compact representation: $O(\log n)$ bits/node Possibly time O(n) algorithms vs. O(n+m)

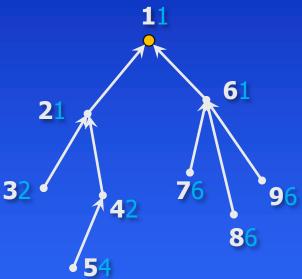
Labeling Schemes

P = a graph property defined on pairs of nodes

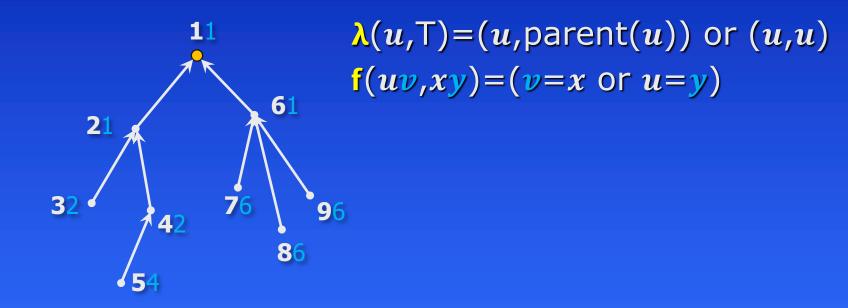
F = a graph family


A P-labeling scheme for F is a pair (λ, f) such that $\forall G \in F, \forall u, v \in V(G)$:


- [labeling] $\lambda(u,G)$ is a binary string
- [decoder] $f(\lambda(u,G),\lambda(v,G))=P(u,v,G)$

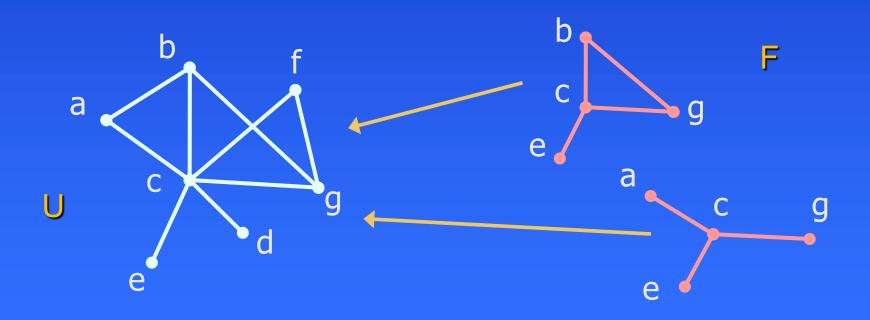

Goal: to minimize the maximum label size

In this talk: P(u,v,G) is TRUE $\Leftrightarrow uv \in E(G)$



$$\lambda(u,T)=(u, parent(u)) \text{ or } (u,u)$$

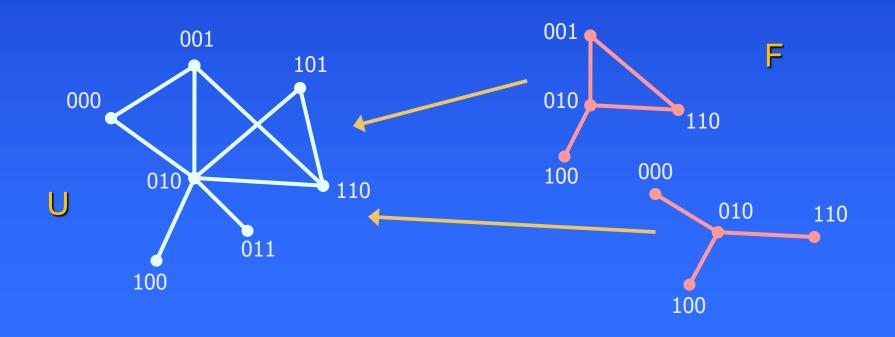
 $f(uv,xy)=(v=x \text{ or } u=y)$

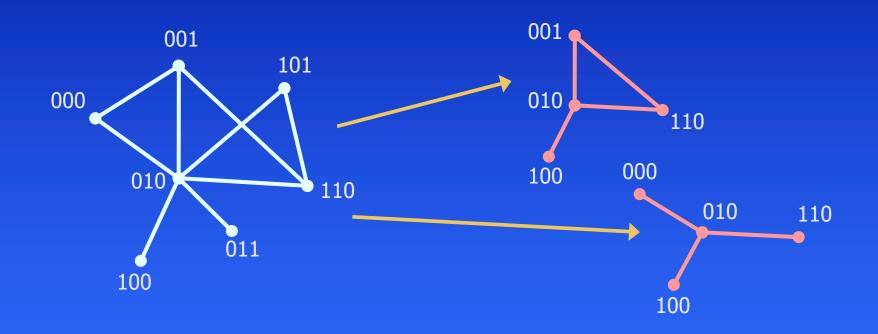


For trees with n nodes: $\sim 2\log n$ bits/node (the constant does matter [Abiteboul et al. - SICOMP '06])

Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer '82]


A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.


Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer '82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.

Induced-Universal Graphs

induced-universal graph U

graphs of F

 $c \log n$ -bit labeling \Leftrightarrow induced-universal graph of n^c nodes

Universal Graphs for Trees (for n=6 nodes)

From the (u, parent(u)) labeling \Rightarrow induced-universal graph of n^2 =36 nodes

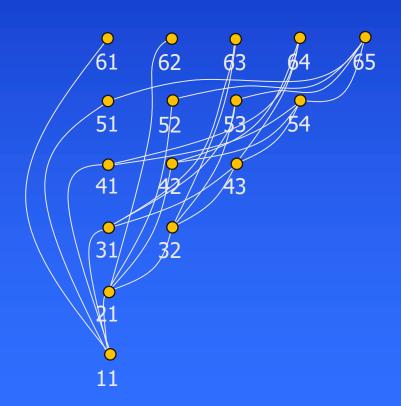
6 1	6 2	6 3	6 4	65	66
o	<u>•</u>	•	<u>o</u>	<u>•</u>	•
51	52	53	54	55	56
o	o	4 3	o	o	•
41	42		44	45	46
o	o	o	<u>o</u>	o	•
31	32	33	34	35	36
o	o	o	<u>o</u>	o	o
21	22	23	24	25	26
o 11	<u> </u>	o 13	<u> </u>	<u>o</u> 15	<u>o</u> 16

Using DFS for T: (u,v) $\Rightarrow u > v$ or u = v = 1

Universal Graphs for Trees (for n=6 nodes)

From the (u, parent(u)) labeling \Rightarrow induced-universal graph of n^2 =36 nodes

6 1	62	6 3	6 4	65	
o 51	<u>•</u> 52	• 53	• 54		
o 41	• 42	43			
o 31	32				
o 21					
0 11	• 12				• 16


Using DFS for T: (u,v)

$$\Rightarrow u>v$$
 or $u=v=1$

$$\Rightarrow n(n-1)/2+1=16$$
 nodes

Universal Graphs for Trees (for n=6 nodes)

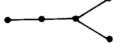
From the (u, parent(u)) labeling \Rightarrow induced-universal graph of $n^2=36$ nodes

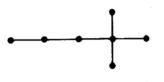
Using DFS for T: (u,v)

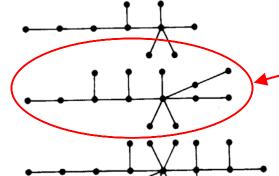
 $\Rightarrow u>v$ or u=v=1

 $\Rightarrow n(n-1)/2+1=16$ nodes

Universal Graphs for Trees (universal trees)




n=2:


$$n = 3$$
:

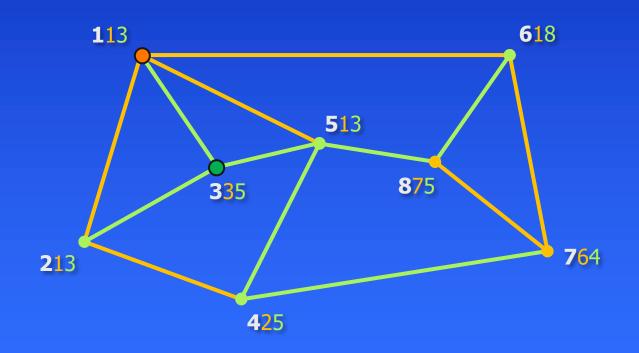
$$n = 4$$
:

n = 5:

$$n = 6$$
:

n = 7:

ON GRAPHS WHICH CONTAIN ALL SMALL TREES, II.


F.R.K. CHUNG - R.L. GRAHAM - N. PIPPENGER

COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI
18. COMBINATORICS, KESZTHELY (HUNGARY), 1976.

14 nodes

Labeling Schemes for Planar Graphs

Edge partition: combining schemes


```
Arboricity-k graphs: (k+1)\log n bits \Rightarrow Planar (k=3): 4\log n bits [KNR - STOC'88]
```

Better Labeling Schemes

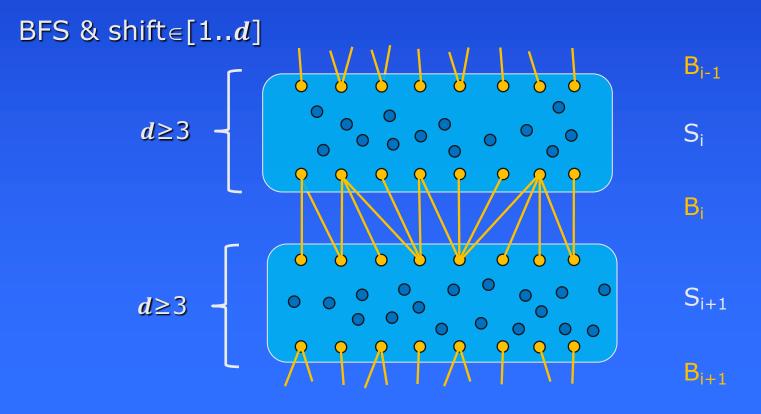
```
For trees: \log n + O(\log^* n), \log n + O(1)
[Alstrup,Rauhe - FOCS'02]
[Alstrup,Dahlgaard,B.T.Knudsen - FOCS'15 & JACM'17]
\Rightarrow Arboricity-k: k\log n + O(1)
\Rightarrow Planar: 3\log n + O(1)

For treewidth-k: \log n + O(k\log\log n)
[G.,Labourel - ESA'07]
\Rightarrow Planar & Minor-free: 2\log n + O(\log\log n)
```

A New Bound

For planar & bounded genus: $\frac{4}{3} \log n + O(\log \log n)$ \Rightarrow

Induced-universal graph of $n^{4/3+o(1)}$ nodes for n-node planar graphs (and bounded genus graphs)


> Labeling the nodes is polynomial Decoding adjacency takes constant time

Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have d layers $\sim n^{1/3}$

B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes

Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have d layers $\sim n^{1/3}$

B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes

BFS & shift $\in [1...d]$

 B_{i-1}

Bi

 B_{i+1}

Sketch of Proof (2/2)

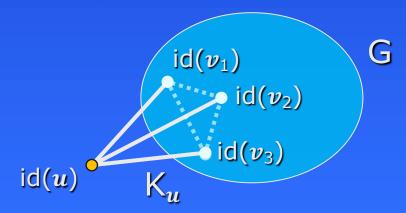
Labeling for B: $\log(n/d)$

Labeling for S: $\log n + \log d$ new!

[$up\ to\ +O(loglogn)\ terms$]

Problem: nodes in V(B) pay both labels $\Rightarrow \log(n/d) + \log n + \log d = 2\log n$ 8

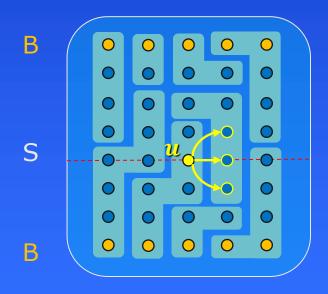
Improved labeling for S: nodes in V(B) pay only log|B| = log(n/d) bits!


- \Rightarrow nodes in S\V(B): $\log n + \log d = \frac{4}{3} \log n$
- \Rightarrow nodes in V(B): $\log(n/d) + \log(n/d) = \frac{4}{3} \log n$

Improved Scheme for Treewidth-k

G = treewidth-k, V(G) = V₁ \cup V₂, K_u = N[u] = simplicial complex of u, $|K_u| \le k+1$.

Lemma. G has a scheme providing, for each u, id(u) and $\lambda(u)$ st. $\forall v \in K_u$ id(v) can be extracted from $\lambda(u)$. Moreover, for $u \in V_i$


 $|\lambda(u)| = \log|V_i| + O(k\log\log|V(G)|).$

 $u-v \Leftrightarrow id(v) \in \{id(K_u)\}\ or\ id(u) \in \{id(K_v)\}\$

Labeling Scheme for S

Key lemma. [2018,2019] If G is planar, there is a node partition into monotone paths taken from any given BFS such that contracting each one leads to a treewidth-8 graph.

Label $\lambda(u)$ consists of:

- the treewidth-8 scheme
- the depth of \mathbf{u} in S (unless $\mathbf{u} \in B$)
- 3 bits/path in the treewidth-8 scheme, i.e., 3x8 = 24 extra bits

Open Problems

- 1. Improve to $c \log n$ with c < 4/3 for planar
- Extend to minor-free graphs
- 3. Improve to $\log n + \theta(k)$ for treewidth-k
- 4. Prove lower bounds for planar or minor-free

Best lower bound for planar: $\log n + \Omega(1)$

No hereditary family with $n! \, 2^{O(n)}$ labeled graphs (trees, planar, bounded genus, bounded treewidth, minor-free ...) is known to require labels of $\log n + o(1)$ bits.

