
Shorter Labeling Schemes for Planar Graphs∗

Marthe Bonamy† Cyril Gavoille‡ Michał Pilipczuk§

Abstract
An adjacency labeling scheme for a given class of graphs is an
algorithm that for every graph G from the class, assigns bit
strings (labels) to vertices of G so that for any two vertices
u, v, whether u and v are adjacent can be determined by a
fixed procedure that examines only their labels. It is known
that planar graphs with n vertices admit a labeling scheme
with labels of bit length (2 + o(1)) logn. In this work we
improve this bound by designing a labeling scheme with
labels of bit length (4

3
+ o(1)) logn.

In graph-theoretical terms, this implies an explicit con-
struction of a graph on n4/3+o(1) vertices that contains all
planar graphs on n vertices as induced subgraphs, improving
the previous best upper bound of n2+o(1).

Our scheme generalizes to graphs of bounded Euler
genus with the same label length up to a second-order
term. All the labels of the input graph can be computed
in polynomial time, while adjacency can be decided from
the labels in constant time.

1 Introduction

When representing graphs, say with adjacency lists or
matrices, vertex identifiers usually do not play any
particular role with respect to the structure of the
graph: they are essentially just pointers in the data
structure. In contrast, a graph is implicitly represented
when each vertex of the graph is associated to more
information so that adjacency, for instance, can be
efficiently determined from the identifiers without the
need of any global data-structure (cf. [KNR88, Spi03]).
For instance, if G is an interval graph with n vertices,
one can associate with each vertex u some interval
I(u) ⊆ [1, 2n] with integer endpoints so that u, v are
adjacent if and only if I(u) ∩ I(v) 6= ∅. Clearly,
no adjacency lists or matrices are required anymore.
AlthoughGmay have a quadratic number of edges, such

∗The work of Michał Pilipczuk is a part of project TOTAL that
has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 677651). The work of Marthe
Bonamy and Cyril Gavoille is partially funded by the French ANR
projects ANR-16-CE40-0023 (DESCARTES) and ANR-17-CE40-
0015 (DISTANCIA).
†CNRS-LaBRI, University of Bordeaux, France, marthe.

bonamy@u-bordeaux.fr.
‡LaBRI, University of Bordeaux, France, gavoille@labri.fr.
§Institute of Informatics, University of Warsaw, Poland,

michal.pilipczuk@mimuw.edu.pl.

an implicit representation uses 2 log n + O(1) bits per
vertex1, regardless of its degree, which is asymptotically
optimal [GP08]. Compact representations have several
advantages, not only for the memory storage, but also
from algorithmic perspectives. For instance, given a
succinct representation, BFS traversal can be done in
O(n) time [RLDL94, ACJR19], even if the graph has
Ω(n2) edges. Speedups due to succinct representations
are ubiquitous in the design of algorithms and data
structures.

Formally introduced by Peleg [Pel00, Pel05], infor-
mative labeling schemes present a way to formalize im-
plicit representations of graphs. For a given function Π
defined on pairs of vertices of a graph from some given
class of graphs, an informative labeling scheme has two
components: an encoding algorithm that associates with
each vertex a piece of information (label); and a decod-
ing algorithm that computes Π(u, v,G), the value of Π
applied on vertices u, v of the graph G. The input of the
decoding algorithm consists solely of the labels of u and
of v, with no other information provided. So, finding
an implicit representation of a graph G can be restated
as computing an adjacency labeling scheme for G, that
is, an informative labeling scheme where Π(u, v,G) is
true if and only if u, v are adjacent in G.

In this paper we will focus on such adjacency la-
beling schemes (referred to as labeling schemes from
now on), but many functions Π other than adja-
cency are of great interest. Among them are ances-
try [FK10b] and lowest common ancestor [AGKR04,
AHGL14, GKLPP18] in rooted trees, distance la-
beling [GU16, GKU16, AGHP16, FGNW17, KUV19]
and forbidden-set distance labeling [ACGP16], compact
routing [FG01, TZ01, RT15], flow [KKKP04], and many
others. We refer to [GP03], and references therein, for
a survey of informative labeling schemes and their ap-
plications in distributed computing, and also to [Rot16]
for a survey on recent developments in labeling schemes
specialized for trees.

Planar graphs. Planar graphs are perhaps the
most studied class of graphs in this area, due to

1Throughout the paper, we denote by logn the binary loga-
rithm of n.

446
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

marthe.bonamy@u-bordeaux.fr
marthe.bonamy@u-bordeaux.fr
gavoille@labri.fr
michal.pilipczuk@mimuw.edu.pl

the wide variety of their implicit representations.
To mention just a few, planar graphs are con-
tact graphs of circles [Koe36], of 3D boxes [Tho86],
of triangles [dFOdMR94], and more recently, of L-
shapes [GIP18]. They also have 1-string representa-
tions [CGO10], and their incidence graphs form posets
of dimension three [Sch89]. Each of these representa-
tions leads to a labelling scheme where each vertex can
be encoded using a label consisting of O(log n) bits, in-
dependent of its degree.

The first explicit bound on the label length, given
by Kannan et al. [KNR88], was 4 dlog ne bits. The
representation in terms of dimension-3 posets due to
Schnyder [Sch89] actually implies a 3 dlog ne bit label-
ing, and similar bounds can be derived from polyno-
mial sized universal graphs (cf. related work below).
Using the fact that planar graphs have arboricity at
most three together with a labeling scheme for forests
with label length log n + o(log n), one can achieve also
a similar 3 log n + o(log n) upper bound for planar
graphs, where the lower-order term o(log n) directly
depends on the second-order term of the bound for
forests. It was a challenging question to optimize this
second-order for forests. It has been successively re-
duced from O(log log n) [Chu90] to O(log∗ n) [AR02],
and then to a constant only recently by Alstrup et
al. [ADBTK17]. As explained above, this leads to an
upper bound of 3 log n + O(1) for planar graphs. By
significantly improving the labeling scheme for bounded
treewidth graphs, namely from O(k log n) [KNR88] to
log n + O(k log logn), Gavoille and Labourel [GL07]
showed that partitioning the edges of a planar graph
into two bounded treewidth subgraphs, rather than into
three forests, leads to a shorter representation: with la-
bels consisting of 2 log n+O(log log n) bits. This is cur-
rently the best known upper bound for planar graphs.

The best known results for subclasses of planar
graphs are reported on Table 1.

Our contribution. As shown in Table 1, in this
work we present a new labeling scheme for planar graphs
that uses labels of length bounded2 by 4

3 log n. Note
that this not only improves the previously best known
bound of 2 log n for general planar graphs [GL07], but
even the refined bound of 3

2 log n for the case of planar
graphs of maximum degree 4 [AR14]. Our contribution
is actually three-fold.

First, we design a labeling scheme with labels of
length log n+ log d if the graph has diameter at most d
(Theorem 4.1 in Section 4). This parametrized bound

2For brevity, in this informal exposition we ignore terms of
lower order o(logn).

is never worse than the currently best known bound of
2 log n, because we always have d < n. Our scheme is
based on a recent decomposition theorem, which states
that the vertices of a planar graph can be partitioned
into geodesics (shortest paths) so that contracting every
geodesic to a single vertex turns the graph into a
graph of constant treewidth. This was first proved by
Pilipczuk and Siebertz in [PS19], and then refined by
Dujmović et al. [DJM+19] as follows: the geodesics in
the partition can be selected from any fixed BFS forest
of the graph. This statement was used in [DJM+19] to
prove that planar graphs have bounded queue number
and in [DEJ+19] to prove that they have bounded
nonrepetitive chromatic number, which resolved two
long-standing open questions in graph theory. Thus, in
this work we provide another application of the result
of Dujmović et al.: a construction of shorter labeling
schemes for planar graphs.

The second contribution is the main one: a labeling
scheme for planar graphs that uses labels of length
4
3 log n (Theorem 5.1 in Section 5). To achieve this, we
combine the scheme for planar graphs of low diameter
with the layering technique. Essentially, we compute a
decomposition of the graph into strips of depth bounded
by some parameter d ∈ N thanks to the Baker’s trick.
Strips are separated by borders whose union is a graph
on O(n/d) vertices and of constant treewidth. Using the
results of [GL07], for this border graph we can compute
a labeling with labels of length log (n/d). On the other
hand, the low-diameter result provides a scheme for
the strips with labels of length at most log n + log d.
At this point, superposing these two schemes gives no
improvement, because vertices appearing at the borders
of strips have to inherit labels from both labelings:
log n+log d from the labeling of the strips and log (n/d)
from the labeling of the border, which sums up to
2 log n. However, by revisiting the scheme for graphs of
bounded treewidth we are able to show that for vertices
at the borders of strips, the labeling for strips can use
much shorter labels: only of length log (n/d) instead
of log n + log d. Hence, the combined labels of border
vertices are of length at most 2 log (n/d), implying that
every vertex receives a label of length bounded by

max { log n+ log d , 2 log (n/d) } .

This expression is minimized for d = n1/3 and then
evaluates to 4

3 log n, the desired bound.
The third contribution is a generalization of the

previous technique to graphs of bounded Euler genus.
Namely, for every fixed g ∈ N, we construct a labelling
scheme for graphs of Euler genus at most g that
uses labels of length at most 4

3 log n (Theorem B.1 in
Section B).

447
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Graph classes Upper bound References
(with n vertices) (label length in bits)

maximum degree-2 log n+O(1) [But09, ELO08, AABTKS16]
caterpillars log n+O(1) [BGL06]

bounded degree trees log n+O(1) [Chu90]
bounded depth trees log n+O(1) [FK10a]

trees log n+O(1) [ADBTK17]
bounded degree outerplanar log n+O(1) [Chu90, AR14]

outerplanar log n+O(log log n) [GL07]
bounded treewidth planar log n+O(log log n) [GL07]
maximum degree-4 planar 3

2 log n+O(log log n) [AR14]
bounded degree planar 2 log n+O(1) [Chu90]

planar 2 log n+O(log log n) [GL07]

diameter-d planar log n+ log d+O(log log n) [this paper]
planar 4

3 log n+O(log log n) [this paper]

Table 1: State-of-the-art for adjacency labeling schemes on planar graphs and some subclasses. The bounds from
references [Chu90, ELO08, But09] come from induced-universal graphs, whereas all the others come from labeling
schemes. The only known lower bound for planar graphs is log n+ Ω(1).

In all our labeling schemes, given the input graph
we can compute the labeling of its vertices in polynomial
time, while the adjacency can be determined from the
labels in constant time.

Connections with universal graphs. It has
been observed in [KNR88] that the design of labeling
schemes with short labels is tightly connected with the
construction of small induced-universal graphs. Recall
that a graph U is induced-universal for a given set of
graphs S if every graph G ∈ S is isomorphic to some
induced subgraph of U. Then graphs from S admit a
labeling scheme with k-bit labels if and only if S has
an induced-universal graph U with at most 2k vertices,
see [KNR88]. Thus, our new labeling scheme provides
an explicit construction of an induced-universal graph
for n-vertex planar graphs that has n4/3+o(1) vertices,
improving upon the previously best known bound of
n2+o(1), derived from [GL07].

Therefore, we proved that the minimum possible
number of vertices of an induced-universal graph for n-
vertex planar graphs lies between Ω(n) and n4/3+o(1).
The search for optimum bounds on the sizes of induced-
universal graphs is a well-studied topic in graph theory,
see for example the recent developments for general
n-vertex graphs [Alo17, AKTZ15] and for n-vertex
trees [ADBTK17]. We refer readers interested in this
topic to the recent survey of Alstrup et al. [AKTZ19].

Apart from induced-universal graphs, there is also

an alternative definition: edge-universal graphs. Here,
we say that U is edge-universal for a set of graph
S if every graph from S is a subgraph of U (not
necessarily induced). As far as edge-universal graphs for
n-vertex planar graphs are concerned, there are much
more concise constructions than in the induced setting.
Babai et al. [BCE+82] gave a construction with O(n3/2)
edges, while if one restricts the question to n-vertex
planar graphs with constant maximum degree, then the
number of edges can be reduced even to O(n) [Cap02].
However, in general it is unclear how edge-universal
graphs can be turned into induced-universal graphs
without a significant explosion in the size, see e.g. the
discussion in [Chu90].

Organization. After brief preliminaries in Sec-
tion 2, we revisit and strengthen the labeling scheme
for graphs of bounded treewidth of Gavoille and
Labourel [GL07] in Section 3. In Section 4 we provide
the scheme for planar graphs of bounded diameter, while
in Section 5 we treat the case of general planar graphs.
We conclude in Section 6 by stating a few open prob-
lems. The scheme for graphs of bounded genus, as well
as most of the technical details of the modification of
the scheme for bounded treewidth graphs, are provided
in the appendix.

A full and updated version of this work is available
as an arXiv preprint [BGP19].

448
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

2 Preliminaries

We use standard graph notation. For a graph G, the
vertex and edge sets of G are denoted by V (G) and
E(G), respectively. For A ⊆ V (G), we write G[A] for
the subgraph of G induced by A and G − A for the
subgraph of G induced by V (G) \A.

Labeling schemes. The following definition for-
malizes the concept of labeling schemes.

Definition 1. Let C be a class of graphs. An adja-
cency labeling scheme for C is a pair 〈λ, ϕ〉 of functions
such that, for every graph G ∈ C, it holds:

• λ is the Encoder that assigns to every vertex u of
G a different binary string λ(u,G); and

• ϕ is the Decoder that decides adjacency from the
labels taken from G. More precisely, for every pair
u, v of vertices of G, ϕ(λ(u,G), λ(v,G)) is true if
and only if u, v are adjacent in G.

The length of the labeling scheme 〈λ, ϕ〉 is the
function that maps every n ∈ N to the maximum length,
expressed in the number of bits, of labels assigned by the
Encoder in n-vertex graphs from C.

In the above definition we measure the length only
in terms of the vertex count n, but we can extend the
definition to incorporate auxiliary graph parameters,
like diameter or treewidth, in a natural way. Whenever
G is clear from the context, we write λ(u) as a shorthand
for shorthand for λ(u,G).

When speaking about the complexity of Encoder
and Decoder, we assume RAM model with machine
words of bit length O(log n) and unit cost arithmetic
operations.

Tree decompositions. A tree decomposition of
a graph G is a pair (T, β), where T is a tree and
β maps every node x of T to its bag β(x) ⊆ V (G)
so that: for every edge uv of G there exists a node
x satisfying {u, v} ⊆ β(x), and for every vertex u
of G, the set {x ∈ V (T) : u ∈ β(x)} induces a non-
empty, connected subtree of T . The width of (T, β)
is maxx∈V (T) |β(x)| − 1, while the treewidth of G is the
minimum possible width of a tree decomposition of G.

We will also use the well-known fact that planar
graphs have bounded local treewidth.

Lemma 2.1. Every connected planar graph of radius at
most ρ has treewidth at most 3ρ.

Layered partitions of planar graphs. We now
recall the results of Dujmović et al. [DJM+19] that we
will use later on. For this, we need a few auxiliary

definitions. For a graph G, a BFS forest of G is
a spanning forest of G obtained by picking any root
vertex in every connected component of G, running
breadth-first search from the roots, and including all the
traversed edges in the forest. Two vertices of a rooted
tree are related if one is the ancestor (not necessarily
proper) of the other. A column of a BFS forest F is any
path in F connecting related vertices. Note that every
column is a shortest path between its endpoints in G,
and is contained in a shortest path from the descendant
endpoint to the root of the respective tree of F .

Suppose P is a partition of the vertex set of a graph
G. The quotient graph G/P has P as its vertex set, and
two different parts A,B ∈ P are considered adjacent in
G/P if and only if there exists a ∈ A and b ∈ B such
that a and b are adjacent in G.

Theorem 2.1. (Theorem 8 of [DJM+19]3) Let G
be a planar graph, and let F be any BFS forest of G.
Then, one can construct in polynomial time a partition
P of the vertex set of G such that every part of P is the
vertex set of a column of F and the quotient graph G/P
has treewidth at most 8.

We remark that the algorithmic statement is not
stated explicitly in [DJM+19], but a polynomial-time
algorithm can be obtained by directly following the
construction in the proof.

3 Bounded Treewidth Graphs

Like the construction of [GL07] for planar graphs,
our result relies on the labeling scheme developed for
bounded treewidth graphs.

Theorem 3.1. ([GL07]) For any fixed k ∈ N, graphs
of treewidth at most k admit a labeling scheme of length
log n + O(k log log n). The Encoder runs in O(n log n)
time and the Decoder runs in constant time.

In later sections we significantly rely on the combi-
natorics behind the proof of Theorem 3.1. We will need
two ingredients:

(1) an understanding of how encoding and decoding
works in the labeling scheme; and

(2) a strengthening of the result, where we can as-
sume that a prescribed set of at most q vertices
receives shorter labels, namely of length log q +
O(k log log n).

These two properties are formally stated as follows.

3with adjusted terminology.

449
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Theorem 3.2. For any fixed k ∈ N, the class of graphs
of treewidth at most k admits a labeling scheme 〈λ, ϕ〉 of
length log n+O(k log log n) with the following properties:

(P1) From any label a one can extract in time O(1)
an identifier ι(a), so that the Decoder may be
implemented as follows: given a label a, one may
compute in time O(k) a set Γ(a) consisting of at
most k identifiers so that ϕ(a, b) is true if and
only if ι(a) ∈ Γ(b) or ι(b) ∈ Γ(a).

(P2) If the input graph G is given together with a vertex
subset Q, then the scheme can assign to the vertices
of Q labels of length log |Q|+O(k log log n).

The Encoder works in polynomial time while the Decoder
works in constant time.

Note that contrary to Theorem 3.1, the Encoder of
Theorem 3.2 does not work in near-linear time.

The proof of Theorem 3.2 is presented in Ap-
pendix A. In general, it largely follows the approach
of Gavoille and Labourel [GL07]; in particular, their
scheme achieves property (P1) without any modifica-
tions. However, to achieve property (P2) we need to re-
place a crucial combinatorial element of the proof with
a new argument. Let us briefly sketch the main ideas.

The key idea of the scheme of Gavoille and Labourel
is to work on a bi-decomposition of the input graph G,
which is a notion roughly resembling a tree decompo-
sition. A bi-decomposition of G is a rooted tree with
nodes having at most two children. Each node is as-
signed its bag, and the bags form a partition of V (G).
We require that whenever uv is an edge of G, the nodes
whose bags contain u and v should be related.

As proved in [GL07], an n-vertex graph G of
treewidth at most k admits a bi-decomposition of depth
at most log n whose bags are of size O(k log n). Let us
compute an orientation of G where every vertex u has
at most k outneighbors; it is known that such an orien-
tation exists for treewidth-k graphs. By working with a
chordal supergraph of G of treewidth at most k, rather
than on G itself, we can assume that the complex Ku

of u, which consists of u and all its outneighbors, forms
a clique in G. Then in the computed bi-decomposition,
all vertices of Ku have to lie on one root-to-leaf path.
The label of u then consists of the left/right encoding
of this path together with the placement of u and all
its outneighbors in the bags on the path. This essen-
tially already achieves property (P1): the set Γ(λ(u))
consists of the identifiers of all the outneighbors of u in
the computed orientation of G.

Observe that in the approach explained above it
was crucial that the computed bi-decomposition has

depth at most log n and not, say, 2 log n, because the
encoding of the root-to-leaf path that contains Ku is
the dominant component in the label of a vertex u.
The bi-decomposition used in [GL07] is obtained by
recursively splitting the graph in half using the following
balanced separator claim: every graph of treewidth at
most k admits a vertex partition (A,X,B) such that
|X| = O(k log n), |A|, |B| 6 n/2, and there is no edge
between A and B. To achieve property (P2), a natural
approach would be to split the graph into parts A and
B using a separator X of size O(k log n) so that A and
B both contain at most half of all the vertices, and
both contain at most half of the remaining vertices
of Q. Unfortunately, the strategy used in [GL07]
seems difficult to generalize for achieving both these
objectives at the same time. Therefore, we replace
this element of the reasoning with a completely new
argument. We allow partitions that are slightly off-
balanced: by a multiplicative factor of O

(
1

logn

)
, which

is fine for achieving the overall depth log n+O(1). This
relaxation allows us to use grouping based on Steinitz
Lemma [Sev78, SB97] to achieve balance both in terms
of the total number of vertices, and in terms of the
number of vertices of Q.

4 Planar Graphs of Small Diameter

We now combine Theorem 2.1 with our understanding
of schemes for graphs of bounded treewidth in order to
give short labeling schemes for planar graphs of small
diameter.

Theorem 4.1. The class of connected planar graphs
with n vertices admits a labeling scheme of length log n+
log d + O(log log n), where d is the radius of the graph.
The Encoder runs in polynomial time and the Decoder
in constant time.

Moreover, if the graph is provided together with a
vertex subset Q, then the Encoder may assign to the
vertices of Q labels of length at most log |Q| + log d +
O(log log n).

Proof. We first focus on proving the initial statement,
without the additional vertex subset Q. At the end we
shall argue how the refined statement can be obtained
using property (P2) of Theorem 3.2.

Let G be the input planar graph, where G has n
vertices and diameter d. Fix any vertex r of G as a root
vertex and let F be a BFS tree rooted at r; then F has
depth at most d. Apply Theorem 2.1 to G and F ; thus
we can obtain, in polynomial time, a partition P of G
so that every part of P is the vertex set of a column in
F and G/P has treewidth at most 8. Denote G′ = G/P

450
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

and recall that V (G′) = P. Let ψ : V (G) → V (G′) be
the mapping that sends every vertex of G to the part of
P that contains it.

Now, apply Theorem 3.2 to the graph G′, obtaining
a labeling scheme κ(·) defined on vertices of G′ with
labels of length log n+O(log log n), Encoder working in
polynomial time and Decoder in constant time. Now,
we define the labeling λ(·) of G as follows. The label
λ(u) of u ∈ V (G) consists of:

• the label κ(ψ(u));
• the distance from u to r, written in binary;
• a 24-bit adjacency code, which we define in a

moment.

The first two pieces of information above are of
variable length, so we add to the label a prefix of (fixed)
length 2 log log n that encodes their lengths, so that they
can be extracted from the label in constant time.

It remains to describe the adjacency code and how
the decoding is going to be performed based on it.
Recall that, by property (P1), every vertex of w of G′
is assigned an identifier ι(κ(w)) so that from κ(w) one
can compute a set Γ(κ(w)) of at most 8 identifiers with
the following property: w and w′ are adjacent in G′ if
and only if ι(κ(w)) ∈ Γ(κ(w′)) or ι(κ(w′)) ∈ Γ(κ(w)).
By ordering identifiers lexicographically, we may assume
that sets returned by Γ(·) are organized as lists. (In the
original scheme of [GL07], Γ(·) sets are organized into
dictionary so that membership can be tested in constant
time, independently of the size of Γ(·). This refinement
does not matter here since the size is bounded by 8).
Observe that two vertices u and u′ of G may be adjacent
only if the following two assertions hold:
• w = ψ(u) and w′ = ψ(u′) are adjacent in G′; and
• dist(u, r) and dist(u′, r) differ by at most 1.

Hence, the adjacency code assigned to u stores, for each
i ∈ {1, . . . , 8} and t ∈ {−1, 0, 1}, whether u is adjacent
to the unique vertex u′ with ψ(u′) = wi that satisfies
dist(u, r)−dist(u′, r) = t, where wi is the ith identifiers
of Γ(κ(ψ(u))). Note that there is at most one u′ as
above, because ψ−1(wi) is a column in F .

Given the above description, the decoding can be
performed as follows. Suppose we are given labels λ(u)
and λ(u′) of two vertices u, u′. From these labels we
consecutively compute:
• dist(u, r) and dist(u, r′);
• labels κ(ψ(u)) and κ(ψ(u′));
• lists Γ(κ(ψ(u))) and Γ(κ(ψ(u′))); and
• identifiers ι(κ(ψ(u))) and ι(κ(ψ(u′))).

Next, we check whether ι(κ(ψ(u))) ∈ Γ(κ(ψ(u′))) or
vice versa. If this is not the case, then u and u′ are

not adjacent. Otherwise, we check whether dist(u, r)−
dist(u′, r) ∈ {−1, 0, 1}. Again, if this is not the case,
then u and u′ are not adjacent. Otherwise, whether
u and u′ are adjacent can be read from the adjacency
code of κ(u) or of κ(u′), depending on which identifier
belongs to which list.

From the above description it is clear that the
Encoder for this labeling scheme runs in polynomial
time, while the Decoder runs in constant time. This
concludes the proof of the initial statement, without
the additional vertex subset Q. For the additional
statement, we simply apply the following modification:
we use property (P2) of Theorem 3.2 to ensure that
in the labeling κ(·), the vertices of ψ(Q) receive labels
of length log |Q| + O(log log n). Thus, in λ(·) the
vertices of Q receive labels of total length at most
log |Q|+ log d+O(log log n).

Remark 1. In the labeling scheme of Theorem 4.1, we
fix a BFS tree F of depth at most d and reserve dlog de
bits in the label of each vertex u to store the distance
from u to the root of F . Observe that we may modify
the scheme so that for vertices whose distance from the
root is either 1 or d, this piece of information takes O(1)
bits. Namely, using 3 first bits we store whether the
distance is 1, 2, d− 1, d, or between 3 and d− 2. Then
actual distance is recorded using dlog de additional bits
only when it is between 2 and d − 1. It is easy to see
that using this way of storing the distances from the
root of F in the label, the Decoder can verify whether
two such distances differ by at most 1, even when the
Decoder does not know the value of d. We will use this
optimization in the next section.

5 Planar Graphs in General

Finally, we use the layering approach in combination
with Theorem 4.1 to give a labeling scheme for general
planar graphs.

Theorem 5.1. Planar graphs with n vertices admit a
labeling scheme of length 4

3 log n + O(log log n). The
Encoder runs in polynomial time and the Decoder in
constant time.

Proof. Let G = (V,E) be the input planar graph on
n vertices. We may assume that G is connected, as
otherwise we can make it connected by adding a fresh
vertex connected to one vertex from every connected
component, apply the labeling scheme for the obtained
graph on n+1 vertices, and forget the additional vertex.
Note that this operation preserves planarity.

451
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Let
d =

⌈
n1/3

⌉
.

W.l.o.g. we assume that d > 3 (or n > 8). Fix any
root vertex r and partition the vertices ofG according to
the distance from r. Let Li be the i-th layer composed
of vertices at distance exactly i ∈ N from r, possibly
with Li = ∅ if i is too large. For a ∈ {0, . . . , d− 1}, let

Wa =
⋃

i∈N : i≡a mod d

Li.

When speaking about sets Wa, we consider indices
modulo d. Then one of the sets Wa ∪ Wa+1 is small
in the following sense.

Claim 1. There exists a ∈ {0, . . . , d− 1} such that
|Wa ∪Wa+1| 6 2n2/3.

Proof. Observe that
∑

a∈[0,d) |Wa∪Wa+1| = 2n because
every vertex belongs to exactly two of the sets Wa ∪
Wa+1. Hence, for some a ∈ {0, . . . , d− 1} we have
|Wa ∪Wa+1| 6 2n/d 6 2n2/3.

Partition the edges of G into E1 and E2 as follows:
E1 comprises all edges with one endpoint inWa and the
other in Wa+1, whereas E2 comprises all the remaining
edges. Next, define subgraphs G1 and G2 of G as
follows:

G1 = (Wa ∪Wa+1, E1) and G2 = (V,E2).

We first show that G1 is a very simple and small graph.

Claim 2. The graph G1 has at most 2n2/3 vertices and
treewidth at most 6.

Proof. The bound on the number of vertices of G1 is
directly implied by Claim 1. For the treewidth bound,
observe that every connected component of G1 is a
subgraph of the graph G[Li ∪ Li+1] for some i ∈ N.
If one modifies G by removing all vertices of layers
Li+2 ∪ Li+3 ∪ . . . and contracting all vertices of layers
L0 ∪ · · · ∪ Li−1 onto r (note that these layers induce a
connected subgraph of G), then the resulting graph has
radius at most 2 and contains G[Li∪Li+1] as an induced
subgraph. Then the claim follows from Lemma 2.1.

Let H be a graph obtained from G2 as follows. Add
a new vertex s and make s adjacent to all vertices of
Wa+1. Moreover, if a 6= d − 1, add a path of length
d− a connecting s with r.

Claim 3. The graph H is connected, planar, and has
at most 2n vertices. Moreover, all vertices of H are at
distance at most d from s, where vertices of Wa+1 are
exactly at distance 1 and vertices of Wa are exactly at
distance d.

Proof. Observe that G2 is the disjoint union of sub-
graphs of G induced by the vertex subsets:

L0∪ · · · ∪ La,

La+1∪ · · · ∪ Ld+a,

Ld+a+1∪ · · · ∪ L2d+a,

· · ·

denote these induced subgraphs by R0, R1, R2, . . . in the
order as above. Observe that if, for some i ∈ N in G, we
remove all vertices from layers Lj for j > (i+1)d+a and
contract all vertices from layers Lj for j 6 id + a onto
r (note that these layers induce a connected subgraph
of G), then we obtain a connected planar graph R′i
which contains Ri as an induced subgraph. In fact,
we have R0 = R′0 (then no contraction takes place) and
Ri = R′i − r for i > 1. Note that in R′i for i > 1,
all vertices of Wa+1 are at distance exactly 1 from r
and all vertices of Wa are at distance exactly d from
r. Similarly, in R′0 all vertices of Wa are at distance
exactly a from r, and there are no vertices of Wa+1

unless a = d− 1, in which case the only vertex of Wa+1

in R′0 is r itself.
Now observe thatH can be constructed from graphs

R′0, R
′
1, R

′
2, . . . as follows: take the disjoint union of

those graphs, identify all copies of the vertex r from
R′1, R

′
2, . . . into one vertex s, and connect s to the copy

of r in R′0 via a path of length d − a − 1 (in case
a = d − 1, just identify this copy of r with s as well).
It is easy to see that since graphs R′0, R′1, R′2, . . . are
planar and connected, H is also planar and connected.
The assertions about the distances of vertices of Wa

and Wa+1 from s follow directly from the discussion of
distances in the previous paragraph.

The fact that H has at most 2n vertices follows
immediately from the inequality d 6 n.

We can now use Claims 2 and 3 to give the promised
labeling scheme. First, by Claim 2 and Theorem 3.1,
for the graph G1 we may compute a labeling λ1 with
labels of length at most 2

3 log n + O(log log n). Second,
by Claim 3 and Theorem 4.1, for G2 we may compute a
labeling λ2 with labels of length at most log n+ log d+
O(log log n) = 4

3 log n + O(log log n); this is obtained
by computing such a labeling for H and restricting it
to G2. Moreover, we may construct this labeling so

452
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

that all vertices of Wa ∪ Wa+1 receive shorter labels,
namely of length at most 2

3 log n + O(log log n). Here,
we use Remark 1 in order to reduce the log d summand
to O(1), and we use Q = Wa ∪Wa+1 as the prescribed
set of at most 2n2/3 vertices in order to reduce the log n
summand to 2

3 log n+O(1).
Now, the label λ(u) of any vertex u of G is as

follows:

• If u /∈Wa ∪Wa+1, then λ(u) = λ2(u).
• If u ∈ Wa ∪Wa+1, then λ(u) is the concatenation

of λ1(u) and λ2(u).

In the second case, in order to be able to decode λ1(u)
and λ2(u) from λ(u), we append log log n bits that
indicate the length of λ1(u). Also, we add one bit
indicating the case into which the vertex u falls.

Thus, in the first case λ(u) is of length 4
3 log n +

O(log log n), while in the second it is of length

2

3
log n+O(log log n)+

2

3
log n+O(log log n) + log log n =

4

3
log n+O(log log n).

Hence, the length of the constructed labeling scheme
is as claimed. For the implementation of the Decoder,
given labels of two vertices u and v, we simply read
labels of u and v in λ2 and λ1 (if applicable) and check
whether they are adjacent either in G1 or in G2. This
concludes the construction of the labeling scheme.

The above construction can be directly translated
to an implementation of the Encoder in polynomial time
and the Decoder in constant time. In case of Claim 1,
note that an index a satisfying the claim can be found
in polynomial time by checking the indices between 0
and d− 1 one by one.

6 Conclusion and Open Problems

We have proved an upper bound of (4
3 + o(1)) log n for

the length of labeling schemes for planar graphs, and
more generally for graphs embeddable in a fixed surface.

In our proof we essentially relied on three proper-
ties: minor-closeness, bounded local treewidth, and the
fact that every graph embeddable in a fixed surface ad-
mits an H-partition of bounded layered width, for some
graph graph H of bounded treewidth [DJM+19]. In
fact, as pointed out by Dujmović [Dujmović19], the ar-
gumentation provided in our work can be restructured
so that only the last property is exploited: if C is a
class of graphs such that every member of C admits an

efficiently computable H-partition of constant layered
width, where H is some graph of treewidth bounded by
a constant, then C admits a labeling scheme of length
4
3 log n + O(log log n). This allows further extensions
of our techniques beyond graphs embeddable in sur-
faces, for instance to almost embeddable graphs without
apices [DEJ+19], or to k-planar graphs [DMW19].

Almost embeddable graphs play a crucial role in
the Structure Theorem for proper minor-closed classes
of Robertson and Seymour [RS04], as they are atomic
parts of the decomposition. Thus, extending our work
to all proper minor-closed classes of graphs is an in-
teresting, and seemingly feasible research direction. In
the approach of Dujmović et al. [DEJ+19] for the queue
number, almost embeddable graphs without apices are
treated using layered partitions, then apices attached
to those graphs are managed separately, and finally the
obtained queue embeddings are glued along the tree de-
composition provided by the Structure Theorem. In
our case, adding apices is not an issue, but the last step
seems problematic: we do not know how to combine la-
beling schemes along tree decompositions. Nonetheless,
we believe that an extension to all proper minor-closed
graph classes is possible.

The most glaring question left open by this paper
is whether planar graphs admit a labeling scheme with
label length c log n with some c < 4/3. Now that the
threshold of 2 has been broken, we do not stop to
optimize the second-order terms, and conjecture that
c = 1 should be asymptotically the right answer.

Conjecture 1. Planar graphs on n-vertices admit a
labeling scheme with label length log n+ o(log n).

As already pointed by [GL07], no hereditary class
with no more than n!2O(n) labeled graphs (includ-
ing trees, planar, bounded genus, bounded treewidth,
minor-free, and many others) is known to require labels
of log n+ ω(1) bits. While it may well be that the triv-
ial lower bound is in fact tight, we do not believe that
planar graphs admit a labeling scheme with label length
log n+O(1). Therefore, proving a lower bound greater
than the trivial log n+ Ω(1) would be very interesting.

Acknowledgements. A part of this research was
completed at the 7th Annual Workshop on Geometry
and Graphs held at Bellairs Research Institute in March
2019.

References

[AABTKS16] M. Abrahansen, S. Alstrup, M. Bæk
Tejs Knudsen, and M. Stöckel, Near-optimal

453
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

induced universal graphs for cycles and paths, Tech.
Rep. 1607.04911v2 [cs.DS], arXiv, July 2016.

[ACGP16] I. Abraham, S. Chechik, C. Gavoille, and
D. Peleg, Forbidden-set distance labels for graphs
of bounded doubling dimension, ACM Transactions
on Algorithms, 12 (2016), p. Article No. 22. doi:
10.1145/2818694.

[ACJR19] H. Acan, S. Chakraborty, S. Jo, and S. S.
Rao, Succinct data structures for families of interval
graphs, Tech. Rep. 1902.09228v1 [cs.DS], arXiv, Febru-
ary 2019.

[ADBTK17] S. Alstrup, S. Dahlgaard, and M. Bæk
Tejs Knudsen, Optimal induced universal graphs and
adjacency labeling for trees, Journal of the ACM, 64
(2017), p. Article No. 27. doi: 10.1145/3088513.

[AGHP16] S. Alstrup, C. Gavoille, E. B. Halvorsen,
and H. Petersen, Simpler, faster and shorter labels
for distances in graphs, in 27th Symposium on Dis-
crete Algorithms (SODA), ACM-SIAM, January 2016,
pp. 338–350. doi: 10.1137/1.9781611974331.ch25.

[AGKR04] S. Alstrup, C. Gavoille, H. Kaplan, and
T. Rauhe, Nearest common ancestors: A survey and
a new algorithm for a distributed environment, Theory
of Computing Systems, 37 (2004), pp. 441–456. doi:
10.1007/s00224-004-1155-5.

[AHGL14] S. Alstrup, E. B. Halvorsen, and
K. Green Larsen, Near-optimal labeling schemes
for nearest common ancestors, in 25th Symposium on
Discrete Algorithms (SODA), ACM-SIAM, January
2014, pp. 972–982. doi: 10.1137/1.9781611973402.72.

[AKTZ15] S. Alstrup, H. Kaplan, M. Thorup, and
U. Zwick, Adjacency labeling schemes and induced-
universal graphs, in 47th Annual ACM Symposium on
Theory of Computing (STOC), ACM Press, June 2015,
pp. 625–634. doi: 10.1145/2746539.2746545.

[AKTZ19] S. Alstrup, H. Kaplan, M. Thorup, and
U. Zwick, Adjacency labeling schemes and induced-
universal graphs, SIAM Journal on Discrete Mathemat-
ics, 33 (2019), pp. 116–137. doi: 10.1137/16M1105967.

[Alo17] N. Alon, Asymptotically optimal induced universal
graphs, Geometric and Functional Analysis, 27 (2017),
pp. 1–32. doi: 10.1007/s00039-017-0396-9.

[AR02] S. Alstrup and T. Rauhe, Small induced-
universal graphs and compact implicit graph represen-
tations, in 43rd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), IEEE Com-
puter Society Press, November 2002, pp. 53–62. doi:
10.1109/SFCS.2002.1181882.

[AR14] D. Adjiashvili and N. Rotbart, Labeling
schemes for bounded degree graphs, in 41st Interna-
tional Colloquium on Automata, Languages and Pro-
gramming (ICALP), vol. 8573 of Lecture Notes in
Computer Science (ARCoSS), Springer, July 2014,
pp. 375–386. doi: 10.1007/978-3-662-43951-7_32.

[BCE+82] L. Babai, F. R. K. Chung, P. Erdős, R. L.
Graham, and J. H. Spencer, On graphs which
contain all sparse graphs, Annals of Discrete Math-
ematics, 12 (1982), pp. 21–26. doi: 10.1016/S0304-

0208(08)73486-8.
[BGP19] M. Bonamy, C. Gavoille, and M. Pilipczuk,

Shorter labeling schemes for planar graphs, Tech. Rep.
1908.03341 [math.CS], arXiv, 2019.

[BGL06] N. Bonichon, C. Gavoille, and A. Labourel,
Short labels by traversal and jumping, in 13th Interna-
tional Colloquium on Structural Information & Com-
munication Complexity (SIROCCO), vol. 4056 of Lec-
ture Notes in Computer Science, Springer, July 2006,
pp. 143–156. doi: 10.1007/11780823_12.

[Bod96] H. L. Bodlaender, A linear time algorithm for
finding tree-decompositions of small treewidth, SIAM
Journal on Computing, 25 (1996), pp. 1305–1317. doi:
10.1137/S0097539793251219.

[But09] S. Butler, Induced-universal graphs for graphs
with bounded maximum degree, Graphs and Combina-
torics, 25 (2009), pp. 461–468. doi: 10.1007/s00373-
009-0860-x.

[Cap02] M. R. Capalbo, Small universal graphs for
bounded-degree planar graphs, Combinatorica, 22
(2002), pp. 345–359. doi: 10.1007/s004930200017.

[CFK+15] M. Cygan, F. V. Fomin, Ł. Kowa-
lik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algo-
rithms, Springer, 2015. doi: 10.1007/978-3-319-21275-
3.

[CGO10] J. Chalopin, D. Gonçalves, and P. Ochem,
Planar graphs have 1-string representations, Discrete
& Computational Geometry, 43 (2010), pp. 626–647.
doi: 10.1007/s00454-009-9196-9.

[Chu90] F. R. K. Chung, Universal graphs and induced-
universal graphs, Journal of Graph Theory, 14 (1990),
pp. 443–454. doi: 10.1002/jgt.3190140408.

[Dujmović19] V. Dujmović, Personal communication.
Aug. 2019.

[DEJ+19] V. Dujmović, L. Esperet, G. Joret,
B. Walczak, and D. R. Wood, Planar graphs have
bounded nonrepetitive chromatic number, Tech. Rep.
1904.05269v1 [math.CO], arXiv, 2019.

[dFOdMR94] H. de Fraysseix, P. Ossona de Mendez,
and P. Rosenstiehl, On triangle contact graphs,
Combinatorics, Probability & Computing, 3 (1994),
pp. 233–246. doi: 10.1017/S0963548300001139.

[DJM+19] V. Dujmović, G. Joret, P. Micek,
P. Morin, T. Ueckerdt, and D. R. Wood,
Planar graphs have bounded queue-number, Tech. Rep.
1904.04791v2 [cs.DM], arXiv, May 2019.

[DMW19] V. Dujmović, P. Morin, and D. R. Wood,
The Structure of k-Planar Graphs, Tech. Rep.
1907.05168v1 [math.CO], arXiv, 2019.

[ELO08] L. Esperet, A. Labourel, and P. Ochem, On
induced-universal graphs for the class of bounded-degree
graphs, Information Processing Letters, 108 (2008),
pp. 255–260. doi: 10.1016/j.ipl.2008.04.020.

[Epp00] D. Eppstein, Diameter and treewidth in minor-
closed graph families, Algorithmica, 27 (2000), pp. 275–
291. doi: 10.1007/s004530010020.

[EW18] F. Eisenbrand and R. Weismantel, Proximity

454
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://arxiv.org/abs/1607.04911v2
http://doi.org/10.1145/2818694
http://arxiv.org/abs/1902.09228
http://doi.org/10.1145/3088513
http://doi.org/10.1137/1.9781611974331.ch25
http://doi.org/10.1007/s00224-004-1155-5
http://doi.org/10.1137/1.9781611973402.72
http://doi.org/10.1145/2746539.2746545
http://doi.org/10.1137/16M1105967
http://doi.org/10.1007/s00039-017-0396-9
http://doi.org/10.1109/SFCS.2002.1181882
http://doi.org/10.1007/978-3-662-43951-7_32
http://doi.org/10.1016/S0304-0208(08)73486-8
http://doi.org/10.1016/S0304-0208(08)73486-8
http://arxiv.org/abs/1908.03341
http://doi.org/10.1007/11780823_12
http://doi.org/10.1137/S0097539793251219
http://doi.org/10.1007/s00373-009-0860-x
http://doi.org/10.1007/s00373-009-0860-x
http://doi.org/10.1007/s004930200017
http://doi.org/10.1007/978-3-319-21275-3
http://doi.org/10.1007/978-3-319-21275-3
http://doi.org/10.1007/s00454-009-9196-9
http://doi.org/10.1002/jgt.3190140408
http://arxiv.org/abs/1904.05269
http://doi.org/10.1017/S0963548300001139
http://arxiv.org/abs/1904.04791
http://arxiv.org/abs/1907.05168
http://doi.org/10.1016/j.ipl.2008.04.020
http://doi.org/10.1007/s004530010020

results and faster algorithms for integer programming
using the Steinitz lemma, in 29th Symposium on Dis-
crete Algorithms (SODA), ACM-SIAM, 2018, pp. 808–
816. doi: 10.1137/1.9781611975031.52.

[FG01] P. Fraigniaud and C. Gavoille, Routing in trees,
in 28th International Colloquium on Automata, Lan-
guages and Programming (ICALP), F. Orejas, P. G.
Spirakis, and J. v. Leeuwen, eds., vol. 2076 of Lec-
ture Notes in Computer Science, Springer, July 2001,
pp. 757–772. doi: 10.1007/3-540-48224-5_62.

[FGNW17] O. Freedman, P. Gawrychowski, P. K.
Nicholson, and O. Weimann, Optimal distance
labeling schemes for trees, in 36th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), ACM Press, July 2017, pp. 185–194. doi:
10.1145/3087801.3087804.

[FK10a] P. Fraigniaud and A. Korman, Compact ances-
try labeling schemes for XML trees, in 21st Symposium
on Discrete Algorithms (SODA), ACM-SIAM, January
2010, pp. 458–466. doi: 10.1137/1.9781611973075.38.

[FK10b] P. Fraigniaud and A. Korman, An optimal
ancestry scheme and small universal posets, in 42nd
Annual ACM Symposium on Theory of Computing
(STOC), ACM Press, June 2010, pp. 611–620. doi:
10.1145/1806689.1806773.

[GIP18] D. Gonçalves, L. Isenmann, and C. Pen-
narun, Planar graphs as L-intersection or L-contact
graphs, in 29th Symposium on Discrete Algorithms
(SODA), ACM-SIAM, 2018, pp. 172–184. doi:
10.1137/1.9781611975031.12.

[GKLPP18] P. Gawrychowski, F. Kuhn, J. Lo-
puszanski, K. Panagiotou, and P. Su, Label-
ing Schemes for Nearest Common Ancestors through
Minor-Universal Trees, in 29th Symposium on Dis-
crete Algorithms (SODA), ACM-SIAM, January 2018,
pp. 2604–2619. doi: 10.1137/1.9781611975031.166.

[GKU16] P. Gawrychowski, A. Kosowski, and P. Uz-
nański, Sublinear-space distance labeling using hubs,
in 30th International Symposium on Distributed Com-
puting (DISC), vol. 9888 of Lecture Notes in Computer
Science (ARCoSS), Springer, September 2016, pp. 230–
242. doi: 10.1007/978-3-662-53426-7_17.

[GL07] C. Gavoille and A. Labourel, Shorter implicit
representation for planar graphs and bounded treewidth
graphs, in 15th Annual European Symposium on Al-
gorithms (ESA), L. Arge and E. Welzl, eds., vol. 4698
of Lecture Notes in Computer Science, Springer, Octo-
ber 2007, pp. 582–593. doi: 10.1007/978-3-540-75520-
3_52.

[GP03] C. Gavoille and D. Peleg, Compact and localized
distributed data structures, Distributed Computing, 16
(2003), pp. 111–120. doi: 10.1007/s00446-002-0073-5.
PODC 20-Year Special Issue.

[GP08] C. Gavoille and C. Paul, Optimal distance la-
beling for interval graphs and related graphs families,
SIAM Journal on Discrete Mathematics, 22 (2008),
pp. 1239–1258. doi: 10.1137/050635006.

[GU16] P. Gawrychowski and P. Uznański, A note

on distance labeling in planar graphs, Tech. Rep.
1611.06529v1 [cs.DS], arXiv, November 2016.

[KKKP04] M. Katz, N. A. Katz, A. Korman, and
D. Peleg, Labeling schemes for flow and connectivity,
SIAM Journal on Computing, 34 (2004), pp. 23–40.
doi: 10.1137/S0097539703433912.

[KNR88] S. Kannan, M. Naor, and S. Rudich, Implicit
representation of graphs, in 20th Annual ACM Sympo-
sium on Theory of Computing (STOC), ACM Press,
May 1988, pp. 334–343. doi: 10.1145/62212.62244.

[Koe36] P. Koebe, Kontaktprobleme der konformen ab-
bildung, Berichte über die Verhandlungen der Säch-
sische Akademie der Wissenschaften zu Leipzig,
Mathematisch-Physische Klasse, 88 (1936), pp. 141–
164.

[KUV19] A. Kosowski, P. Uznanski, and L. Vien-
not, Hardness of Exact Distance Queries in Sparse
Graphs Through Hub Labeling, in 38th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), ACM Press, July 2019, pp. 272–279. doi:
10.1145/3293611.3331625.

[Pel00] D. Peleg, Informative labeling schemes for graphs,
in 25th International Symposium on Mathematical
Foundations of Computer Science (MFCS), vol. 1893 of
Lecture Notes in Computer Science, Springer, August
2000, pp. 579–588. doi: 10.1007/3-540-44612-5_53.

[Pel05] D. Peleg, Informative labeling schemes for graphs,
Theoretical Computer Science, 340 (2005), pp. 577–
593. doi: 10.1016/j.tcs.2005.03.015.

[PS19] M. Pilipczuk and S. Siebertz, Polynomial bounds
for centered colorings on proper minor-closed graph
classes, in 30th Symposium on Discrete Algorithms
(SODA), ACM Press, January 2019, pp. 1501–1520.
doi: 10.1137/1.9781611975482.91.

[RLDL94] C. J. Rhee, Y. D. Liang, S. K. Dhall, and
S. Lakshmivarahan, Efficient algorithms for finding
depth-first and breadth-first search trees in permutation
graphs, Information Processing Letters, 49 (1994),
pp. 45–50. doi: 10.1016/0020-0190(94)90053-1.

[Rot16] N. Rotbart, New Ideas on Labeling Schemes, PhD
thesis, University of Copenhagen, October 2016.

[RS04] N. Robertson and P. D. Seymour, Graph mi-
nors. XX. Wagner’s conjecture, Journal of Combina-
torial Theory, Series B, 92 (2004), pp. 325–357. doi:
10.1016/j.jctb.2004.08.001.

[RT15] L. Roditty and R. Tov, New routing tech-
niques and their applications, in 34th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), ACM Press, July 2015, pp. 23–32. doi:
10.1145/2767386.2767409.

[SB77] S. Stahl and L. W. Beineke, Blocks and the
nonorientable genus of graphs, Journal of Graph The-
ory, 1 (1977), pp. 75–78. doi: 10.1002/jgt.3190010114.

[SB97] S. Sevast’janov and W. Banaszczyk, To the
Steinitz lemma in coordinate form, Discrete Mathe-
matics, 169 (1997), pp. 145–152. doi: 10.1016/0012-
365X(94)00240-J.

[Sch89] W. Schnyder, Planar graphs and poset di-

455
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://doi.org/10.1137/1.9781611975031.52
http://doi.org/10.1007/3-540-48224-5_62
http://doi.org/10.1145/3087801.3087804
http://doi.org/10.1137/1.9781611973075.38
http://doi.org/10.1145/1806689.1806773
http://doi.org/10.1137/1.9781611975031.12
http://doi.org/10.1137/1.9781611975031.166
http://doi.org/10.1007/978-3-662-53426-7_17
http://doi.org/10.1007/978-3-540-75520-3_52
http://doi.org/10.1007/978-3-540-75520-3_52
http://doi.org/10.1007/s00446-002-0073-5
http://doi.org/10.1137/050635006
http://arxiv.org/abs/1611.06529
http://doi.org/10.1137/S0097539703433912
http://doi.org/10.1145/62212.62244
http://doi.org/10.1145/3293611.3331625
http://doi.org/10.1007/3-540-44612-5_53
http://doi.org/10.1016/j.tcs.2005.03.015
http://doi.org/10.1137/1.9781611975482.91
http://doi.org/10.1016/0020-0190(94)90053-1
http://doi.org/10.1016/j.jctb.2004.08.001
http://doi.org/10.1145/2767386.2767409
http://doi.org/10.1002/jgt.3190010114
http://doi.org/10.1016/0012-365X(94)00240-J
http://doi.org/10.1016/0012-365X(94)00240-J

mension, Order, 5 (1989), pp. 323–343. doi:
10.1007/BF00353652.

[Sev78] S. Sevast’janov, Approximate solution of some
problems of scheduling theory, Metody Diskret. Analiz,
32 (1978), pp. 66–75.

[Spi03] J. P. Spinrad, Efficient Graph Representations,
vol. 19 of Fields Institute Monographs, American
Mathematical Society, 2003.

[Tho86] C. Thomassen, Interval representations of planar
graphs, Journal of Combinatorial Theory, Series B, 40
(1986), pp. 9–20. doi: 10.1016/0095-8956(86)90061-4.

[TZ01] M. Thorup and U. Zwick, Compact routing
schemes, in 13th Annual ACM Symposium on Paral-
lel Algorithms and Architectures (SPAA), ACM Press,
July 2001, pp. 1–10. doi: 10.1145/378580.378581.

A Bounded Treewidth Graphs: Technical
Details

In this section we explain the proof of Theorem 3.2.
In Section A.1 we explain how property (P1) of the
scheme follows immediately from the general strategy
borrowed from [GL07], while in Section A.2 we replace
the crucial ingredient of the argument from [GL07] in
order to achieve property (P2).

A.1 Encoding and decoding As mentioned, the
scheme of Gavoille and Labourel provided in [GL07],
without any modifications, already possesses prop-
erty (P1). Hence, we now recall the reasoning for com-
pleteness, and because we will need its understand-
ing for achieving property (P2). Our presentation is
a bit simplified compared to that of [GL07], because
we choose not to optimize the label length as much
as there (e.g. Gavoille and Labourel actually provide
an upper bound of log n + O(k log log (n/k)) instead of
log n+O(k log log n) by a more precise analysis).

First, since the input graph G has treewidth at
most k, one can obtain a chordal supergraph G+ of G
on the same vertex set such that G+ also has treewidth
at most k. This can be done as follows: take a
tree decomposition of G of width at most k and turn
every bag into a clique. Since for fixed k such a tree
decomposition can be computed in linear time [Bod96],
G+ can be computed in linear time.

Next, it is well-known that since G+ is chordal and
of treewidth at most k, in linear time we can compute
an orientation ~G of G+ such that every vertex u has
at most k out-neighbors in ~G, and moreover u together
with those out-neighbors form a clique in G+. For every
u ∈ V (G), let Ku be the set consisting of u and its out-
neighbors in ~G.

The key idea of the approach of Gavoille and
Labourel is to compute a bidecomposition of the graph
G+, which is a notion roughly resembling tree decom-
positions, but actually quite different.

Definition 2. A bidecomposition of a graph H is a
pair (T, α), where T is a binary rooted tree and α maps
vertices H to nodes of T , so that for every edge uv of
H, α(u) and α(v) are related.

As proved in [GL07], graphs of bounded treewidth
admit bidecompositions with small parts. This is the
key combinatorial ingredient of the proof.

Lemma A.1. (cf. Lemma 1 in [GL07]) Let G be an
n-vertex graph of treewidth at most k. Then there exists
a bidecomposition (T, α) of G satisfying the following:

456
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://doi.org/10.1007/BF00353652
http://doi.org/10.1016/0095-8956(86)90061-4
http://doi.org/10.1145/378580.378581

(A1) |α−1(x)| = O(k log n) for every node x of T ; and
(A2) T has depth at most log n.

Moreover, for every fixed k, given G such a bidecompo-
sition can be constructed in time O(n log n).

We apply Lemma A.1 to the graph G+, thus getting
a suitable bidecomposition (T, α). Based on this, a
labeling is constructed as follows.

Consider any u ∈ V (G). Since Ku is a clique in G+,
it follows that nodes {α(v)}v∈Ku

are pairwise related.
Hence, there exists a path Pu in T starting at the root
that contains all nodes α(v) for v ∈ Ku. The second
endpoint of Pu is the deepest among nodes {α(v)}v∈Ku

.
Let P ′u be the prefix of Pu from the root of T to α(u).

For each node x of T fix an arbitrary enumeration
of α−1(x) using index taken from [0, |α−1(x)|). Now,
the identifier of vertex u consists of the following pieces
of information:

1. The encoding of the path P ′u as a bit string of
length |V (P ′u)| − 1 that encodes, for consecutive
non-root vertices of P ′u, whether they are left or
right children.

2. The index of u within α−1(α(u)).
3. The depth of α(u) in T .

Since T has depth at most log n and |α−1(x)| =
O(k log n) for every node x of T , we conclude that the
identifier has total length log n + log k + O(log log n).
In addition to the identifier, the label of u contains the
following pieces of information:

1. Encoding of the suffix of Pu that is not contained
in P ′u; this, together with the information from the
identifier, adds up to the encoding of Pu.

2. For every v ∈ Ku \ {u}, the depth of α(v) in
T , the index of v within α−1(α(v)), and whether
the edge uv belongs to E(G) (it may belong to
E(G+) \ E(G)).

As shown in [GL07], the above information, to-
gether with the identifier, can be encoded in log n +
O(k log log n) bits, resulting in the promised upper
bound on the label length.

It is now straightforward to see that from the label
of u one can derive the identifiers of the out-neighbors
of u in G+. Indeed, for every v ∈ Ku \ {u} the depth of
α(v) and the index of v in α−1(α(v)) are directly stored
in the label of u, while the encoding of the path P ′v can
be obtained by taking the encoding of Pu and trimming
it to the prefix of length equal to the depth of α(v).
With every such out-neighbor v we have also stored the
information whether the edge uv is contained in G, or it
was added when modifying G to G+. Hence, given the

label λ(u) we can compute a set of at most k identifiers
of neighbors of u, which is a suitable set Γ(λ(u)). This
proves property (P1).

A.2 Saving on labels of a small set of vertices
We now explain how the general approach of Gavoille
and Labourel [GL07], presented in the previous section,
can be amended to achieve property (P2) as well. The
difference is that we replace the usage of Lemma A.1
with the following Lemma A.2.

Lemma A.2. Let G be an n-vertex graph of treewidth
at most k and S ⊆ V (G). Then there exists a
bidecomposition (T, α) of G satisfying the following:

(B1) |α−1(x)| = O(k log n) for every node x of T ;
(B2) T has depth at most log n+O(1); and
(B3) for every u ∈ S, α(u) is at depth at most log |S|+

O(1) in T .

Moreover, for every fixed k, given G and S such a
decomposition can be constructed in polynomial time,
with the degree of the polynomial independent of k.

Consider the set Q of prescribed vertices as in
property (P2), and apply Lemma A.2 to G+ with

S =
⋃
u∈Q

Ku.

We have |S| 6 (k + 1) · |Q|. Hence, in the notation of
the previous section, for every u ∈ Q we have that Pu

has at most log |S| + O(1) = log |Q| + O(log k) nodes,
while for every other vertex u we have that Pu has at
most log n+O(1) nodes. Plugging this into the analysis
of the previous section gives the desired bounds on the
lengths of labels in the constructed labeling. Note that
thus, property (P1) still holds, while property (P2) is
achieved.

We are left with proving Lemma A.2. We would
again like to stress that this is not a simple modification
of the proof of Lemma A.1 presented in [GL07]. The
general idea is to recursively decompose the graph,
where at each step we use a separator of size O(k log n)
to split the graph into two parts, each containing
(roughly) at most half of the remaining vertices and
at most half of the remaining vertices of S. In [GL07]
only the first objective — halving the total number
of vertices — was necessary, and this was relatively
easy to achieve using a separator of size O(k log n).
However, the strategy used in [GL07] does not generalize
to achieving both objectives at the same time. Hence,
our splitting step is based on a completely different
argument.

457
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Proof. [of Lemma A.2] We focus on proving the exis-
tential statement and discuss the algorithmic aspects at
the end.

For a graph H and a weight function ω : V (H) →
R>0, we write ω(H) =

∑
u∈V (H) ω(u). We will use the

following well-known claim.

Claim 4. (see Lemma 7.19 of [CFK+15]) Let H be
a graph of treewidth at most k and let ω : V (H)→ R>0

be a weight function on the vertices of H. Then there
exists a set Z ⊆ V (H) of size at most k + 1 such that
for every connected component C of H − Z we have
ω(C) 6 1

2ω(H).

First, we will need the following generalization of
Claim 4.

Claim 5. Let ε > 0, let H be a graph of treewidth at
most k, and let ω : V (H)→ R>0 be a weight function on
the vertices of H. Then there exists a set Z ⊆ V (H) of
size O(ε−1k) such that for every connected component
C of H − Z we have ω(C) 6 ε · ω(H).

Proof. Consider the following iterative procedure. Start
with Z = ∅. As long as H−Z contains a component C
satisfying ω(C) > ε ·ω(H), pick any such component C
and apply Claim 4 to it. This yields a suitable set ZC of
size at most k+1 such that every connected component
C ′ of C−ZC satisfies ω(C ′) 6 1

2ω(C). Then add ZC to
Z and continue.

The procedure eventually stops, yielding a set Z
satisfying the requested condition and of size at most
(k+1)·`, where ` is the number of iterations. Therefore,
it suffices to show that ` = O(ε−1).

We partition the iterations according to how the
component C considered in the iteration is split:

• Leaf iterations: for every component C ′ of C−ZC

we have ω(C ′) 6 ε · ω(H).
• Unary iterations: there is exactly one component
C ′ of C − ZC satisfying ω(C ′) > ε · ω(H).

• Binary iterations: there are at least two compo-
nents C ′ of C − ZC satisfying ω(C ′) > ε · ω(H).

For leaf iterations, observe that the connected com-
ponent of C−ZC are not touched by the procedure any
more, and survive as connected components of H − Z
till the end. Hence, all the components C considered
in all leaf iterations are pairwise disjoint. Since each of
them satisfies ω(C) > ε · ω(H), we conclude that the
total number of leaf iterations is at most ε−1.

For unary iterations, a similar argument applies.
If C ′ is the unique component of C − ZC satisfying

ω(C ′) > ε · ω(H), then we also have ω(C ′) 6 1
2ω(C),

which implies that
∑

C′′ ω(C ′′) > 1
2ω(C) > ε/2 · ω(H),

where the sum goes over all components C ′′ of C − ZC

that are different from C ′. Since these components C ′′
are not touched any more by the procedure, they are
pairwise disjoint for different unary iterations, yielding
an upper bound of 2ε−1 on the total number of unary
iterations.

Finally, to bound the number of binary iteration, we
may imagine the run of the procedure as a rooted forest
labeled with components to which the iterations are
applied: the children of a node labeled by a component
C are labeled with components C ′ of C −ZC satisfying
ω(C ′) > ε · ω(H), to which the procedure was further
applied. In this forest, leaf iterations correspond to
leaves, unary iterations correspond to nodes with one
child, and binary iterations correspond to nodes with
at least two children. Since the number of nodes with
at least two children in such a forest is always smaller
than the number of leaves, we conclude that the number
of binary iterations is smaller than the number of leaf
iterations, which in turn is upper bounded by ε−1.

All in all, we conclude that the total number of
iterations is bounded by 4ε−1, resulting in a bound of
4ε−1 · (k + 1) = O(ε−1k) on the size of Z.

We now use Claim 5 to find separators that are
suited for constructing a bidecomposition. The idea is
that after removing the separator, we need to be able
to group the remaining components into two parts that
are roughly balanced: both in terms of the number of
vertices and in terms of the number of vertices of Q. We
prefer to put this condition in an abstract way, using two
weight functions.

Claim 6. Let ε > 0, let H be a graph of treewidth at
most k, and let ω1, ω2 : V (H) → R>0 be two weight
functions on the vertices of H. Then there exists a par-
tition (A,X,B) of V (G) with the following properties:

• there is no edge with one endpoint in A and second
in B;

• |X| = O(ε−1 · k);
• ωt(A) 6 (1/2 + ε) · ωt(H); and ωt(B) 6 (1/2 + ε) ·
ωt(H), for t ∈ {1, 2}.

Proof. Without loss of generality we assume that 1
2ε is

an integer, in particular ε < 1
2 .

Apply Claim 5 to H with weight functions ω1(·)
and ω2(·), yielding suitable separators Z1, Z2 ⊆ V (H).
Let X = Z1 ∪ Z2. Then |X| = O(ε−1 · k) and
ωt(C) 6 ε·ωt(H) for each t ∈ {1, 2} and every connected
component C of H −X.

458
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

It therefore suffices to prove that the connected
components ofH−X can be partitioned into two groups
A and B so that the third condition is satisfied.

By scaling the weight functions we may assume that
ω1(H −X) = ω2(H −X) = 1 (if ωt(H −X) = 0 for any
t ∈ {1, 2}, then the third condition is trivially satisfied
for t). Consider the following multiset W of vectors in
R2: for each connected component C of H −X add to
W the vector

aC = (ω1(C), ω2(C)),

and then add to W exactly 1/ε copies of the following
vector:

b = (−ε,−ε).

Observe that the sum of vectors in W is equal to
(0, 0) and that the ∞-norm of each of them is at most
ε. Therefore, by Steinitz Lemma [Sev78, SB97] we
conclude that there exists a permutation v1, v2, . . . , vp
of vectors in W , where p is the cardinality of W , such
that

(A.1) ‖v1 + · · ·+ vj‖∞ 6 2ε for each j ∈ {0, . . . , p} .

Let q 6 p be such that exactly 1
2ε among vectors

v1, . . . , vq are equal to b; recall that we assumed that 1
2ε

is an integer, so such q exists. Let A ⊆ V (G) consist of
the vertex sets of those connected components of H−X
for which aC is among v1, . . . , vq, and let B ⊆ V (G)
consist of the vertex sets of the remaining components
of H − X. Then by (A.1) and the definition of q we
conclude that

|ωt(A)− 1/2| 6 2ε for each t ∈ {1, 2} .

This implies that

ωt(A) 6 1/2 + 2ε 6 (1/2 + 2ε) · |V (H)|

for each t ∈ {1, 2}, and similarly for B. We conclude
by rescaling ε by a multiplicative factor of 2 throughout
the proof.

We are finally ready to build the requested bidecom-
position. Let n = |V (G)| and fix ε = 1/ log n. W.l.o.g.
assume that ε 6 1/8, for otherwise G is of constant
size. Define weight functions on vertices of G as fol-
lows: ω1(u) = 1 for each vertex u, and ω2(u) = 1 for
each u ∈ S and ω2(u) = 0 for each u /∈ S. The bide-
composition is constructed using the following recursive
procedure which for R ⊆ V (G) constructs a bidecom-
position of G[R]; we apply it initially to R = V (G).

1. If R is empty, terminate and return an empty
bidecomposition.

2. Otherwise, apply Claim 6 to H = G[R] with
weight functions ω1(·) and ω2(·) restricted to R.
This yields a partition (A,X,B) of R. Apply the
procedure recursively to A and to B in place of
R, yielding bidecompositions of G[A] and G[B],
respectively. Return a bidecomposition of G[R]
obtained by creating a root r, mapping all vertices
of X to r, and attaching the bidecompositions of
G[A] and G[B] as children of r.

Let (T, α) be the bidecomposition of G obtained in
this manner. As ε = 1/ log n, property (B1) is clear
from the construction. Therefore, we focus on proving
properties (B2) and (B3).

Consider any root-to-leaf path in T and let

V (G) = R0 ⊇ R1 ⊇ R2 ⊇ · · · ⊇ Rd

be the consecutive sets R considered by the procedure
constructing (T, α) along this path. By the construction
we have

|Ri| 6 (1/2 + ε)i · n for each i ∈ {0, . . . , d} .

Since the procedure stops when R becomes empty, we
have that |Rd| > 1, implying that

(1/2 + ε)d · n > 1

or equivalently

d 6 − log1/2+ε n =
log n

1 + log
(

1
1+2ε

) .
Now observe that

log

(
1

1 + 2ε

)
= log

(
1− 2ε

1 + 2ε

)
> − 4ε

1 + 2ε
> −4ε.

Here, the first inequality follows from log(1− x) > −2x
for x ∈ [0, 1/2], which in turn follows from the concavity
of function t 7→ log t. Therefore, we conclude that

d 6
log n

1− 4ε
6 log n · (1 + 8ε) = log n+ 8,

where the second inequality follows from 1 6 (1−4ε)(1+
8ε) being true for ε 6 1/8. We conclude that the height
of T is at most log n+ 8, so property (B2) is verified.

The proof of property (B3) is analogous: instead of
any root-to-leaf path in T , we consider any path from
the root to any node x satisfying α−1(x)∩S 6= ∅. This
concludes the proof of the existential statement.

We now discuss the algorithmic aspects. The stan-
dard proof of Claim 4, see e.g. [CFK+15], shows that
some bag of a tree decomposition of width k of H is

459
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

a suitable set Z. Since for fixed k such a decompo-
sition can be found in linear time [Bod96], the proof
of Claim 4 yields a linear-time algorithm for finding
Z. The proof of Claim 5 amounts to applying Claim 4
O(ε−1) = O(log n) times, so this yields an O(n log n)-
time algorithm for this claim. We need to be care-
ful with Claim 6: after applying Claim 5 twice, in
O(n log n) time, we consider a permutation of vectors
from W that is given by the Steinitz Lemma, which is
a priori a non-constructive argument. However, there
are known proofs of the Steinitz Lemma that yield
polynomial-time algorithms for finding a suitable per-
mutation via iterative application of linear program-
ming, see e.g. the discussion in [EW18]. Hence, the
conclusion of Claim 6 can be also found in polynomial
time for fixed k. Finally, the construction of the final
bidecomposition amounts to applying (the algorithm of)
Claim 6 a polynomial number of times.

B Graphs of Bounded Genus

In this section we prove the following strengthening of
Theorem 5.1.

Theorem B.1. For every fixed g ∈ N, graphs of Euler
genus at most g admit a labeling scheme of length
4
3 log n + O((g + 1) log log n). The Encoder runs in
polynomial time, with the degree of the polynomial
independent of g, and the Decoder runs in constant
time.

For the rest of this section we fix g ∈ N and let D
be the class of graphs of Euler genus at most g. The
proof follows from applying the same approach as that
of Theorem 5.1, hence we only discuss how we modify
the parts of the argumentation, where the planarity of
the input graph was used. A close inspection of the
proof of Theorem 5.1 shows that there are three such
places:

1. In the very beginning we used planarity when
assuming that the input graph is connected.

2. In Claim 2 we used planarity to argue that the
graph G1 has treewidth 6.

3. In Claim 3 we used planarity to obtain a labeling
for G2 by applying the labeling scheme for planar
graphs of small diameter, i.e., Theorem 4.1.

We now fix these parts in order.
Making the graph connected. In the beginning

of the proof of Theorem 5.1 we assumed that the input
graph G is connected. The argument was as follows:
given a disconnected G, one can make it connected
while not spoiling planarity by adding one vertex with a

single neighbor in each connected component of G, and
applying the scheme to the graph G′ obtained in this
way. While this operation preserves planarity (i.e. G′
is planar as well), a priori it is not clear whether is also
preserves belonging to D. However, this is actually the
case.

Lemma B.1. Let G be a graph and construct G′ from
G by adding a new vertex and making it adjacent to one
arbitrary vertex from each connected component of G.
Then the Euler genera of G and G′ are equal.

Proof. This is a direct corollary of the following result
of Stahl and Beineke [SB77]: the Euler genus of a graph
is equal to the sum of Euler genera of its 2-connected
components.

This means that in the proof of Theorem B.1 we
may assume that the input graph is connected in the
same way as in the proof of Theorem 5.1.

Treating G1. In the proof of Claim 2 we used
Lemma 2.1 to argue that G1 has treewidth at most 6,
because every connected component of G1 is a subgraph
of a connected planar graph of radius at most 2. This
planar graph was obtained from G by means of minor
operations, hence it was clear that it was planar.

In the setting of Theorem B.1, we know that
G ∈ D and since D is closed under taking minors, in
the same way we also conclude that every connected
component of G1 is a subgraph of a connected graph
from D of radius at most 2. Then we can substitute
the usage of Lemma 2.1 with the following well-known
generalization.

Lemma B.2. ([Epp00]) A connected graph of genus at
most g and radius ρ has treewidth O(gρ).

It then follows that G1 has treewidth O(g). Hence,
the labeling scheme for G1, obtained using Theorem 3.1,
will use labels of length log (n/d) +O((g + 1) log log n).

Treating G2. Finally, in the proof of Theorem 5.1
we argued that we can obtain a labeling of G2 using
labels of length log n + log d + O(log log n) = 4

3 log n +
O(log log n), where the vertices that G2 has in common
with G1 receive shorter labels: of length 2

3 log n +
O(log log n). For this, we argued that G2 is a subgraph
of a connected planar graph H on at most 2n vertices
where, according to Claim 3, every vertex is at distance
at most d from a fixed vertex s, and moreover vertices
in V (G1) appear only at distance 1 or d. Then
Theorem 4.1 was applied to H in order to get a labelling
for G2.

460
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

The planarity of H was argued as follows: H can
be obtained from a sequence of graphs R′′0 , R′′1 , R′′2 , . . .
by taking their disjoint union, picking one vertex from
each and identifying the picked vertices into one vertex
s. Here, in the notation of the proof of Theorem 4.1 we
have R′′i = R′i for i > 1, and R′′0 is obtained from R′0 by
attaching a (possibly zero-length) path to the vertex r.
As each R′′i is planar, because it can be obtained from
G either a sequence of contractions or (in case of R′′0)
attaching a path to a vertex, it follows that H is planar
as well.

We now examine how this approach can be lifted
to the setting of Theorem 5.1. As D is minor-closed
and closed under attaching paths to vertices, we also
conclude that graphs R′′0 , R

′′
1 , R

′′
2 , . . ., defined in the

same way as above, belong to D. However, the issue
is that the graph H obtained from them as described in
the previous paragraph does not necessarily belong to
D.

Instead, let us define a class of graph D̂ that
comprises all graphs J which can be obtained as follows.
Consider any sequence of connected graphs J1, . . . , Jp ∈
D and vertices u1, . . . , up, where ui ∈ V (Ji) for i =
1, . . . , p. Then construct J by taking the disjoint union
of J1, . . . , Jp and identifying all vertices u1, . . . , up into
one vertex u, called further the corner of J . Then the
graph H from the previous paragraph belongs to D̂,
with s being the corner. We conclude that, in order to
be able to apply exactly the same reasoning, we need to
prove the following generalization of Theorem 4.1 that
will be used in its place.

Theorem B.2. Graphs from D̂ admit a labeling scheme
of length at most log n+ log d+O(g + log log n), where
n is the vertex count of the graph and d is the maximum
distance from any vertex to the corner of the input
graph. The Encoder runs in polynomial time and the
Decoder runs in constant time.

Moreover, if the graph is provided together with a
vertex subset Q, then the Encoder may assign to the
vertices of Q labels of length at most log |Q| + log d +
O(g + log log n).

Let us note that, similarly as in the proof of
Theorem 4.1, we use the trick expressed in Remark 1
to reduce the log d summand to O(1) for vertices of G2

that also belong to G1.
Proving Theorem B.2. Again, the proof of The-

orem B.2 follows the same approach as that of Theo-
rem 4.1. We will rely on generalizations of Theorem 2.1
to graphs of bounded Euler genus proved by Dujmović
et al. in [DJM+19]. For this, we need several definitions

from this work and results from this work.

Definition 3. For a graph G, a layering of G is a
partition of its vertex set into layers (V0, V1, V2, . . .)
such that every edge of G connects two vertices from
the same layer or from two consecutive layers. A BFS
layering of a connected graph G is obtained by taking
Vi = {v : dist(u, v) = i} for some fixed vertex u of G.

Definition 4. For a partition P of V (G), the layered
width of P with respect to a layering (V0, V1, V2, . . .) is
the least integer ` such that |A ∩ Vi| 6 ` for each A ∈ P
and i ∈ N.

Then the generalization of Theorem 2.1 we are going
to use can be phrased as follows.

Theorem B.3. (Theorem 20 of [DJM+19]) Every
graph G ∈ D has a partition P with layered width
at most max {2g, 1} such that G/P has treewidth
at most 9. Moreover, there is such a partition for
every given BFS layering of G, and such a partition
can be computed in polynomial time with the degree
independent of g.

Note that the algorithmic statement is not provided
explicitly in [DJM+19], but is discussed in Section 10
there. We then have the following easy lift of Theo-
rem B.3 to D̂.

Lemma B.3. Consider any graph G ∈ D̂ and let
(V0, V1, V2, . . .) be its BFS layering obtained by running
the BFS starting from the corner of G. Then G has a
partition P that has layered width at most max(2g, 1)
w.r.t. (V0, V1, V2, . . .) such that G/P has treewidth at
most 10. Moreover, such a partition can be computed in
polynomial time with the degree independent of g.

Proof. Let G1, . . . , Gp ∈ D and u1, . . . , up be such that
G is obtained by taking the disjoint union of connected
graphs G1, . . . , Gp and identifying vertices u1, . . . , up,
where uj ∈ V (Gj), into one vertex u, which is the corner
of G. For j ∈ {1, . . . , p}, let (V j

0 , V
j
1 , . . .) be the BFS

layering ofGj obtained by running a BFS from uj . Then
the BFS layering (V0, V1, V2, . . .) satisfies

V0 = {u} and Vi =

p⋃
j=1

V j
i for i > 1.

Apply Theorem B.3 to each Gj with BFS layering
(V j

0 , V
j
1 , . . .), thus obtaining a partition Pj of V (Gj)

that has layered width at most max {2g, 1} w.r.t

461
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

(V j
0 , V

j
1 , . . .), and such that Gj/Pj has treewidth at

most 9. Let P ′j be the vertex partition of Gj − uj ob-
tained from Pj be removing uj from the unique part
that it belongs to. Finally, let

P = {u} ∪
p⋃

j=1

P ′j .

Then it is straightforward to see that P is a partition
of the vertex set of G that has layered width at most
max {2g, 1} w.r.t. (V0, V1, . . .). Moreover, G/P is a
subgraph of the graph obtained by adding a universal
vertex to disjoint union of Gj/Pj for j ∈ {1, . . . , p},
hence G/P has treewidth at most 10.

With all the tools in place, we can prove Theo-
rem B.2.

Proof. [of Theorem B.2] The proof is analogous to that
of Theorem 4.1, where instead of using Theorem 2.1 we
use Lemma B.3 and we modify the scheme as follows.
In the labeling scheme of Theorem 4.1, we used the
fact that every part in the considered partition P has
at most one vertex in common with every layer of
the fixed BFS tree F , because the parts of P were
columns in F . This allowed us to use an adjacency
code consisting of 8 · 3 · 1 bits, where the consecutive
numbers correspond to the treewidth G/P (which upper
bounds the number of identifiers in the set returned by
Γ(·)), the number of adjacent layers (previous, same,
and next), and the number of vertices that any part of
P may have in common with any layer. Thus, in the
current setting we can use an adjacency code consisting
of 10 ·3 ·max {2g, 1} = O(g) bits in the same way.

We can conclude the proof of Theorem B.1 by
summarizing the bounds on the lengths of labels:

• Vertices of V (G2) \ V (G1) receive labels of length
log n+ log d+O(g + log log n);

• Vertices of G1 receive labels composed of two sub-
labels: one of length log (n/d) + O(g + log log n)
inherited from G1, and one of length log (n/d) +
O((g + 1) log log n)) inherited from G2.

Therefore, for d = Θ(n1/3) the label lengths are
bounded by 4

3 log n+O((g + 1) log log n), as claimed.

462
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

3/
20

 to
 9

1.
16

9.
11

.2
13

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

	Introduction
	Preliminaries
	Bounded Treewidth Graphs
	Planar Graphs of Small Diameter
	Planar Graphs in General
	Conclusion and Open Problems
	Bounded Treewidth Graphs: Technical Details
	Encoding and decoding
	Saving on labels of a small set of vertices

	Graphs of Bounded Genus

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20191108085217
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 16
 17

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 9.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 9.0000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 0
 1

 1

 HistoryList_V1
 qi2base

