
HAL Id: hal-02265219
https://hal.archives-ouvertes.fr/hal-02265219

Submitted on 8 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shorter Labeling Schemes for Planar Graphs
Marthe Bonamy, Cyril Gavoille, Michal Pilipczuk

To cite this version:
Marthe Bonamy, Cyril Gavoille, Michal Pilipczuk. Shorter Labeling Schemes for Planar Graphs. 2019.
�hal-02265219�

https://hal.archives-ouvertes.fr/hal-02265219
https://hal.archives-ouvertes.fr

Shorter Labeling Schemes for Planar Graphs∗

Marthe Bonamy
†

Cyril Gavoille
‡

Michał Pilipczuk
§

August 8, 2019

Abstract

An adjacency labeling scheme for a given class of graphs is an algorithm that for every graphG from

the class, assigns bit strings (labels) to vertices of G so that for any two vertices u, v, whether u and v
are adjacent can be determined by a �xed procedure that examines only their labels. It is known that

planar graphs with n vertices admit a labeling scheme with labels of bit length (2 + o(1)) log n. In this

work we improve this bound by designing a labeling scheme with labels of bit length (4
3 + o(1)) log n.

In graph-theoretical terms, this implies an explicit construction of a graph on n4/3+o(1)
vertices

that contains all planar graphs on n vertices as induced subgraphs, improving the previous best upper

bound of n2+o(1)
.

Our scheme generalizes to graphs of bounded Euler genus with the same label length up to a second-

order term. All the labels of the input graph can be computed in polynomial time, while adjacency can

be decided from the labels in constant time.

Keywords: planar graphs, labeling scheme, universal graphs

∗

The work of Michał Pilipczuk is a part of project TOTAL that have received funding from the European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 677651). The work

of Marthe Bonamy and Cyril Gavoille is partially funded by the French ANR projects ANR-16-CE40-0023 (DESCARTES) and

ANR-17-CE40-0015 (DISTANCIA).

†

CNRS-LaBRI, University of Bordeaux, France, marthe.bonamy@u-bordeaux.fr.

‡

LaBRI, University of Bordeaux, France, gavoille@labri.fr.

§

Institute of Informatics, University of Warsaw, Poland, michal.pilipczuk@mimuw.edu.pl.

marthe.bonamy@u-bordeaux.fr
gavoille@labri.fr
michal.pilipczuk@mimuw.edu.pl

1 Introduction

When representing graphs, say with adjacency lists or matrices, vertex identi�ers usually do not play any

particular role with respect to the structure of the graph: they are essentially just pointers in the data

structure. In contrast, a graph is implicitly represented when each vertex of the graph is associated to more

information so that adjacency, for instance, can be e�ciently determined from the identi�ers without the

need of any global data-structure (cf. [KNR88, Spi03]). For instance, ifG is an interval graph withn vertices,

one can associate with each vertex u some interval I(u) ⊆ [1, 2n] with integer endpoints so that u, v are

adjacent if and only if I(u) ∩ I(v) 6= ∅. Clearly, no adjacency lists or matrices are required anymore.

Although G may have a quadratic number of edges, such an implicit representation uses 2 log n + O(1)
bits per vertex

1
, regardless of its degree, which is asymptotically optimal [GP08]. Compact representations

have several advantages, not only for the memory storage, but also from algorithmic perspectives. For

instance, given a succinct representation, BFS traversal can be done inO(n) time [RLDL94, ACJR19], even

if the graph has Ω(n2) edges. Speedups due to succinct representations are ubiquitous in the design of

algorithms and data structures.

Formally introduced by Peleg [Pel00, Pel05], informative labeling schemes present a way to formalize

implicit representations of graphs. For a given function Π de�ned on pairs of vertices of a graph from

some given class of graphs, an informative labeling scheme has two components: an encoding algorithm

that associates with each vertex a piece of information (label); and a decoding algorithm that computes

Π(u, v,G), the value of Π applied on vertices u, v of the graph G. The input of the decoding algorithm

consists solely of the labels of u and of v, with no other information provided. So, �nding an implicit

representation of a graph G can be restated as computing an adjacency labeling scheme for G, that is, an

informative labeling scheme where Π(u, v,G) is true if and only if u, v are adjacent in G.

In this paper we will focus on such adjacency labeling schemes (referred to as labeling schemes

from now on), but many functions Π other than adjacency are of great interest. Among them are

ancestry [FK10b] and lowest common ancestor [AGKR04, AHGL14] in rooted trees, distance label-

ing [GU16, GKU16, AGHP16, FGNW17] and forbidden-set distance labeling [ACGP16], compact rout-

ing [FG01, TZ01, RT15], �ow [KKKP04], and many others. We refer to [GP03], and references therein,

for a survey of informative labeling schemes and their applications in distributed computing, and also

to [Rot16] for a survey on recent developments in labeling schemes specialized for trees.

Planar graphs. Planar graphs are perhaps the most studied class of graphs in this area, due to the

wide variety of their implicit representations. To mention just a few, planar graphs are contact graphs of

circles [Koe36], of 3D boxes [Tho86], of triangles [dFOdMR94], and more recently, of L-shapes [GIP18].

They also have 1-string representations [CGO10], and their incidence graphs form posets of dimension

three [Sch89]. Each of these representations leads to a labelling scheme where each vertex can be encoded

using a label consisting of O(log n) bits, independent of its degree.

The �rst explicit bound on the label length, given by Kannan et al. [KNR88], was 4 dlog ne bits. The

representation in terms of dimension-3 posets due to Schnyder [Sch89] actually implies a 3 dlog ne bit

labeling, and similar bounds can be derived from polynomial sized universal graphs (cf. related work be-

low). Using the fact that planar graphs have arboricity at most three together with a labeling scheme for

forests with label length log n + o(log n), one can achieve also a similar 3 log n + o(log n) upper bound

for planar graphs, where the lower-order term o(log n) directly depends on the second-order term of the

1

Throughout the paper, we denote by logn the binary logarithm of n.

1

bound for forests. It was a challenging question to optimize this second-order for forests. It has been suc-

cessively reduced from O(log log n) [Chu90] to O(log∗ n) [AR02], and then to a constant only recently

by Alstrup et al. [ADBTK17]. As explained above, this leads to an upper bound of 3 log n+O(1) for pla-

nar graphs. By signi�cantly improving the labeling scheme for bounded treewidth graphs, namely from

O(k log n) [KNR88] to log n+O(k log logn), Gavoille and Labourel [GL07] showed that partitioning the

edges of a planar graph into two bounded treewidth subgraphs, rather than into three forests, leads to

a shorter representation: with labels consisting of 2 log n + O(log log n) bits. This is currently the best

known upper bound for planar graphs.

The best known results for subclasses of planar graphs are reported on Table 1.

Graph classes Upper bound References

(with n vertices) (label length in bits)

maximum degree-2 log n+O(1) [But09, ELO08]

caterpillars log n+O(1) [BGL06]

bounded degree trees log n+O(1) [Chu90]

bounded depth trees log n+O(1) [FK10a]

trees log n+O(1) [ADBTK17]

bounded degree outerplanar log n+O(1) [Chu90, AR14]

outerplanar log n+O(log log n) [GL07]

bounded treewidth planar log n+O(log log n) [GL07]

maximum degree-4 planar
3
2 log n+O(log log n) [AR14]

bounded degree planar 2 log n+O(1) [Chu90]

planar 2 log n+O(log log n) [GL07]

diameter-d planar log n+ log d+O(log log n) [this paper]
planar

4
3 log n+O(log log n) [this paper]

Table 1: State-of-the-art for adjacency labeling schemes on planar graphs and some subclasses. The bounds

from references [Chu90, ELO08, But09] come from induced-universal graphs, whereas all the others come

from labeling schemes. The only known lower bound for planar graphs is log n+ Ω(1).

Our contribution. As shown in Table 1, in this work we present a new labeling scheme for planar

graphs that uses labels of length bounded
2

by
4
3 log n. Note that this not only improves the previously best

known bound of 2 log n for general planar graphs [GL07], but even the re�ned bound of
3
2 log n for the

case of planar graphs of maximum degree 4 [AR14]. Our contribution is actually three-fold.

First, we design a labeling scheme with labels of length log n+ log d if the graph has diameter at most

d (Theorem 5 in Section 4). This parametrized bound is never worse than the currently best known bound

of 2 log n, because we always have d < n. Our scheme is based on a recent decomposition theorem, which

states that the vertices of a planar graph can be partitioned into geodesics (shortest paths) so that contract-

ing every geodesic to a single vertex turns the graph into a graph of constant treewidth. This was �rst

proved by Pilipczuk and Siebertz in [PS19], and then re�ned by Dujmović et al. [DJM
+

19] as follows: the

geodesics in the partition can be selected from any �xed BFS forest of the graph. This statement was used

2

For brevity, in this informal exposition we ignore terms of lower order o(logn).

2

in [DJM
+

19] to prove that planar graphs have bounded queue number and in [DEJ
+

19] to prove that they

have bounded nonrepetitive chromatic number, which resolved two long-standing open questions in graph

theory. Thus, in this work we provide another application of the result of Dujmović et al.: a construction

of shorter labeling schemes for planar graphs.

The second contribution is the main one: a labeling scheme for planar graphs that uses labels of length

4
3 log n (Theorem 6 in Section 5). To achieve this, we combine the scheme for planar graphs of low diameter

with the layering technique. Essentially, we compute a decomposition of the graph into strips of depth

bounded by some parameter d ∈ N. Strips are separated by borders whose union is a graph on O(n/d)
vertices and of constant treewidth. Using the results of [GL07], for this border graph we can compute a

labeling with labels of length log (n/d). On the other hand, the low-diameter result provides a scheme

for the strips with labels of length at most log n + log d. At this point, superposing these two schemes

gives no improvement, because vertices appearing at the borders of strips have to inherit labels from both

labelings: log n + log d from the labeling of the strips and log n/d from the labeling of the border, which

sums up to 2 log n. However, by revisiting the scheme for graphs of bounded treewidth we are able to

show that for vertices at the borders of strips, the labeling for strips can use much shorter labels: only of

length log (n/d) instead of log n + log d. Hence, the combined labels of border vertices are of length at

most 2 log (n/d), implying that every vertex receives a label of length bounded by

max { log n+ log d , 2 log (n/d) } .

This expression is minimized for d = n1/3 and then evaluates to
4
3 log n, the desired bound.

The third contribution is a generalization of the previous technique to graphs of bounded Euler genus.

Namely, for every �xed g ∈ N, we construct a labelling scheme for graphs of Euler genus at most g that

uses labels of length at most
4
3 log n (Theorem 9 in Section B).

In all our labeling schemes, given the input graph we can compute the labeling of its vertices in poly-

nomial time, while the adjacency can be determined from the labels in constant time.

Connections with universal graphs. It has been observed in [KNR88] that the design of labeling

schemes with short labels is tightly connected with the construction of small induced-universal graphs.

Recall that a graph U is induced-universal for a given set of graphs S if every graph G ∈ S is isomorphic

to some induced subgraph of U. Then graphs from S admit a labeling scheme with k-bit labels if and

only if S has an induced-universal graph U with at most 2k vertices, see [KNR88]. Thus, our new labeling

scheme provides an explicit construction of an induced-universal graph for n-vertex planar graphs that

has n4/3+o(1)
vertices, improving upon the previously best known bound of n2+o(1)

, derived from [GL07].

Therefore, we proved that the minimum possible number of vertices of an induced-universal graph

for n-vertex planar graphs lies between Ω(n) and n4/3+o(1)
. The search for optimum bounds on the sizes

of induced-universal graphs is a well-studied topic in graph theory, see for example the recent develop-

ments for general n-vertex graphs [Alo17, AKTZ15] and for n-vertex trees [ADBTK17]. We refer readers

interested in this topic to the recent survey of Alstrup et al. [AKTZ19].

Apart from induced-universal graphs, there is also an alternative de�nition: edge-universal graphs.

Here, we say that U is edge-universal for a set of graph S if every graph from S is a subgraph of U (not

necessarily induced). As far as edge-universal graphs for n-vertex planar graphs are concerned, there are

much more concise constructions than in the induced setting. Babai et al. [BCE
+

82] gave a construction

with O(n3/2) edges, while if one restricts the question to n-vertex planar graphs with constant maximum

3

degree, then the number of edges can be reduced even to O(n) [Cap02]. However, in general it is unclear

how edge-universal graphs can be turned into induced-universal graphs without a signi�cant explosion in

the size, see e.g. the discussion in [Chu90].

Organization. After brief preliminaries in Section 2, we revisit and strengthen the labeling scheme for

graphs of bounded treewidth of Gavoille and Labourel [GL07] in Section 3. In Section 4 we provide the

scheme for planar graphs of bounded diameter, while in Section 5 we treat the case of general planar

graphs. We conclude in Section 6 by stating a few open problems. The scheme for graphs of bounded

genus, as well as most of the technical details of the modi�cation of the scheme for bounded treewidth

graphs, are provided in the appendix.

2 Preliminaries

We use standard graph notation. For a graph G, the vertex and edge sets of G are denoted by V (G) and

E(G), respectively. For A ⊆ V (G), we write G[A] for the subgraph of G induced by A and G−A for the

subgraph of G induced by V (G) \A.

Labeling schemes. The following de�nition formalizes the concept of labeling schemes.

De�nition 1. Let C be a class of graphs. An adjacency labeling scheme for C is a pair 〈λ, ϕ〉 of functions
such that, for every graph G ∈ C, it holds:

• λ is the Encoder that assigns to every vertex u of G a di�erent binary string λ(u,G); and
• ϕ is the Decoder that decides adjacency from the labels taken from G. More precisely, for every pair

u, v of vertices of G, ϕ(λ(u,G), λ(v,G)) is true if and only if u, v are adjacent in G.

The length of the labeling scheme 〈λ, ϕ〉 is the function ` : N→ N that maps everyn ∈ N to themaximum

length, expressed in the number of bits, of labels assigned by the Encoder in n-vertex graphs from C.

In the above de�nition we measure the length only in terms of the vertex count n, but we can extend

the de�nition to incorporate auxiliary graph parameters, like diameter or treewidth, in a natural way.

Whenever G is clear from the context, we write λ(u) as a shorthand for shorthand for λ(u,G).

When speaking about the complexity of Encoder and Decoder, we assume RAM model with machine

words of bit length O(log n) and unit cost arithmetic operations.

Tree decompositions. A tree decomposition of a graph G is a pair (T, β), where T is a tree and β
maps every node x of T to its bag β(x) ⊆ V (G) so that: for every edge uv of G there exists a node

x satisfying {u, v} ⊆ β(x), and for every vertex u of G, the set {x ∈ V (T) : u ∈ β(x)} induces a non-

empty, connected subtree of T . The width of (T, β) is maxx∈V (T) |β(x)| − 1, while the treewidth of G is

the minimum possible width of a tree decomposition of G.

We will also use the well-known fact that planar graphs have bounded local treewidth.

Lemma 1. Every connected planar graph of radius at most ρ has treewidth at most 3ρ.

4

Layered partitions of planar graphs. We now recall the results of Dujmović et al. [DJM
+

19] that we

will use later on. For this, we need a few auxiliary de�nitions. For a graphG, a BFS forest ofG is a spanning

forest ofG obtained by picking any root vertex in every connected component ofG, running breadth-�rst

search from the roots, and including all the traversed edges in the forest. Two vertices of a rooted tree are

related if one is the ancestor (not necessarily proper) of the other. A column of a BFS forest F is any path

in F connecting related vertices. Note that every column is a shortest path between its endpoints in G,

and is contained in a shortest path from the descendant endpoint to the root of the respective tree of F .

Suppose P is a partition of the vertex set of a graph G. The quotient graph G/P has P as its vertex

set, and two di�erent partsA,B ∈ P are considered adjacent inG/P if and only if there exists a ∈ A and

b ∈ B such that a and b are adjacent in G.

Theorem 2 (Theorem 8 of [DJM+19], with adjusted terminology). Let G be a planar graph, and let

F be any BFS forest ofG. Then, one can construct in polynomial time a partition P of the vertex set ofG such

that every part of P is the vertex set of a column of F and the quotient graph G/P has treewidth at most 8.

We remark that the algorithmic statement is not stated explicitly in [DJM
+

19], but a polynomial-time

algorithm can be obtained by directly following the construction in the proof.

3 Bounded Treewidth Graphs

Like the construction of [GL07] for planar graphs, our result relies on the labeling scheme developed for

bounded treewidth graphs.

Theorem 3 ([GL07]). For any �xed k ∈ N, graphs of treewidth at most k admit a labeling scheme of length

log n+O(k log log n). The Encoder runs in O(n log n) time and the Decoder runs in constant time.

In later sections we signi�cantly rely on the combinatorics behind the proof of Theorem 3. We will

need two ingredients:

(1) an understanding of how encoding and decoding works in the labeling scheme; and

(2) a strengthening of the result, where we can assume that a prescribed set of at most q vertices receives

shorter labels, namely of length log q +O(k log logn).

These two properties are formally stated as follows.

Theorem 4. For any �xed k ∈ N, the class of graphs of treewidth at most k admits a labeling scheme 〈λ, ϕ〉
of length log n+O(k log log n) with the following properties:

(P1) From any label a one can extract in timeO(1) an identi�er ι(a), so that the Decodermay be implemented

as follows: given a label a, one may compute in time O(k) a set Γ(a) consisting of at most k identi�ers

so that ϕ(a, b) is true if and only if ι(a) ∈ Γ(b) or ι(b) ∈ Γ(a).
(P2) If the input graphG is given together with a vertex subsetQ, then the scheme can assign to the vertices

of Q labels of length log |Q|+O(k log log n).

The Encoder works in polynomial time while the Decoder works in constant time.

Note that contrary to Theorem 3, the Encoder of Theorem 4 does not work in near-linear time.

5

The proof of Theorem 4 is presented in Appendix A. In general, it largely follows the approach of

Gavoille and Labourel [GL07]; in particular, their scheme achieves property (P1) without any modi�cations.

However, to achieve property (P2) we need to replace a crucial combinatorial element of the proof with a

new argument. Let us brie�y sketch the main ideas.

The key idea of the scheme of Gavoille and Labourel is to work on a bi-decomposition of the input

graph G, which is a notion roughly resembling a tree decomposition. A bi-decomposition of G is a rooted

tree with nodes having at most two children. Each node is assigned its bag, and the bags form a partition

of V (G). We require that whenever uv is an edge of G, the nodes whose bags contain u and v should be

related.

As proved in [GL07], an n-vertex graph G of treewidth at most k admits a bi-decomposition of depth

at most log n whose bags are of size O(k log n). Let us compute an orientation of G where every vertex u
has at most k outneighbors; it is known that such an orientation exists for treewidth-k graphs. By working

with a chordal supergraph of G of treewidth at most k, rather than on G itself, we can assume that the

complexKu of u, which consists of u and all its outneighbors, forms a clique in G. Then in the computed

bi-decomposition, all vertices of Ku have to lie on one root-to-leaf path. The label of u then consists of

the left/right encoding of this path together with the placement of u and all its outneighbors in the bags

on the path. This essentially already achieves property (P1): the set Γ(λ(u)) consists of the identi�ers of

all the outneighbors of u in the computed orientation of G.

Observe that in the approach explained above it was crucial that the computed bi-decomposition has

depth at most log n and not, say, 2 log n, because the encoding of the root-to-leaf path that contains Ku

is the dominant component in the label of a vertex u. The bi-decomposition used in [GL07] is obtained

by recursively splitting the graph in half using the following balanced separator claim: every graph of

treewidth at most k admits a vertex partition (A,X,B) such that |X| = O(k log n), |A|, |B| 6 n/2, and

there is no edge betweenA andB. To achieve property (P2), a natural approach would be to split the graph

into parts A and B using a separator X of size O(k log n) so that A and B both contain at most half of all

the vertices, and both contain at most half of the remaining vertices ofQ. Unfortunately, the strategy used

in [GL07] seems di�cult to generalize for achieving both these objectives at the same time. Therefore,

we replace this element of the reasoning with a completely new argument. We allow partitions that are

slightly o�-balanced: by a multiplicative factor of O
(

1
logn

)
, which is �ne for achieving the overall depth

log n+O(1). This relaxation allows us to use grouping based on Steinitz Lemma [Sev78, SB97] to achieve

balance both in terms of the total number of vertices, and in terms of the number of vertices of Q.

4 Planar Graphs of Small Diameter

We now combine Theorem 2 with our understanding of schemes for graphs of bounded treewidth in order

to give short labeling schemes for planar graphs of small diameter.

Theorem 5. The class of connected planar graphs with n vertices admits a labeling scheme of length log n+
log d+O(log log n), where d is the radius of the graph. The Encoder runs in polynomial time and the Decoder

in constant time.

Moreover, if the graph is provided together with a vertex subset Q, then the Encoder may assign to the

vertices of Q labels of length at most log |Q|+ log d+O(log log n).

6

Proof. We �rst focus on proving the initial statement, without the additional vertex subset Q. At the end

we shall argue how the re�ned statement can be obtained using property (P2) of Theorem 4.

Let G be the input planar graph, where G has n vertices and diameter d. Fix any vertex r of G as a

root vertex and let F be a BFS tree rooted at r; then F has depth at most d. Apply Theorem 2 to G and

F ; thus we can obtain, in polynomial time, a partition P of G so that every part of P is the vertex set of

a column in F and G/P has treewidth at most 8. Denote G′ = G/P and recall that V (G′) = P . Let

ψ : V (G)→ V (G′) be the mapping that sends every vertex of G to the part of P that contains it.

Now, apply Theorem 4 to the graphG′, obtaining a labeling scheme κ(·) de�ned on vertices ofG′ with

labels of length log n+O(log log n), Encoder working in polynomial time and Decoder in constant time.

Now, we de�ne the labeling λ(·) of G as follows. The label λ(u) of u ∈ V (G) consists of:

• the label κ(ψ(u));

• the distance from u to r, written in binary;

• a 24-bit adjacency code, which we de�ne in a moment.

The �rst two pieces of information above are of variable length, so we add to the label a pre�x of (�xed)

length 2 log log n that encodes their lengths, so that they can be extracted from the label in constant time.

It remains to describe the adjacency code and how the decoding is going to be performed based on it.

Recall that, by property (P1), every vertex of w of G′ is assigned an identi�er ι(κ(w)) so that from κ(w)
one can compute a set Γ(κ(w)) of at most 8 identi�ers with the following property: w and w′ are adjacent

in G′ if and only if ι(κ(w)) ∈ Γ(κ(w′)) or ι(κ(w)) ∈ Γ(κ(w′)). By ordering identi�ers lexicographically,

we may assume that sets returned by Γ(·) are organized as lists. (In the original scheme of [GL07], Γ(·)
sets are organized into dictionary so that membership can be tested in constant time, independently of

the size of Γ(·). This re�nement does not matter here since the size is bounded by 8). Observe that two

vertices u and u′ of G may be adjacent only if the following two assertions hold:

• w = ψ(u) and w′ = ψ(u′) are adjacent in G′; and

• dist(u, r) and dist(u′, r) di�er by at most 1.

Hence, the adjacency code assigned to u stores, for each i ∈ {1, . . . , 8} and t ∈ {−1, 0, 1}, whether u is

adjacent to the unique vertex u′ with ψ(u′) = wi that satis�es dist(u, r)−dist(u′, r) = t, where wi is the

ith vertex of Γ(κ(ψ(u))). Note that there is at most one u′ as above, because ψ−1(wi) is a column in F .

Given the above description, the decoding can be performed as follows. Suppose we are given labels

λ(u) and λ(u′) of two vertices u, u′. From these labels we consecutively compute:

• dist(u, r) and dist(u, r′);

• labels κ(ψ(u)) and κ(ψ(u′));

• lists Γ(κ(ψ(u))) and Γ(κ(ψ(u′))); and

• identi�ers ι(κ(ψ(u))) and ι(κ(ψ(u′))).

Next, we check whether ι(κ(ψ(u))) ∈ Γ(κ(ψ(u′))) or vice versa. If this is not the case, then u and u′

are not adjacent. Otherwise, we check whether dist(u, r) − dist(u′, r) ∈ {−1, 0, 1}. Again, if this is not

the case, then u and u′ are not adjacent. Otherwise, whether u and u′ are adjacent can be read from the

adjacency code of κ(u) or of κ(u′), depending on which identi�er belongs to which list.

From the above description it is clear that the Encoder for this labeling scheme runs in polynomial

time, while the Decoder runs in constant time. This concludes the proof of the initial statement, without

the additional vertex subset Q. For the additional statement, we simply apply the following modi�cation:

we use property (P2) of Theorem 4 to ensure that in the labeling κ(·), the vertices of ψ(Q) receive labels

7

of length log |Q| + O(log log n). Thus, in λ(·) the vertices of Q receive labels of total length at most

log |Q|+ log d+O(log log n). �

Remark 1. In the labeling scheme of Theorem 5, we �x a BFS treeF of depth at most d and reserve dlog de
bits in the label of each vertex u to store the distance from u to the root of F . Observe that we may modify

the scheme so that for vertices whose distance from the root is either 1 or d, this piece of information takes

O(1) bits. Namely, using 3 �rst bits we store whether the distance is 1, 2, d− 1, d, or between 3 and d− 2.

Then actual distance is recorded using dlog de additional bits only when it is between 2 and d − 1. It is

easy to see that using this way of storing the distances from the root of F in the label, the Decoder can

verify whether two such distances di�er by at most 1, even when the Decoder does not know the value of

d. We will use this optimization in the next section.

5 Planar Graphs in General

Finally, we use the layering approach in combination with Theorem 5 to give a labeling scheme for general

planar graphs.

Theorem 6. Planar graphs with n vertices admit a labeling scheme of length
4
3 log n + O(log log n). The

Encoder runs in polynomial time and the Decoder in constant time.

Proof. Let G = (V,E) be the input planar graph on n vertices. We may assume that G is connected, as

otherwise we can make it connected by adding a fresh vertex connected to one vertex from every connected

component, apply the labeling scheme for the obtained graph on n+ 1 vertices, and forget the additional

vertex. Note that this operation preserves planarity.

Let

d =
⌈
n1/3

⌉
.

W.l.o.g. we assume that d > 3 (or n > 8). Fix any root vertex r and partition the vertices of G
according to the distance from r. Let Li be the i-th layer composed of vertices at distance exactly i ∈ N
from r, possibly with Li = ∅ if i is too large. For a ∈ {0, . . . , d− 1}, let

Wa =
⋃

i∈N : i≡a mod d

Li .

When speaking about sets Wa, we consider indices modulo d. Then one of the sets Wa ∪Wa+1 is small in

the following sense.

Claim 1. There exists a ∈ {0, . . . , d− 1} such that |Wa ∪Wa+1| 6 2n2/3.

Proof. Observe that

∑
a∈[0,d) |Wa ∪Wa+1| = 2n because every vertex belongs to exactly two of the sets

Wa ∪Wa+1. Hence, for some a ∈ {0, . . . , d− 1} we have |Wa ∪Wa+1| 6 2n/d 6 2n2/3. �

Partition the edges of G into E1 and E2 as follows: E1 comprises all edges with one endpoint in Wa

and the other in Wa+1, whereas E2 comprises all the remaining edges. Next, de�ne subgraphs G1 and G2

of G as follows:

G1 = (Wa ∪Wa+1, E1) and G2 = (V,E2) .

We �rst show that G1 is a very simple and small graph.

8

Claim 2. The graph G1 has at most 2n2/3 vertices and treewidth at most 6.

Proof. The bound on the number of vertices ofG1 is directly implied by Claim 1. For the treewidth bound,

observe that every connected component ofG1 is a subgraph of the graphG[Li ∪Li+1] for some i ∈ N. If

one modi�es G by removing all vertices of layers Li+2 ∪ Li+3 ∪ . . . and contracting all vertices of layers

L0 ∪ · · · ∪Li−1 onto r (note that these layers induce a connected subgraph ofG), then the resulting graph

has radius at most 2 and contains G[Li ∪ Li+1] as an induced subgraph. Then the claim follows from

Lemma 1. �

Let H be a graph obtained from G2 as follows. Add a new vertex s and make s adjacent to all vertices

of Wa+1. Moreover, if a 6= d− 1, add a path of length d− a connecting s with r.

Claim 3. The graph H is connected, planar, and has at most 2n vertices. Moreover, all vertices of H are at

distance at most d from s, where vertices ofWa+1 are exactly at distance 1 and vertices ofWa are exactly at

distance d.

Proof. Observe that G2 is the disjoint union of subgraphs of G induced by the vertex subsets:

L0 ∪ . . . ∪ La, La+1 ∪ . . . ∪ Ld+a, Ld+a+1 ∪ . . . ∪ L2d+a, . . . ;

denote these induced subgraphs by R0, R1, R2, . . . in the order as above. Observe that if, for some i ∈ N
in G, we remove all vertices from layers Lj for j > (i + 1)d + a and contract all vertices from layers

Lj for j 6 id + a onto r (note that these layers induce a connected subgraph of G), then we obtain a

connected planar graph R′i which contains Ri as an induced subgraph. In fact, we have R0 = R′0 (then

no contraction takes place) and Ri = R′i − r for i > 1. Note that in R′i for i > 1, all vertices of Wa+1

are at distance exactly 1 from r and all vertices of Wa are at distance exactly d from r. Similarly, in R′0 all

vertices of Wa are at distance exactly a from r, and there are no vertices of Wa+1 unless a = d − 1, in

which case the only vertex of Wa+1 in R′0 is r itself.

Now observe thatH can be constructed from graphsR′0, R
′
1, R

′
2, . . . as follows: take the disjoint union

of those graphs, identify all copies of the vertex r from R′1, R
′
2, . . . into one vertex s, and connect s to the

copy of r in R′0 via a path of length d − a − 1 (in case a = d − 1, just identify this copy of r with s as

well). It is easy to see that since graphs R′0, R
′
1, R

′
2, . . . are planar and connected, H is also planar and

connected. The assertions about the distances of vertices of Wa and Wa+1 from s follow directly from the

discussion of distances in the previous paragraph.

The fact that H has at most 2n vertices follows immediately from the inequality d 6 n. �

We can now use Claims 2 and 3 to give the promised labeling scheme. First, by Claim 2 and Theorem 3,

for the graph G1 we may compute a labeling λ1 with labels of length at most
2
3 log n + O(log log n).

Second, by Claim 3 and Theorem 5, for G2 we may compute a labeling λ2 with labels of length at most

log n + log d + O(log log n) = 4
3 log n + O(log log n); this is obtained by computing such a labeling for

H and restricting it to G2. Moreover, we may construct this labeling so that all vertices of Wa ∪Wa+1

receive shorter labels, namely of length at most
2
3 log n + O(log log n). Here, we use Remark 1 in order

to reduce the log d summand to O(1), and we use Q = Wa ∪Wa+1 as the prescribed set of at most 2n2/3

vertices in order to reduce the log n summand to
2
3 log n+O(1).

Now, the label λ(u) of any vertex u of G is as follows:

9

• If u /∈Wa ∪Wa+1, then λ(u) = λ2(u).

• If u ∈Wa ∪Wa+1, then λ(u) is the concatenation of λ1(u) and λ2(u).

In the second case, in order to be able to decode λ1(u) and λ2(u) from λ(u), we append log log n bits that

indicate the length of λ1(u). Also, we add one bit indicating the case into which the vertex u falls.

Thus, in the �rst case λ(u) is of length
4
3 log n+O(log log n), while in the second it is of length

2

3
log n+O(log log n) +

2

3
log n+O(log log n) + log log n =

4

3
log n+O(log log n) .

Hence, the length of the constructed labeling scheme is as claimed. For the implementation of the Decoder,

given labels of two vertices u and v, we simply read labels of u and v in λ2 and λ1 (if applicable) and check

whether they are adjacent either in G1 or in G2. This concludes the construction of the labeling scheme.

The above construction can be directly translated to an implementation of the Encoder in polynomial

time and the Decoder in constant time. In case of Claim 1, note that an index a satisfying the claim can be

found in polynomial time by checking the indices between 0 and d− 1 one by one. �

6 Conclusion and Open Problems

We have proved an upper bound of (43+o(1)) log n for the length of labeling schemes for planar graphs, and

more generally for graphs embeddable in a �xed surface. It seems that our approach can be reformulated

so that in fact it mostly relies on the key property observed in [DJM
+

19]: graphs embeddable in a �xed

surface admit an H-partition of bounded layered width, for some graph H of bounded treewidth. This

together with minor-closeness and bounded local treewidth, are essential conditions under which our

technique can be employed.

As proved in [DJM
+

19], the key property of admitting an H-partition of bounded layered width for a

bounded treewidth graph H is enjoyed even in larger generality: by every class of graphs that are almost-

embeddable (without apices) in a �xed surface. Almost-embeddable graphs play a crucial role in the Struc-

ture Theorem for proper minor-closed classes of Robertson and Seymour [RS04], as they are atomic parts of

the decomposition. Thus, extending our work to all proper minor-closed classes of graphs is an interesting,

and seemingly feasible research direction. In the approach of Dujmović et al. [DEJ
+

19] for the queue num-

ber, almost-embeddable graphs are treated using layered partitions, then apices attached to those graphs

are managed separately, and �nally the obtained queue embeddings are glued along the tree decomposi-

tion provided by the Structure Theorem. In our case, extension to almost-embeddable graphs seems to be

a matter of working out technical details, adding apices is not an issue, but the last step seems the most

problematic: we do not know how to combine labeling schemes along tree decompositions. Nonetheless,

we believe that an extension to all proper minor-closed graph classes is possible.

The most glaring question left open by this paper is whether planar graphs admit a labeling scheme

with label length c log n with some c < 4/3. Now that the threshold of 2 has been broken, we do not stop

to optimize the second-order terms, and conjecture that c = 1 should be asymptotically the right answer.

Conjecture. Planar graphs admit a labeling scheme with label length log n+ o(log n).

As already pointed by [GL07], no hereditary class with no more than n!2O(n)
labeled graphs (including

trees, planar, bounded genus, bounded treewidth, minor-free, and many others) is known to require labels

10

of log n + ω(1) bits. While it may well be that the trivial lower bound is in fact tight, we do not believe

that planar graphs admit a labeling scheme with label length log n + O(1). Therefore, proving a lower

bound greater than the trivial log n+ Ω(1) would be very interesting.

Acknowledgements. A part of this research was completed at the 7th Annual Workshop on Geometry

and Graphs held at Bellairs Research Institute in March 2019.

References

[ACGP16] I. Abraham, S. Chechik, C. Gavoille, and D. Peleg, Forbidden-set distance labels for graphs

of bounded doubling dimension, ACM Transactions on Algorithms, 12 (2016), p. Article No.

22. doi: 10.1145/2818694.

[ACJR19] H.Acan, S. Chakraborty, S. Jo, and S. S. Rao, Succinct data structures for families of interval

graphs, Tech. Rep. 1902.09228v1 [cs.DS], arXiv, February 2019.

[ADBTK17] S. Alstrup, S. Dahlgaard, and M. Bæk Tejs Knudsen, Optimal induced universal graphs

and adjacency labeling for trees, Journal of the ACM, 64 (2017), p. Article No. 27. doi:

10.1145/3088513.

[AGHP16] S. Alstrup, C. Gavoille, E. B. Halvorsen, and H. Petersen, Simpler, faster and shorter

labels for distances in graphs, in 27th Symposium on Discrete Algorithms (SODA), ACM-

SIAM, January 2016, pp. 338–350. doi: 10.1137/1.9781611974331.ch25.

[AGKR04] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe, Nearest common ancestors: A survey

and a new algorithm for a distributed environment, Theory of Computing Systems, 37 (2004),

pp. 441–456. doi: 10.1007/s00224-004-1155-5.

[AHGL14] S. Alstrup, E. B. Halvorsen, and K. Green Larsen, Near-optimal labeling schemes for

nearest common ancestors, in 25th Symposium on Discrete Algorithms (SODA), ACM-SIAM,

January 2014, pp. 972–982. doi: 10.1137/1.9781611973402.72.

[AKTZ15] S. Alstrup, H. Kaplan, M. Thorup, and U. Zwick, Adjacency labeling schemes and induced-

universal graphs, in 47th Annual ACM Symposium on Theory of Computing (STOC), ACM

Press, June 2015, pp. 625–634. doi: 10.1145/2746539.2746545.

[AKTZ19] S. Alstrup, H. Kaplan, M. Thorup, and U. Zwick, Adjacency labeling schemes and induced-

universal graphs, SIAM Journal on Discrete Mathematics, 33 (2019), pp. 116–137. doi:

10.1137/16M1105967.

[Alo17] N. Alon, Asymptotically optimal induced universal graphs, Geometric and Functional Anal-

ysis, 27 (2017), pp. 1–32. doi: 10.1007/s00039-017-0396-9.

[AR02] S. Alstrup and T. Rauhe, Small induced-universal graphs and compact implicit graph repre-

sentations, in 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS),

IEEE Computer Society Press, November 2002, pp. 53–62. doi: 10.1109/SFCS.2002.1181882.

11

http://dx.doi.org/10.1145/2818694
http://arxiv.org/abs/1902.09228
http://dx.doi.org/10.1145/3088513
http://dx.doi.org/10.1137/1.9781611974331.ch25
http://dx.doi.org/10.1007/s00224-004-1155-5
http://dx.doi.org/10.1137/1.9781611973402.72
http://dx.doi.org/10.1145/2746539.2746545
http://dx.doi.org/10.1137/16M1105967
http://dx.doi.org/10.1007/s00039-017-0396-9
http://dx.doi.org/10.1109/SFCS.2002.1181882

[AR14] D.Adjiashvili andN. Rotbart, Labeling schemes for bounded degree graphs, in 41st Interna-

tional Colloquium on Automata, Languages and Programming (ICALP), vol. 8573 of Lecture

Notes in Computer Science (ARCoSS), Springer, July 2014, pp. 375–386. doi: 10.1007/978-3-

662-43951-7_32.

[BCE
+

82] L. Babai, F. R. K. Chung, P. Erdős, R. L. Graham, and J. H. Spencer, On graphs which

contain all sparse graphs, Annals of Discrete Mathematics, 12 (1982), pp. 21–26. doi:

10.1016/S0304-0208(08)73486-8.

[BGL06] N. Bonichon, C. Gavoille, and A. Labourel, Short labels by traversal and jumping, in

13th International Colloquium on Structural Information & Communication Complexity

(SIROCCO), vol. 4056 of Lecture Notes in Computer Science, Springer, July 2006, pp. 143–156.

doi: 10.1007/11780823_12.

[Bod96] H. L. Bodlaender, A linear time algorithm for �nding tree-decompositions of small treewidth,

SIAM Journal on Computing, 25 (1996), pp. 1305–1317. doi: 10.1137/S0097539793251219.

[But09] S. Butler, Induced-universal graphs for graphs with bounded maximum degree, Graphs and

Combinatorics, 25 (2009), pp. 461–468. doi: 10.1007/s00373-009-0860-x.

[Cap02] M. R. Capalbo, Small universal graphs for bounded-degree planar graphs, Combinatorica, 22

(2002), pp. 345–359. doi: 10.1007/s004930200017.

[CFK
+

15] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh, Parameterized Algorithms, Springer, 2015. doi: 10.1007/978-3-319-21275-3.

[CGO10] J. Chalopin, D. Gonçalves, and P. Ochem, Planar graphs have 1-string representations, Dis-

crete & Computational Geometry, 43 (2010), pp. 626–647. doi: 10.1007/s00454-009-9196-9.

[Chu90] F. R. K. Chung, Universal graphs and induced-universal graphs, Journal of Graph Theory, 14

(1990), pp. 443–454. doi: 10.1002/jgt.3190140408.

[DEJ
+

19] V. Dujmović, L. Esperet, G. Joret, B. Walczak, and D. R. Wood, Planar graphs have

bounded nonrepetitive chromatic number, Tech. Rep. 1904.05269v1 [math.CO], arXiv, 2019.

[dFOdMR94] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl, On triangle con-

tact graphs, Combinatorics, Probability & Computing, 3 (1994), pp. 233–246. doi:

10.1017/S0963548300001139.

[DJM
+

19] V. Dujmović, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood, Planar graphs

have bounded queue-number, Tech. Rep. 1904.04791v2 [cs.DM], arXiv, May 2019.

[ELO08] L. Esperet, A. Labourel, and P. Ochem, On induced-universal graphs for the class of

bounded-degree graphs, Information Processing Letters, 108 (2008), pp. 255–260. doi:

10.1016/j.ipl.2008.04.020.

[Epp00] D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica, 27 (2000),

pp. 275–291. doi: 10.1007/s004530010020.

12

http://dx.doi.org/10.1007/978-3-662-43951-7_32
http://dx.doi.org/10.1007/978-3-662-43951-7_32
http://dx.doi.org/10.1016/S0304-0208(08)73486-8
http://dx.doi.org/10.1007/11780823_12
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1007/s00373-009-0860-x
http://dx.doi.org/10.1007/s004930200017
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/s00454-009-9196-9
http://dx.doi.org/10.1002/jgt.3190140408
http://arxiv.org/abs/1904.05269
http://dx.doi.org/10.1017/S0963548300001139
http://arxiv.org/abs/1904.04791
http://dx.doi.org/10.1016/j.ipl.2008.04.020
http://dx.doi.org/10.1007/s004530010020

[EW18] F. Eisenbrand and R. Weismantel, Proximity results and faster algorithms for integer pro-

gramming using the Steinitz lemma, in 29th Symposium on Discrete Algorithms (SODA),

ACM-SIAM, 2018, pp. 808–816. doi: 10.1137/1.9781611975031.52.

[FG01] P. Fraigniaud and C. Gavoille, Routing in trees, in 28th International Colloquium on Au-

tomata, Languages and Programming (ICALP), F. Orejas, P. G. Spirakis, and J. v. Leeuwen,

eds., vol. 2076 of Lecture Notes in Computer Science, Springer, July 2001, pp. 757–772. doi:

10.1007/3-540-48224-5_62.

[FGNW17] O. Freedman, P. Gawrychowski, P. K. Nicholson, and O. Weimann, Optimal distance

labeling schemes for trees, in 36th Annual ACM Symposium on Principles of Distributed

Computing (PODC), ACM Press, July 2017, pp. 185–194. doi: 10.1145/3087801.3087804.

[FK10a] P. Fraigniaud and A. Korman, Compact ancestry labeling schemes for XML trees, in 21st

Symposium on Discrete Algorithms (SODA), ACM-SIAM, January 2010, pp. 458–466. doi:

10.1137/1.9781611973075.38.

[FK10b] P. Fraigniaud and A. Korman, An optimal ancestry scheme and small universal posets, in

42nd Annual ACM Symposium on Theory of Computing (STOC), ACM Press, June 2010,

pp. 611–620. doi: 10.1145/1806689.1806773.

[GIP18] D. Gonçalves, L. Isenmann, and C. Pennarun, Planar graphs as L-intersection or L-contact

graphs, in 29th Symposium on Discrete Algorithms (SODA), ACM-SIAM, 2018, pp. 172–184.

doi: 10.1137/1.9781611975031.12.

[GKU16] P. Gawrychowski, A. Kosowski, and P. Uznański, Sublinear-space distance labeling us-

ing hubs, in 30th International Symposium on Distributed Computing (DISC), vol. 9888 of

Lecture Notes in Computer Science (ARCoSS), Springer, September 2016, pp. 230–242. doi:

10.1007/978-3-662-53426-7_17.

[GL07] C. Gavoille and A. Labourel, Shorter implicit representation for planar graphs and bounded

treewidth graphs, in 15th Annual European Symposium on Algorithms (ESA), L. Arge and

E. Welzl, eds., vol. 4698 of Lecture Notes in Computer Science, Springer, October 2007,

pp. 582–593. doi: 10.1007/978-3-540-75520-3_52.

[GP03] C. Gavoille and D. Peleg, Compact and localized distributed data structures, Distributed

Computing, 16 (2003), pp. 111–120. doi: 10.1007/s00446-002-0073-5, PODC 20-Year Special

Issue.

[GP08] C. Gavoille and C. Paul, Optimal distance labeling for interval graphs and related

graphs families, SIAM Journal on Discrete Mathematics, 22 (2008), pp. 1239–1258. doi:

10.1137/050635006.

[GU16] P. Gawrychowski and P. Uznański, A note on distance labeling in planar graphs, Tech. Rep.

1611.06529v1 [cs.DS], arXiv, November 2016.

[KKKP04] M. Katz, N. A. Katz, A. Korman, and D. Peleg, Labeling schemes for �ow and connectivity,

SIAM Journal on Computing, 34 (2004), pp. 23–40. doi: 10.1137/S0097539703433912.

13

http://dx.doi.org/10.1137/1.9781611975031.52
http://dx.doi.org/10.1007/3-540-48224-5_62
http://dx.doi.org/10.1145/3087801.3087804
http://dx.doi.org/10.1137/1.9781611973075.38
http://dx.doi.org/10.1145/1806689.1806773
http://dx.doi.org/10.1137/1.9781611975031.12
http://dx.doi.org/10.1007/978-3-662-53426-7_17
http://dx.doi.org/10.1007/978-3-540-75520-3_52
http://dx.doi.org/10.1007/s00446-002-0073-5
http://dx.doi.org/10.1137/050635006
http://arxiv.org/abs/1611.06529
http://dx.doi.org/10.1137/S0097539703433912

[KNR88] S. Kannan, M. Naor, and S. Rudich, Implicit representation of graphs, in 20th Annual ACM

Symposium on Theory of Computing (STOC), ACM Press, May 1988, pp. 334–343. doi:

10.1145/62212.62244.

[Koe36] P. Koebe, Kontaktprobleme der konformen abbildung, Berichte über die Verhandlungen der

Sächsische Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 88

(1936), pp. 141–164.

[Pel00] D. Peleg, Informative labeling schemes for graphs, in 25th International Symposium on Math-

ematical Foundations of Computer Science (MFCS), vol. 1893 of Lecture Notes in Computer

Science, Springer, August 2000, pp. 579–588. doi: 10.1007/3-540-44612-5_53.

[Pel05] D. Peleg, Informative labeling schemes for graphs, Theoretical Computer Science, 340 (2005),

pp. 577–593. doi: 10.1016/j.tcs.2005.03.015.

[PS19] M. Pilipczuk and S. Siebertz, Polynomial bounds for centered colorings on proper minor-

closed graph classes, in 30th Symposium on Discrete Algorithms (SODA), ACM Press, January

2019, pp. 1501–1520. doi: 10.1137/1.9781611975482.91.

[RLDL94] C. J. Rhee, Y. D. Liang, S. K. Dhall, and S. Lakshmivarahan, E�cient algorithms for �nd-

ing depth-�rst and breadth-�rst search trees in permutation graphs, Information Processing

Letters, 49 (1994), pp. 45–50. doi: 10.1016/0020-0190(94)90053-1.

[Rot16] N. Rotbart, New Ideas on Labeling Schemes, phd thesis, University of Copenhagen, October

2016. http://www.academia.edu/33855491/New_Ideas_on_Labeling_Schemes.

[RS04] N. Robertson and P. D. Seymour, Graph minors. XX. Wagner’s conjecture, Journal of Com-

binatorial Theory, Series B, 92 (2004), pp. 325–357. doi: 10.1016/j.jctb.2004.08.001.

[RT15] L. Roditty and R. Tov, New routing techniques and their applications, in 34th Annual ACM

Symposium on Principles of Distributed Computing (PODC), ACM Press, July 2015, pp. 23–

32. doi: 10.1145/2767386.2767409.

[SB77] S. Stahl and L. W. Beineke, Blocks and the nonorientable genus of graphs, Journal of Graph

Theory, 1 (1977), pp. 75–78. doi: 10.1002/jgt.3190010114.

[SB97] S. Sevast’janov and W. Banaszczyk, To the Steinitz lemma in coordinate form, Discrete

Mathematics, 169 (1997), pp. 145–152. doi: 10.1016/0012-365X(94)00240-J.

[Sch89] W. Schnyder, Planar graphs and poset dimension, Order, 5 (1989), pp. 323–343. doi:

10.1007/BF00353652.

[Sev78] S. Sevast’janov, Approximate solution of some problems of scheduling theory, Metody

Diskret. Analiz, 32 (1978), pp. 66–75.

[Spi03] J. P. Spinrad, E�cient Graph Representations, vol. 19 of Fields Institute Monographs, Amer-

ican Mathematical Society, 2003.

[Tho86] C. Thomassen, Interval representations of planar graphs, Journal of Combinatorial Theory,

Series B, 40 (1986), pp. 9–20. doi: 10.1016/0095-8956(86)90061-4.

14

http://dx.doi.org/10.1145/62212.62244
http://dx.doi.org/10.1007/3-540-44612-5_53
http://dx.doi.org/10.1016/j.tcs.2005.03.015
http://dx.doi.org/10.1137/1.9781611975482.91
http://dx.doi.org/10.1016/0020-0190(94)90053-1
http://dx.doi.org/http://www.academia.edu/33855491/New_Ideas_on_Labeling_Schemes
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1145/2767386.2767409
http://dx.doi.org/10.1002/jgt.3190010114
http://dx.doi.org/10.1016/0012-365X(94)00240-J
http://dx.doi.org/10.1007/BF00353652
http://dx.doi.org/10.1016/0095-8956(86)90061-4

[TZ01] M. Thorup and U. Zwick, Compact routing schemes, in 13th Annual ACM Symposium

on Parallel Algorithms and Architectures (SPAA), ACM Press, July 2001, pp. 1–10. doi:

10.1145/378580.378581.

15

http://dx.doi.org/10.1145/378580.378581

A Bounded Treewidth Graphs: Technical Details

In this section we explain the proof of Theorem 4. In Section A.1 we explain how property (P1) of the

scheme follows immediately from the general strategy borrowed from [GL07], while in Section A.2 we

replace the crucial ingredient of the argument from [GL07] in order to achieve property (P2).

A.1 Encoding and decoding

As mentioned, the scheme of Gavoille and Labourel provided in [GL07], without any modi�cations, already

possesses property (P1). Hence, we now recall the reasoning for completeness, and because we will need its

understanding for achieving property (P2). Our presentation is a bit simpli�ed compared to that of [GL07],

because we choose not to optimize the label length as much as there (e.g. Gavoille and Labourel actually

provide an upper bound of log n+O(k log log (n/k)) instead of log n+O(k log logn) by a more precise

analysis).

First, since the input graph G has treewidth at most k, one can obtain a chordal supergraph G+
of G

on the same vertex set such that G+
also has treewidth at most k. This can be done as follows: take a

tree decomposition of G of width at most k and turn every bag into a clique. Since for �xed k such a tree

decomposition can be computed in linear time [Bod96], G+
can be computed in linear time.

Next, it is well-known that since G+
is chordal and of treewidth at most k, in linear time we can

compute an orientation
~G ofG+

such that every vertex u has at most k out-neighbors in
~G, and moreover

u together with those out-neighbors form a clique inG+
. For every u ∈ V (G), letKu be the set consisting

of u and its out-neighbors in
~G.

The key idea of the approach of Gavoille and Labourel is to compute a bidecomposition of the graph

G+
, which is a notion roughly resembling tree decompositions, but actually quite di�erent.

De�nition 2. A bidecomposition of a graphH is a pair (T, α), where T is a binary rooted tree and αmaps

vertices H to nodes of T , so that for every edge uv of H , α(u) and α(v) are related.

As proved in [GL07], graphs of bounded treewidth admit bidecompositions with small parts. This is

the key combinatorial ingredient of the proof.

Lemma 7 (cf. Lemma 1 in [GL07]). Let G be an n-vertex graph of treewidth at most k. Then there exists

a bidecomposition (T, α) of G satisfying the following:

(A1) |α−1(x)| = O(k log n) for every node x of T ; and
(A2) T has depth at most log n.

Moreover, for every �xed k, given G such a bidecomposition can be constructed in time O(n log n).

We apply Lemma 7 to the graph G+
, thus getting a suitable bidecomposition (T, α). Based on this, a

labeling is constructed as follows.

Consider any u ∈ V (G). Since Ku is a clique in G+
, it follows that nodes {α(v)}v∈Ku

are pairwise

related. Hence, there exists a path Pu in T starting at the root that contains all nodes α(v) for v ∈ Ku.

The second endpoint of Pu is the deepest among nodes {α(v)}v∈Ku
. Let P ′u be the pre�x of Pu from the

root of T to α(u).

16

For each node x of T �x an arbitrary enumeration of α−1(x) using index taken from [0, |α−1(x)|).

Now, the identi�er of vertex u consists of the following pieces of information:

1. The encoding of the path P ′u as a bit string of length |V (P ′u)| − 1 that encodes, for consecutive

non-root vertices of P ′u, whether they are left or right children.

2. The index of u within α−1(α(u)).

3. The depth of α(u) in T .

Since T has depth at most log n and |α−1(x)| = O(k log n) for every node x of T , we conclude that the

identi�er has total length log n+ log k+O(log log n). In addition to the identi�er, the label of u contains

the following pieces of information:

1. Encoding of the su�x of Pu that is not contained in P ′u; this, together with the information from the

identi�er, adds up to the encoding of Pu.

2. For every v ∈ Ku \ {u}, the depth of α(v) in T , the index of v within α−1(α(v)), and whether the

edge uv belongs to E(G) (it may belong to E(G+) \ E(G)).

As shown in [GL07], the above information, together with the identi�er, can be encoded in log n +
O(k log log n) bits, resulting in the promised upper bound on the label length.

It is now straightforward to see that from the label of u one can derive the identi�ers of the out-

neighbors of u in G+
. Indeed, for every v ∈ Ku \ {u} the depth of α(v) and the index of v in α−1(α(v))

are directly stored in the label of u, while the encoding of the path P ′v can be obtained by taking the

encoding of Pu and trimming it to the pre�x of length equal to the depth of α(v). With every such out-

neighbor v we have also stored the information whether the edge uv is contained in G, or it was added

when modifying G to G+
. Hence, given the label λ(u) we can compute a set of at most k identi�ers of

neighbors of u, which is a suitable set Γ(λ(u)). This proves property (P1).

A.2 Saving on labels of a small set of vertices

We now explain how the general approach of Gavoille and Labourel [GL07], presented in the previous

section, can be amended to achieve property (P2) as well. The di�erence is that we replace the usage of

Lemma 7 with the following Lemma 8.

Lemma 8. Let G be an n-vertex graph of treewidth at most k and S ⊆ V (G). Then there exists a bidecom-

position (T, α) of G satisfying the following:

(B1) |α−1(x)| = O(k log n) for every node x of T ;
(B2) T has depth at most log n+O(1); and
(B3) for every u ∈ S, α(u) is at depth at most log |S|+O(1) in T .

Moreover, for every �xed k, given G and S such a decomposition can be constructed in polynomial time, with

the degree of the polynomial independent of k.

Consider the set Q of prescribed vertices as in property (P2), and apply Lemma 8 to G+
with

S =
⋃
u∈Q

Ku .

We have |S| 6 (k+ 1) · |Q|. Hence, in the notation of the previous section, for every u ∈ Q we have that

Pu has at most log |S|+O(1) = log |Q|+O(log k) nodes, while for every other vertex u we have that Pu

17

has at most log n + O(1) nodes. Plugging this into the analysis of the previous section gives the desired

bounds on the lengths of labels in the constructed labeling. Note that thus, property (P1) still holds, while

property (P2) is achieved.

We are left with proving Lemma 8. We would again like to stress that this is not a simple modi�cation

of the proof of Lemma 7 presented in [GL07]. The general idea is to recursively decompose the graph,

where at each step we use a separator of size O(k log n) to split the graph into two parts, each containing

(roughly) at most half of the remaining vertices and at most half of the remaining vertices of S. In [GL07]

only the �rst objective — halving the total number of vertices — was necessary, and this was relatively easy

to achieve using a separator of size O(k log n). However, the strategy used in [GL07] does not generalize

to achieving both objectives at the same time. Hence, our splitting step is based on a completely di�erent

argument.

Proof (of Lemma 8). We focus on proving the existential statement and discuss the algorithmic aspects

at the end.

For a graph H and a weight function ω : V (H) → R>0, we write ω(H) =
∑

u∈V (H) ω(u). We will

use the following well-known claim.

Claim 4 (see Lemma 7.19 of [CFK+15]). Let H be a graph of treewidth at most k and let ω : V (H) →
R>0 be a weight function on the vertices of H . Then there exists a set Z ⊆ V (H) of size at most k + 1 such

that for every connected component C of H − Z we have ω(C) 6 1
2ω(H).

First, we will need the following generalization of Claim 4.

Claim 5. Let ε > 0, letH be a graph of treewidth at most k, and letω : V (H)→ R>0 be a weight function on
the vertices ofH . Then there exists a set Z ⊆ V (H) of sizeO(ε−1k) such that for every connected component

C of H − Z we have ω(C) 6 ε · ω(H).

Proof. Consider the following iterative procedure. Start with Z = ∅. As long as H − Z contains a

component C satisfying ω(C) > ε · ω(H), pick any such component C and apply Claim 4 to it. This

yields a suitable set ZC of size at most k+ 1 such that every connected component C ′ of C −ZC satis�es

ω(C ′) 6 1
2ω(C). Then add ZC to Z and continue.

The procedure eventually stops, yielding a set Z satisfying the requested condition and of size at most

(k + 1) · `, where ` is the number of iterations. Therefore, it su�ces to show that ` = O(ε−1).

We partition the iterations according to how the component C considered in the iteration is split:

• Leaf iterations: for every component C ′ of C − ZC we have ω(C ′) 6 ε · ω(H).

• Unary iterations: there is exactly one component C ′ of C − ZC satisfying ω(C ′) > ε · ω(H).

• Binary iterations: there are at least two components C ′ of C − ZC satisfying ω(C ′) > ε · ω(H).

For leaf iterations, observe that the connected component of C−ZC are not touched by the procedure

any more, and survive as connected components of H − Z till the end. Hence, all the components C
considered in all leaf iterations are pairwise disjoint. Since each of them satis�es ω(C) > ε · ω(H), we

conclude that the total number of leaf iterations is at most ε−1.

For unary iterations, a similar argument applies. If C ′ is the unique component of C − ZC satisfying

ω(C ′) > ε · ω(H), then we also have ω(C ′) 6 1
2ω(C), which implies that

∑
C′′ ω(C ′′) > 1

2ω(C) >
ε/2 ·ω(H), where the sum goes over all components C ′′ of C−ZC that are di�erent from C ′. Since these

18

components C ′′ are not touched any more by the procedure, they are pairwise disjoint for di�erent unary

iterations, yielding an upper bound of 2ε−1 on the total number of unary iterations.

Finally, to bound the number of binary iteration, we may imagine the run of the procedure as a rooted

forest labeled with components to which the iterations are applied: the children of a node labeled by a

component C are labeled with components C ′ of C − ZC satisfying ω(C ′) > ε · ω(H), to which the pro-

cedure was further applied. In this forest, leaf iterations correspond to leaves, unary iterations correspond

to nodes with one child, and binary iterations correspond to nodes with at least two children. Since the

number of nodes with at least two children in such a forest is always smaller than the number of leaves,

we conclude that the number of binary iterations is smaller than the number of leaf iterations, which in

turn is upper bounded by ε−1.

All in all, we conclude that the total number of iterations is bounded by 4ε−1, resulting in a bound of

4ε−1 · (k + 1) = O(ε−1k) on the size of Z . �

We now use Claim 5 to �nd separators that are suited for constructing a bidecomposition. The idea is

that after removing the separator, we need to be able to group the remaining components into two parts

that are roughly balanced: both in terms of the number of vertices and in terms of the number of vertices

of Q. We prefer to put this condition in an abstract way, using two weight functions.

Claim 6. Let ε > 0, let H be a graph of treewidth at most k, and let ω1, ω2 : V (H) → R>0 be two weight
functions on the vertices ofH . Then there exists a partition (A,X,B) of V (G) with the following properties:

• there is no edge with one endpoint in A and second in B;

• |X| = O(ε−1 · k); and
• ωt(A) 6 (1/2 + ε) · ωt(H) and ωt(B) 6 (1/2 + ε) · ωt(H), for t ∈ {1, 2}.

Proof. Without loss of generality we assume that
1
2ε is an integer, in particular ε < 1

2 .

Apply Claim 5 to H with weight functions ω1(·) and ω2(·), yielding suitable separators Z1, Z2 ⊆
V (H). Let X = Z1 ∪ Z2. Then |X| = O(ε−1 · k) and

ωt(C) 6 ε · ωt(H) for each t ∈ {1, 2} and every connected component C of H −X .

It therefore su�ces to prove that the connected components of H −X can be partitioned into two groups

A and B so that the third condition is satis�ed.

By scaling the weight functions we may assume that ω1(H−X) = ω2(H−X) = 1 (if ωt(H−X) = 0
for any t ∈ {1, 2}, then the third condition is trivially satis�ed for t). Consider the following multiset W
of vectors in R2

: for each connected component C of H −X add to W the vector

aC = (ω1(C), ω2(C)),

and then add to W exactly 1/ε copies of the following vector:

b = (−ε,−ε) .

Observe that the sum of vectors in W is equal to (0, 0) and that the∞-norm of each of them is at most ε.
Therefore, by Steinitz Lemma [Sev78, SB97] we conclude that there exists a permutation v1, v2, . . . , vp of

vectors in W , where p is the cardinality of W , such that

‖v1 + · · ·+ vj‖∞ 6 2ε for each j ∈ {0, . . . , p} . (1)

19

Let q 6 p be such that exactly
1
2ε among vectors v1, . . . , vq are equal to b; recall that we assumed that

1
2ε

is an integer, so such q exists. Let A ⊆ V (G) consist of the vertex sets of those connected components of

H −X for which aC is among v1, . . . , vq , and let B ⊆ V (G) consist of the vertex sets of the remaining

components of H −X . Then by (1) and the de�nition of q we conclude that

|ωt(A)− 1/2| 6 2ε for each t ∈ {1, 2} .

This implies that

ωt(A) 6 1/2 + 2ε 6 (1/2 + 2ε) · |V (H)| for each t ∈ {1, 2} ,

and similarly for B. We conclude by rescaling ε by a multiplicative factor of 2 throughout the proof. �

We are �nally ready to build the requested bidecomposition. Let n = |V (G)| and �x ε = 1/ log n.

W.l.o.g. assume that ε 6 1/8, for otherwiseG is of constant size. De�ne weight functions on vertices ofG
as follows: ω1(u) = 1 for each vertex u, and ω2(u) = 1 for each u ∈ S and ω2(u) = 0 for each u /∈ S. The

bidecomposition is constructed using the following recursive procedure which for R ⊆ V (G) constructs

a bidecomposition of G[R]; we apply it initially to R = V (G).

1. If R is empty, terminate and return an empty bidecomposition.

2. Otherwise, apply Claim 6 to H = G[R] with weight functions ω1(·) and ω2(·) restricted to R.

This yields a partition (A,X,B) of R. Apply the procedure recursively to A and to B in place of

R, yielding bidecompositions of G[A] and G[B], respectively. Return a bidecomposition of G[R]
obtained by creating a root r, mapping all vertices of X to r, and attaching the bidecompositions of

G[A] and G[B] as children of r.

Let (T, α) be the bidecomposition ofG obtained in this manner. As ε = 1/ log n, property (B1) is clear

from the construction. Therefore, we focus on proving properties (B2) and (B3).

Consider any root-to-leaf path in T and let

V (G) = R0 ⊇ R1 ⊇ R2 ⊇ · · · ⊇ Rd

be the consecutive sets R considered by the procedure constructing (T, α) along this path. By the con-

struction we have

|Ri| 6 (1/2 + ε)i · n for each i ∈ {0, . . . , d} .

Since the procedure stops when R becomes empty, we have that |Rd| > 1, implying that

(1/2 + ε)d · n > 1

or equivalently

d 6 − log1/2+ε n =
log n

1 + log
(

1
1+2ε

) .
Now observe that

log

(
1

1 + 2ε

)
= log

(
1− 2ε

1 + 2ε

)
> − 4ε

1 + 2ε
> −4ε .

20

Here, the �rst inequality follows from log(1− x) > −2x for x ∈ [0, 1/2], which in turn follows from the

concavity of function t 7→ log t. Therefore, we conclude that

d 6
log n

1− 4ε
6 log n · (1 + 8ε) = log n+ 8,

where the second inequality follows from 1 6 (1− 4ε)(1 + 8ε) being true for ε 6 1/8. We conclude that

the height of T is at most log n+ 8, so property (B2) is veri�ed.

The proof of property (B3) is analogous: instead of any root-to-leaf path in T , we consider any path

from the root to any node x satisfying α−1(x) ∩ S 6= ∅. This concludes the proof of the existential

statement.

We now discuss the algorithmic aspects. The standard proof of Claim 4, see e.g. [CFK
+

15], shows

that some bag of a tree decomposition of width k of H is a suitable set Z . Since for �xed k such a de-

composition can be found in linear time [Bod96], the proof of Claim 4 yields a linear-time algorithm for

�nding Z . The proof of Claim 5 amounts to applying Claim 4 O(ε−1) = O(log n) times, so this yields

an O(n log n)-time algorithm for this claim. We need to be careful with Claim 6: after applying Claim 5

twice, in O(n log n) time, we consider a permutation of vectors from W that is given by the Steinitz

Lemma, which is a priori a non-constructive argument. However, there are known proofs of the Steinitz

Lemma that yield polynomial-time algorithms for �nding a suitable permutation via iterative application

of linear programming, see e.g. the discussion in [EW18]. Hence, the conclusion of Claim 6 can be also

found in polynomial time for �xed k. Finally, the construction of the �nal bidecomposition amounts to

applying (the algorithm of) Claim 6 a polynomial number of times. �

B Graphs of Bounded Genus

In this section we prove the following strengthening of Theorem 6.

Theorem 9. For every �xed g ∈ N, graphs of Euler genus at most g admit a labeling scheme of length

4
3 log n + O((g + 1) log log n). The Encoder runs in polynomial time, with the degree of the polynomial

independent of g, and the Decoder runs in constant time.

For the rest of this section we �x g ∈ N and let D be the class of graphs of Euler genus at most g.

The proof follows from applying the same approach as that of Theorem 6, hence we only discuss how we

modify the parts of the argumentation, where the planarity of the input graph was used. A close inspection

of the proof of Theorem 6 shows that there are three such places:

1. In the very beginning we used planarity when assuming that the input graph is connected.

2. In Claim 2 we used planarity to argue that the graph G1 has treewidth 6.

3. In Claim 3 we used planarity to obtain a labeling for G2 by applying the labeling scheme for planar

graphs of small diameter, i.e., Theorem 5.

We now �x these parts in order.

Making the graph connected. In the beginning of the proof of Theorem 6 we assumed that the input

graph G is connected. The argument was as follows: given a disconnected G, one can make it connected

while not spoiling planarity by adding one vertex with a single neighbor in each connected component of

21

G, and applying the scheme to the graphG′ obtained in this way. While this operation preserves planarity

(i.e. G′ is planar as well), a priori it is not clear whether is also preserves belonging to D. However, this is

actually the case.

Lemma 10. Let G be a graph and construct G′ from G by adding a new vertex and making it adjacent to

one arbitrary vertex from each connected component of G. Then the Euler genera of G and G′ are equal.

Proof. This is a direct corollary of the following result of Stahl and Beineke [SB77]: the Euler genus of a

graph is equal to the sum of Euler genera of its 2-connected components. �

This means that in the proof of Theorem 9 we may assume that the input graph is connected in the

same way as in the proof of Theorem 6.

Treating G1. In the proof of Claim 2 we used Lemma 1 to argue that G1 has treewidth at most 6,

because every connected component of G1 is a subgraph of a connected planar graph of radius at most 2.

This planar graph was obtained fromG by means of minor operations, hence it was clear that it was planar.

In the setting of Theorem 9, we know that G ∈ D and since D is closed under taking minors, in the

same way we also conclude that every connected component of G1 is a subgraph of a connected graph

from D of radius at most 2. Then we can substitute the usage of Lemma 1 with the following well-known

generalization.

Lemma 11 ([Epp00]). A connected graph of genus at most g and radius ρ has treewidth O(gρ).

It then follows that G1 has treewidth O(g). Hence, the labeling scheme for G1, obtained using Theo-

rem 3, will use labels of length log (n/d) +O((g + 1) log log n).

Treating G2. Finally, in the proof of Theorem 6 we argued that we can obtain a labeling of G2 using

labels of length log n + log d + O(log log n) = 4
3 log n + O(log log n), where the vertices that G2 has in

common with G1 receive shorter labels: of length
2
3 log n+O(log log n). For this, we argued that G2 is a

subgraph of a connected planar graph H on at most 2n vertices where, according to Claim 3, every vertex

is at distance at most d from a �xed vertex s, and moreover vertices in V (G1) appear only at distance 1
or d. Then Theorem 5 was applied to H in order to get a labelling for G2.

The planarity ofH was argued as follows: H can be obtained from a sequence of graphsR′′0 , R
′′
1 , R

′′
2 , . . .

by taking their disjoint union, picking one vertex from each and identifying the picked vertices into one

vertex s. Here, in the notation of the proof of Theorem 5 we have R′′i = R′i for i > 1, and R′′0 is obtained

from R′0 by attaching a (possibly zero-length) path to the vertex r. As each R′′i is planar, because it can be

obtained fromG either a sequence of contractions or (in case ofR′′0) attaching a path to a vertex, it follows

that H is planar as well.

We now examine how this approach can be lifted to the setting of Theorem 6. As D is minor-closed

and closed under attaching paths to vertices, we also conclude that graphs R′′0 , R
′′
1 , R

′′
2 , . . ., de�ned in the

same way as above, belong to D. However, the issue is that the graph H obtained from them as described

in the previous paragraph does not necessarily belong to D.

Instead, let us de�ne a class of graph D̂ that comprises all graphs J which can be obtained as follows.

Consider any sequence of connected graphs J1, . . . , Jp ∈ D and vertices u1, . . . , up, where ui ∈ V (Ji)

22

for i = 1, . . . , p. Then construct J by taking the disjoint union of J1, . . . , Jp and identifying all vertices

u1, . . . , up into one vertex u, called further the corner of J . Then the graphH from the previous paragraph

belongs to D̂, with s being the corner. We conclude that, in order to be able to apply exactly the same

reasoning, we need to prove the following generalization of Theorem 5 that will be used in its place.

Theorem 12. Graphs from D̂ admit a labeling scheme of length at most log n+ log d+ O(g + log log n),
where n is the vertex count of the graph and d is the maximum distance from any vertex to the corner of the

input graph. The Encoder runs in polynomial time and the Decoder runs in constant time.

Moreover, if the graph is provided together with a vertex subset Q, then the Encoder may assign to the

vertices of Q labels of length at most log |Q|+ log d+O(g + log log n).

Let us note that, similarly as in the proof of Theorem 5, we use the trick expressed in Remark 1 to

reduce the log d summand to O(1) for vertices of G2 that also belong to G1.

Proving Theorem 12. Again, the proof of Theorem 12 follows the same approach as that of Theorem 5.

We will rely on generalizations of Theorem 2 to graphs of bounded Euler genus proved by Dujmović et al.

in [DJM
+

19]. For this, we need several de�nitions from this work and results from this work.

De�nition 3. For a graphG, a layering of G is a partition of its vertex set into layers (V0, V1, V2, . . .) such
that every edge ofG connects two vertices from the same layer or from two consecutive layers. A BFS layering

of a connected graph G is obtained by taking Vi = {v : dist(u, v) = i} for some �xed vertex u of G.

De�nition 4. For a partition P of V (G), the layered width of P with respect to a layering (V0, V1, V2, . . .)
is the least integer ` such that |A ∩ Vi| 6 ` for each A ∈ P and i ∈ N.

Then the generalization of Theorem 2 we are going to use can be phrased as follows.

Theorem 13 (Theorem 20 of [DJM+19]). Every graph G ∈ D has a partition P with layered width at

most max {2g, 1} such that G/P has treewidth at most 9. Moreover, there is such a partition for every given

BFS layering ofG, and such a partition can be computed in polynomial time with the degree independent of g.

Note that the algorithmic statement is not provided explicitly in [DJM
+

19], but is discussed in Sec-

tion 10 there. We then have the following easy lift of Theorem 13 to D̂.

Lemma 14. Consider any graph G ∈ D̂ and let (V0, V1, V2, . . .) be its BFS layering obtained by running

the BFS starting from the corner of G. Then G has a partition P that has layered width at most max(2g, 1)
w.r.t. (V0, V1, V2, . . .) such that G/P has treewidth at most 10. Moreover, such a partition can be computed

in polynomial time with the degree independent of g.

Proof. Let G1, . . . , Gp ∈ D and u1, . . . , up be such that G is obtained by taking the disjoint union of

connected graphs G1, . . . , Gp and identifying vertices u1, . . . , up, where uj ∈ V (Gj), into one vertex u,

which is the corner of G. For j ∈ {1, . . . , p}, let (V j
0 , V

j
1 , . . .) be the BFS layering of Gj obtained by

running a BFS from uj . Then the BFS layering (V0, V1, V2, . . .) satis�es

V0 = {u} and Vi =

p⋃
j=1

V j
i for i > 1 .

23

Apply Theorem 13 to eachGj with BFS layering (V j
0 , V

j
1 , . . .), thus obtaining a partitionPj of V (Gj) that

has layered width at most max {2g, 1} w.r.t (V j
0 , V

j
1 , . . .), and such that Gj/Pj has treewidth at most 9.

Let P ′j be the vertex partition of Gj − uj obtained from Pj be removing uj from the unique part that it

belongs to. Finally, let

P = {u} ∪
p⋃

j=1

P ′j .

Then it is straightforward to see that P is a partition of the vertex set of G that has layered width at most

max {2g, 1} w.r.t. (V0, V1, . . .). Moreover, G/P is a subgraph of the graph obtained by adding a universal

vertex to disjoint union of Gj/Pj for j ∈ {1, . . . , p}, hence G/P has treewidth at most 10. �

With all the tools in place, we can prove Theorem 12.

Proof (of Theorem 12). The proof is analogous to that of Theorem 5, where instead of using Theorem 2

we use Lemma 14 and we modify the scheme as follows. In the labeling scheme of Theorem 5, we used the

fact that every part in the considered partition P has at most one vertex in common with every layer of

the �xed BFS tree F , because the parts of P were columns in F . This allowed us to use an adjacency code

consisting of 8 · 3 · 1 bits, where the consecutive numbers correspond to the treewidth G/P (which upper

bounds the number of identi�ers in the set returned by Γ(·)), the number of adjacent layers (previous,

same, and next), and the number of vertices that any part of P may have in common with any layer. Thus,

in the current setting we can use an adjacency code consisting of 10 · 3 ·max {2g, 1} = O(g) bits in the

same way. �

We can conclude the proof of Theorem 9 by summarizing the bounds on the lengths of labels:

• Vertices of V (G2) \ V (G1) receive labels of length log n+ log d+O(g + log log n);

• Vertices ofG1 receive labels composed of two sub-labels: one of length log (n/d)+O(g+log log n)
inherited from G1, and one of length log (n/d) +O((g + 1) log log n)) inherited from G2.

Therefore, for d = Θ(n1/3) the label lengths are bounded by
4
3 log n+O((g + 1) log log n), as claimed.

24

	Introduction
	Preliminaries
	Bounded Treewidth Graphs
	Planar Graphs of Small Diameter
	Planar Graphs in General
	Conclusion and Open Problems
	Bounded Treewidth Graphs: Technical Details
	Encoding and decoding
	Saving on labels of a small set of vertices

	Graphs of Bounded Genus

