Notes on the paper "Short Labels by Traversal and Jumping"

Cyril Gavoille*

October 19, 2020

Abstract

This is a correction to the labeling scheme for Caterpilars, after the remarks raised by Martin Böhm ${ }^{1}$ in August 2011. The new label length is $\lceil\log n\rceil+8$, i.e., 2 bits larger than the original paper.

1 Labeling the Caterpilars

The scheme is essentially the same, mainly its analysis is changed. We use the same notations. The main difference is that the length p_{i} of the interval where $\ell\left(x_{i}\right)$ is computed is set to $p_{i}=2^{t_{i}+4}$ instead of $p_{i}=2^{t_{i}+3}$. For $C\left(x_{i}\right)$ we keep its initial definition, that is:

$$
C\left(x_{i}\right)=\operatorname{code}_{0}\left(t_{i}+3-\left|\operatorname{code}_{1}\left(t_{i+1}\right)\right|\right) \circ \operatorname{code}_{1}\left(t_{i+1}\right) .
$$

The adjacency scheme is the same. Here are the constraints that all t_{i} and p_{i} must fulfill:

1. $t_{i}+3-\left|\operatorname{code}_{1}\left(t_{i+1}\right)\right| \geqslant 0$ and $t_{i+1} \geqslant 0$, because of the definition of $C\left(x_{i}\right)$.
2. $p_{i} \geqslant 2^{\left|C\left(x_{i}\right)\right|}$ because $\ell\left(x_{i}\right)$ must encode $C\left(x_{i}\right)$ thanks to the coding Claim.
3. $p_{i} \geqslant d_{i}+1$ because the interval $\left[\ell\left(x_{i}\right), \ell\left(x_{i}\right)+p_{i}\right)$ must be large enough to contain at least $\ell\left(x_{i}\right)$ and the labels of its d_{i} leaves attached to x_{i}.

Condition 2 is equivalent to $\lg p_{i} \geqslant\left|C\left(x_{i}\right)\right|=1+\left(t_{i}+3-\left|\operatorname{code}_{1}\left(t_{i+1}\right)\right|\right)+\left|\operatorname{code}_{1}\left(t_{i+1}\right)\right|$, that is true since precisely we have set $\lg p_{i}=t_{i}+4$. Condition 3 is equivalent to $t_{i}+4 \geqslant \lg \left(d_{i}+1\right)$. All these conditions are fulfilled if we set:

$$
t_{i}=\max \left\{0,\left|\operatorname{code}_{1}\left(t_{i+1}\right)\right|-3,\left\lceil\lg d_{i}\right\rceil-4\right\}, \text { with } t_{k+1}=0
$$

[^0]Appart the extra bit added to the label to distinguish inner vertices and leaves, the maximum label assigned by the scheme above is no more than $2 \sum_{i=1}^{k} p_{i}$. The analysis of $\sum p_{i}$ is slightly simpler, although quite similar to the original one.

Let us proved property $\left(P_{m}\right)$ that is:

$$
\sum_{i=m}^{k} p_{i} \leqslant\left(2^{5} \sum_{i=m}\left\lceil d_{i}+1\right\rceil_{2}\right)-p_{m}
$$

Recall that $\lceil x\rceil_{2}=2^{\lceil\lg x\rceil}$. Note that by definition of t_{i}, only three values are possible for p_{i} :

$$
\begin{aligned}
p_{i}=2^{4+t_{i}} & =2^{4+\max \left\{0,\left|\operatorname{code}_{1}\left(t_{i+1}\right)\right|-3,\left\lceil\lg d_{i}\right\rceil-4\right\}} \\
& =\max \left\{2^{4}, 2^{\left|\operatorname{code}_{1}\left(t_{i+1}\right)\right|+1},\left\lceil d_{i}+1\right\rceil_{2}\right\} .
\end{aligned}
$$

For $\left(P_{k}\right)$, the left term is $A=p_{k}$ whereas the right term is $B=2^{5}\left\lceil d_{k}+1\right\rceil-p_{k}$. Thus $A \leqslant B$ iff $p_{k} \leqslant 2^{4}\left\lceil d_{k}+1\right\rceil$.
(1) If $p_{k}=\left\lceil d_{k}+1\right\rceil$, then we are done.
(2) If $p_{k}=2^{4}$, then we are done since $\left\lceil d_{i}+1\right\rceil \geqslant 1$ for all $d_{i} \geqslant 0$.
(3) If $p_{k}=2^{\left|\operatorname{code}_{1}\left(t_{k+1}\right)\right|+1}$. Note that $t_{k+1}=0$ and that $\left|\operatorname{code}_{1}(0)\right|=2$. Thus $p_{k}=2^{3}$, and we are done.

Therefore, $\left(P_{k}\right)$ is proved. Assume that $\left(P_{i}\right)$ is true for all indices $i \in\{m, \ldots, k\}$ for some $m>1$. Let us prove $\left(P_{m-1}\right)$.

The left term is now $A=\sum_{i=m-1}^{k} p_{i}$ which by assumption is

$$
A=p_{m-1}+2^{5} \sum_{i=m}^{k}\left\lceil d_{i}+1\right\rceil_{2}-p_{m}
$$

The right term is $B=2^{5} \sum_{i=m-1}^{k}\left\lceil d_{i}+1\right\rceil_{2}-p_{m-1}$ which is also

$$
B=2^{5}\left\lceil d_{m-1}\right\rceil_{2}+2^{5} \sum_{i=m-1}^{k}\left\lceil d_{i}+1\right\rceil_{2}-p_{m-1}
$$

Hence, $A \leqslant B$ iff $p_{m-1}-p_{m} \leqslant 2^{5}\left\lceil d_{m-1}\right\rceil_{2}-p_{m-1}$ that is also:

$$
p_{m-1} \leqslant \frac{1}{2} p_{m}+2^{4}\left\lceil d_{m-1}+1\right\rceil_{2}
$$

Let us prove the latter equation.
(1) If $p_{m-1}=\left\lceil d_{m-1}+1\right\rceil_{2}$ or 2^{4}, then we are done.
(2) If $p_{m-1}=2^{\left|\operatorname{code}_{1}\left(t_{m}\right)\right|+1}$. We observe that for every integer $x \geqslant 0,\left|\operatorname{code}_{1}(x)\right|=$ $2|\operatorname{bin}(x)|$. Moreover we check that $2|\operatorname{bin}(x)| \leqslant x+2$. The first values for $2|\operatorname{bin}(x)|$ are $2,2,4,4,6,6,6,6,8, \ldots$ whereas for $x+2$ they are: $2,4,6,8,10 \ldots$.

In particular, $2^{\left|\operatorname{code}_{1}\left(t_{m}\right)\right|+1} \leqslant 2^{t_{m}+3}=\frac{1}{2} p_{m}$. It follows that $p_{m-1} \leqslant \frac{1}{2} p_{m}$, and we have proved that $\left(P_{m}\right)$ is true.

Let $\ell(n)$ be the maximum label assigned by the scheme above. We have $\ell(n) \leqslant$ $2 \sum_{i=1}^{k} p_{i} \leqslant 2^{6} \sum_{i=1}^{k}\left\lceil d_{i}+1\right\rceil_{2}$. We observe that for all $x \geqslant 0,\lceil x+1\rceil_{2} \leqslant \max \{2 x, 1\}$. Thus,

$$
\ell(n) \leqslant 2^{6} \sum_{i=1}^{k} \max \left\{2 d_{i}, 1\right\}=2^{6} \max \left\{2 \sum_{i=1}^{k} d_{i}, k\right\}=2^{6} \max \{2(n-k), k\}
$$

since $\sum_{i=1}^{k} d_{i}=n-k$. We have $1 \leqslant k \leqslant n$, thus $\max \{2(n-k), k\}<2 n$. It follows that $\ell(n)<2^{7} n$.

In conclusion, the label length is no more than $\lceil\log n\rceil+8$ bits.

[^0]: ${ }^{1}$ bohm@atrey.karlin.mff.cuni.cz

