Notes on the paper "Short Labels by Traversal and Jumping"

Cyril Gavoille*

October 19, 2020

Abstract

This is a correction to the labeling scheme for Caterpilars, after the remarks raised by Martin Böhm¹ in August 2011. The new label length is $\lceil \log n \rceil + 8$, i.e., 2 bits larger than the original paper.

1 Labeling the Caterpilars

The scheme is essentially the same, mainly its analysis is changed. We use the same notations. The main difference is that the length p_i of the interval where $\ell(x_i)$ is computed is set to $p_i = 2^{t_i+4}$ instead of $p_i = 2^{t_i+3}$. For $C(x_i)$ we keep its initial definition, that is:

$$C(x_i) = \operatorname{code}_0(t_i + 3 - |\operatorname{code}_1(t_{i+1})|) \circ \operatorname{code}_1(t_{i+1})$$
.

The adjacency scheme is the same. Here are the constraints that all t_i and p_i must fulfill:

- 1. $t_i + 3 |\operatorname{code}_1(t_{i+1})| \ge 0$ and $t_{i+1} \ge 0$, because of the definition of $C(x_i)$.
- 2. $p_i \ge 2^{|C(x_i)|}$ because $\ell(x_i)$ must encode $C(x_i)$ thanks to the coding Claim.
- 3. $p_i \ge d_i + 1$ because the interval $[\ell(x_i), \ell(x_i) + p_i)$ must be large enough to contain at least $\ell(x_i)$ and the labels of its d_i leaves attached to x_i .

Condition 2 is equivalent to $\lg p_i \ge |C(x_i)| = 1 + (t_i + 3 - |\operatorname{code}_1(t_{i+1})|) + |\operatorname{code}_1(t_{i+1})|$, that is true since precisely we have set $\lg p_i = t_i + 4$. Condition 3 is equivalent to $t_i + 4 \ge \lg (d_i + 1)$. All these conditions are fulfilled if we set:

$$t_i = \max\{0, |\operatorname{code}_1(t_{i+1})| - 3, \lceil \lg d_i \rceil - 4\}, \text{ with } t_{k+1} = 0.$$

 $^{^{1}{\}rm bohm@atrey.karlin.mff.cuni.cz}$

Appart the extra bit added to the label to distinguish inner vertices and leaves, the maximum label assigned by the scheme above is no more than $2\sum_{i=1}^{k} p_i$. The analysis of $\sum p_i$ is slightly simpler, although quite similar to the original one.

Let us proved property (P_m) that is:

$$\sum_{i=m}^{k} p_i \leqslant \left(2^5 \sum_{i=m} \left\lceil d_i + 1 \right\rceil_2\right) - p_m$$

Recall that $\lceil x \rceil_2 = 2^{\lceil \lg x \rceil}$. Note that by definition of t_i , only three values are possible for p_i :

$$p_i = 2^{4+t_i} = 2^{4+\max\{0,|\operatorname{code}_1(t_{i+1})|-3,\lceil \lg d_i\rceil-4\}}$$

= $\max\left\{2^4, 2^{|\operatorname{code}_1(t_{i+1})|+1}, \lceil d_i+1\rceil_2\right\}$.

For (P_k) , the left term is $A = p_k$ whereas the right term is $B = 2^5 \lceil d_k + 1 \rceil - p_k$. Thus $A \leq B$ iff $p_k \leq 2^4 \lceil d_k + 1 \rceil$.

(1) If $p_k = \lfloor d_k + 1 \rfloor$, then we are done.

(2) If $p_k = 2^4$, then we are done since $\lceil d_i + 1 \rceil \ge 1$ for all $d_i \ge 0$.

(3) If $p_k = 2^{|\text{code}_1(t_{k+1})|+1}$. Note that $t_{k+1} = 0$ and that $|\text{code}_1(0)| = 2$. Thus $p_k = 2^3$, and we are done.

Therefore, (P_k) is proved. Assume that (P_i) is true for all indices $i \in \{m, \ldots, k\}$ for some m > 1. Let us prove (P_{m-1}) .

The left term is now $A = \sum_{i=m-1}^{k} p_i$ which by assumption is

$$A = p_{m-1} + 2^5 \sum_{i=m}^{k} \left\lceil d_i + 1 \right\rceil_2 - p_m \; .$$

The right term is $B = 2^5 \sum_{i=m-1}^{k} \left\lceil d_i + 1 \right\rceil_2 - p_{m-1}$ which is also

$$B = 2^{5} \left\lceil d_{m-1} \right\rceil_{2} + 2^{5} \sum_{i=m-1}^{k} \left\lceil d_{i} + 1 \right\rceil_{2} - p_{m-1} .$$

Hence, $A \leq B$ iff $p_{m-1} - p_m \leq 2^5 \lceil d_{m-1} \rceil_2 - p_{m-1}$ that is also:

$$p_{m-1} \leqslant \frac{1}{2} p_m + 2^4 \left[d_{m-1} + 1 \right]_2$$
.

Let us prove the latter equation.

(1) If $p_{m-1} = [d_{m-1} + 1]_2$ or 2^4 , then we are done.

(2) If $p_{m-1} = 2^{|\operatorname{code}_1(t_m)|+1}$. We observe that for every integer $x \ge 0$, $|\operatorname{code}_1(x)| = 2|\operatorname{bin}(x)|$. Moreover we check that $2|\operatorname{bin}(x)| \le x+2$. The first values for $2|\operatorname{bin}(x)|$ are $2, 2, 4, 4, 6, 6, 6, 6, 8, \ldots$ whereas for x+2 they are: $2, 4, 6, 8, 10 \ldots$

In particular, $2^{|\text{code}_1(t_m)|+1} \leq 2^{t_m+3} = \frac{1}{2}p_m$. It follows that $p_{m-1} \leq \frac{1}{2}p_m$, and we have proved that (P_m) is true.

Let $\ell(n)$ be the maximum label assigned by the scheme above. We have $\ell(n) \leq 2\sum_{i=1}^{k} p_i \leq 2^6 \sum_{i=1}^{k} \lceil d_i + 1 \rceil_2$. We observe that for all $x \geq 0$, $\lceil x + 1 \rceil_2 \leq \max \{2x, 1\}$. Thus,

$$\ell(n) \leqslant 2^{6} \sum_{i=1}^{k} \max\left\{2d_{i}, 1\right\} = 2^{6} \max\left\{2\sum_{i=1}^{k} d_{i}, k\right\} = 2^{6} \max\left\{2(n-k), k\right\}$$

since $\sum_{i=1}^{k} d_i = n - k$. We have $1 \leq k \leq n$, thus max $\{2(n-k), k\} < 2n$. It follows that $\ell(n) < 2^7 n$.

In conclusion, the label length is no more than $\lceil \log n \rceil + 8$ bits.