
Short Labels by Traversal and Jumping⋆

Nicolas Bonichon, Cyril Gavoille, and Arnaud Labourel

Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux 1,
{bonichon,gavoille,labourel}@labri.fr,

Abstract. In this paper, we propose an efficient implicit representa-
tion of caterpillars and binary trees with n vertices. Our schemes, called
Traversal & Jumping, assign to vertices of the tree distinct labels of
log2 n+O(1) bits, and support constant time adjacency queries between
any two vertices by using only their labels. Moreover, all the labels can
be constructed in O(n) time.

1 Introduction

The two basic ways of representing a graph are adjacency matrices and adjacency
lists. The latter representation is space efficient for sparse graphs, but adjacency
queries require searching in the list, whereas matrices allow fast queries to the
price of a super-linear space. Another technique, called implicit representation or
adjacency labeling scheme, consists in assigning labels to each vertex such that
adjacency queries can be computed alone from the labels of the two involved
vertices without any extra information source. The goal is to minimize the max-
imum length of a label associated with a vertex while keeping fast adjacency
queries.

Adjacency labeling schemes, introduced by [Bre66,BF67], have been inves-
tigated by [KNR88,KNR92]. They construct for several families of graphs ad-
jacency labeling schemes with O(log n)-bit labels. In particular, for trees the
scheme consists in: 1) choosing an arbitrary prelabeling of the n vertices, a per-
mutation of {1, . . . , n}; 2) choosing a root; and 3) setting the label of a vertex to
be the pair formed by its prelabel and the prelabel of its parent. The adjacency
test checks whether the prelabel for one vertex equals the parent prelabel of the
other vertex. Such labels are of 2 ⌈log n⌉ bits1, whereas ⌈log n⌉ bits are clearly
necessary since labels must be different.

Improving the label length of this straightforward scheme is not an easy task.
It has been however improved in a non trivial way by [AKM01] to 1.5 logn +
O(log log n) bits, and more recently to log n + O(log∗ n) bits2 [AR02], leaving
open the question of whether trees enjoy a labeling scheme with log n+O(1) bit
labels.
⋆ The three authors are supported by the project ”GeoComp” of the ACI Masses de

Données
1 All the logarithms are in base two.
2 log∗ n denotes the number of times log should be iterated to get a constant.



1.1 Related work

Motivated by applications in XML search engines, and distributed applications
as peer-to-peer networks or network routing, several other distributed data-
structures with optimal O(log n)-bit labels, have been developed.

For instance, routing in trees [FG01,TZ01], near-shortest path routing in
specific networks [BG05,DL02,DL04], distance queries for interval, circular-
arc, and permutation graphs [BG05,GP03a], etc. have O(log n)-bit distributed
data-structures. And, specifically for several queries on trees, we have: near-
est common ancestor [AGKR04] with O(log n)-bit labels, ancestry [AAK+05]
with log n + O(

√
log n ) bit labels, and small distance queries and other related

functions with log n + Θ(log log n) bit labels [KM01,ABR05]. Interestingly, it
is shown in [ABR05] that for sibling queries in trees of maximum degree ∆,
log n + Θ(log log ∆) bit labels are necessary and sufficient. A survey on labeling
schemes can be founded in [GP03b]. All these schemes achieve labeling of length3

log n + ω(1).

To our best knowledge, for reasonably large families of graphs, no distributed
data-structure is known to have an optimal label size up to an additive constant.
In particular, for adjacency queries in trees, the current lower bound is log n and
the upper bound is log n + O(log∗ n) [AR02]. This latter scheme, based on a
recursive decomposition of the tree in Θ(log∗ n) levels, has adjacency query time
of Ω(log∗ n).

1.2 Our contributions

In this paper we present adjacency labeling schemes for caterpillars (i.e., a tree
whose nonleaf vertices induce a path), and binary trees with n vertices. Both
schemes assign distinct labels of log n + O(1) bits, and support constant time
adjacency queries. Moreover, all the labels can be constructed in O(n) time. We
observe that the recursive scheme of [AR02] for general trees does not simplify for
caterpillars or binary trees. The worst-case label length remains log n+O(log∗ n)
and the adjacency query time Ω(log∗ n).

As far as we know, this is the first log n+O(1) bit adjacency labeling support-
ing constant query time for a family of trees including trees with an arbitrary
numbers of arbitrary degree vertices (caterpillars). The technique, called Traver-

sal & Jumping, is interesting on its own, and we believe that it might be extended
to larger families of graphs, and to other queries.

1.3 Outline of techniques

To introduce our labeling technique, let us consider an n-vertex caterpillar whose
path is x1, . . . , xk and where the j-th leaf of xi is denoted by yi,j .

3 f(n) = ω(g(n)) if and only if g(n) = o(f(n)).



The first naive approach consists in labeling each vertex xi with the pair (i, 0)
and yi,j with (i, 1) but this scheme does not respect the uniqueness condition for
the labels. A correct scheme can be obtained by using labels (i, j) for yi,j . The
adjacency test is then trivial. This labeling, which is a variant of the tree labeling
scheme presented above, is not efficient since every pair of nonnegative integers
(i, j) with i + j 6 n will be assigned by the scheme to some caterpillars. There
are at least (n/2)2 such pairs, yielding some labels of at least 2 logn−O(1) bits.

A second less trivial labeling (with distinct labels) assigns to each vertex yi,j

the pair (ri, j) where ri is the rank of the number of leaves of xi, so that less
bits are used for ri if xi has many leaves, leaving room for the index j. Because
j 6 n/ri, the label length reduced now to ⌈log ri⌉ + ⌈log(n/ri)⌉ 6 log n + O(1).
However, the fields of the pair (ri, j) have variable length, so log log min {ri, j}+
O(1) bits are required to code the position of the two values of the pair. Moreover,
this scheme does not give adjacency for two nodes in the path. Anyway, as all
possible pairs (ri, j) can occur, this required an extra information of log log

√
n

bits (in the worst-case min {ri, j} >
√

n), yielding labels of length at least log n+
log log n − O(1).

A third solution is to apply some recursive decomposition, as in [AR02].
However, any decomposition in a non-constant levels produces labels with a non-
constant number of fields, yielding a label length of log n+ω(1) bits, furthermore
with ω(1) adjacency query time. Labelings with log n + O(1) bits require new
ideas.

Roughly speaking, the Traversal & Jumping technique consists in:

1. Selecting a suitable traversal of the tree (or of the graph);
2. Associating with each vertex x some information C(x);
3. Performing the traversal and assign the labels with increasing but non nec-

essarily consecutive numbers to the vertices.

Intuitively, the adjacency test between x and y is done on the basis of C(x)
and C(y). Actually, the jumps achieved in Step 3 are done by selecting an interval
associated with each vertex in which its label must be. It is important to note
that the intervals are ordered in the same way as the corresponding vertices in
the traversal. Moreover, all vertex intervals must be disjoint. The position of
the label of x in its interval is tuned in order to encode C(x) in the label in
a self-extracting way. In general, the information C(x) determines the intervals
length of all the neighbours of x which are after in the traversal.

The main difficulty is to design the minimal information C(x) and to tune the
jumps, i.e., the interval length. The maximum label length is simply determined
by the value of the last label assigned during the traversal.

This technique fundamentally differs from previous schemes, in which a label
is essentially viewed as a unique prelabel of ⌈log n⌉ bits plus some small extra
fields, inevitably leading to labels of log n + ω(1) bits. On the contrary, Traver-
sal & Jumping abandons this representation, and uses the full range of values
[0, O(n)] to get labels of length log n + O(1).



Section 2 presents the scheme for caterpillars, and Section 3 for binary trees.
We propose further works in Section 4.

1.4 Preliminaries

We assume a RAM model of computation with Ω(log n)-bit words. In this model,
standard arithmetic operations on words of O(log n) bits can be done in constant
time. These include additions, comparisons, binary masks, shifting, MSB and
LSB (returning respectively the position of the most and least significant bit of
a word).

Given a binary string A, we denote by |A| its length, and for a binary string
B, A ◦ B denotes the concatenation of A followed by B.

Given an x ∈ N, we denote by lg x = log max {x, 1}, and by bin(x) its
standard binary representation. We have |bin(x)| = ⌊lg x⌋ + 1. We denote by
val(w) the integer x such that w = bin(x). When it is clear from the context, we
confuse w and val(w). We also denote by ⌈x⌉2 = 2⌈lg x⌉.

A code is a set of words, and a code is suffix-free if no words of the code is the
ending of another one. A basic property of suffix-free codes it that they can be
composed, by the concatenation of a fixed number of fields, to form new suffix-
free codes. A simple suffix-free code is defined by code0(x) = 1 ◦ 0x, where 0x is
the binary string composed of x zeros. This code extends to more succinct codes
defined recursively by codei+1(x) = bin(x)◦codei(|bin(x)|−1) for every i > 0. It
is easy to check that, for every i > 0, codei is suffix-free. E.g., code0(5) = 100000,
code1(5) = 101 100, and code2(5) = 101 10 10.

If a word w has codei(x) as suffix, then x can be extracted from w in O(i) time
(in particular with the use of LSB to extract the length of code0). In the sequel,
any integer sequence x1, . . . , xk can be stored as a suffix codei(x1)◦· · ·◦codei(xk),
and can be extracted in O(ik) time.

In this paper, we will essentially use codei for i ∈ {0, 1, 2}. We check that
for every x ∈ N, |code0(x)| = x + 1, |code1(x)| = 2 ⌊lg x⌋ + 2, and |code2(x)| =
⌊lg x⌋ + 2 ⌊lg ⌊lg x⌋⌋ + 3.

Claim. Let w be a word, and z an integer. One can compute in constant time
an integer x ∈ [z, z + 2|w|) such that w is a suffix of bin(x).

Proof. Observe that, for all strings A and B, val(A ◦B) = val(A) · 2|B| +val(B),
and that val(A) < 2|A|.

Let u =
⌊

z/2|w|
⌋

and v = z mod 2|w|, so that z = u · 2|w| + v. Set b = 0
if val(w) > v, and set b = 1 otherwise. The integer x is defined by bin(x) =
bin(u + b) ◦ w, that clearly contains w as suffix. Note that x can be computed
in constant time using shifts, masks and MSB (in particular MSB is used to
compute |w| from w).

It remains to check that x ∈ [z, z+2|w|). We have x = (u+b) ·2|w|+val(w) =
z − v + b · 2|w| + val(w).



If b = 0, then x = z−v+val(w) 6 z+val(w) < z+2|w|. For b = 0, val(w) > v,
thus x > z.

If b = 1, then x = z − v + 2|w| + val(w) > z + val(w) > z since v < 2|w|. For
b = 1, val(w) < v, thus z − v + 2|w| + val(w) < z + 2|w|.

2 Caterpillars

A leaf is a vertex of degree one, and an inner vertex is a nonleaf vertex. A tree
is a caterpillar if the subgraph induced by its inner vertices is a path.

Theorem 1. The family of caterpillars with n vertices enjoys an adjacency la-

beling scheme with labels of length at most ⌈log n⌉ + 6 bits, supporting constant

time adjacency query. Moreover, all the labels can be constructed in O(n) time.

2.1 Description of the labeling scheme

Consider a caterpillar G of n vertices. We denote by X = {x1, . . . , xk} the inner
vertices of G (ordered along the path). For every i, let Yi = {yi,1, . . . , yi,di

} be
the set of leaves attached to xi, with di = 0 if Yi = ∅.

The traversal used in our scheme is a prefix traversal of the caterpillar rooted
at x1 where the vertices of Yi are traversed before the vertex xi+1. According to
this traversal, the inner vertex xi stores necessary information to determine the
adjacency with the vertices of Yi ∪ {xi+1}. The leaves do not store any specific
information in their label.

With each inner vertex xi, we associate an interval of length pi, for some
suitable integer pi, in which its label ℓ(xi) must be. For some technical reasons,
impose that pi = 2ti+3 with ti is an integer > 0. With the set of the labels of
Yi we associate an interval of same length: (ℓ(xi), ℓ(xi) + pi]. In this interval
ℓ(yi,j) = ℓ(xi) + j. Finally, the interval associated with vertex xi+1 is (ℓ(xi) +
pi, ℓ(xi) + pi + pi+1].

The information encoded by xi is the ordered pair (ti, ti+1). To encode this
information, we propose the following suffix-free code:

C(xi) = code0(ti + 3 − |code1(ti+1)|) ◦ code1(ti+1) .

Three conditions on pi (and so on ti) have to be satisfied to ensure that the code
is valid. The value pi must be large enough to encode the information, large
enough so that all the labels of the vertices of Yi can be placed in the interval
(ℓ(xi), ℓ(xi) + pi], and pi > 8. The following relation ensures such conditions:

ti = max {|code1(ti+1)| − 3, ⌈lg di⌉ − 3, 0} , with tk+1 = 0 .

So, given ℓ(xi), ℓ(xi+1) is computed applying Claim 1.4 with w = C(xi+1) and
z = ℓ(xi) + pi.



One can remark that the value of ti depends on the value of ti+1. The com-
putation of the labels can be done with two traversals of the caterpillar. The
value of the ti is computed from a traversal of the path from xk to x1. A second
traversal (a prefix one starting from x1) computes the labels of the vertices. Each
traversal takes O(n) time. Finally, an additional bit is added to the labels to de-
termine if the vertex is an inner vertex: ℓ′(xi) = 1◦ℓ(xi) and ℓ′(yi,j) = 0◦ℓ(yi,j).

2.2 Adjacency test

Lemma 1. For every pair of vertices u and v, the adjacency between u and v
can be computed in constant time from ℓ′(u) and ℓ′(v).

Proof. Looking at the first bit of ℓ′(u) and ℓ′(v) one can check whether u and v

belongs to X or to Y =
⋃i=k

i=1 Yi. Because two leaves cannot be adjacent, let us
assume that u ∈ X with u = xi.

In constant time, we can compute ℓ(xi), ti and ti+1 from ℓ′(xi), decoding
C(xi). Recall that pi and pi+1 can be directly deduced from ti and ti+1. There
are two cases to consider:

– Case 1: v ∈ Y (the first bit of the label is 0). By construction, the labels of
vertices of Yi and only these belong to the interval (ℓ(xi), ℓ(xi) + pi]. Since
the length of the labels is O(log n) (see Lemma 2), this test can be performed
in constant time.

– Case 2: v ∈ X (the first bit of the label is 1). Let v = xj , and w.l.o.g. assume
that j > i (we simply check whether ℓ′(v) > ℓ′(u)).

By construction if j = i+1, then ℓ(xi)+ pi < ℓ(xj) 6 ℓ(xi)+ pi + pi+1. This
interval may contain other labels (labels of vertices of Yi+1), but the only
label of inner vertex if ℓ(xi+1). This test can also be performed in constant
time.

2.3 Label length

Lemma 2. The length of the labels is at most ⌈log n⌉ + 6.

Proof. First, let us show by induction the following property (Pm):

(Pm) :

k
∑

i=m

pi 6 8

(

k
∑

i=m

⌈di + 1⌉2

)

− pm .

(Pk) is true since dk > 0 and
∑i=k

i=k pi = pk = max {8, ⌈dk + 1⌉2} 6

8
∑k

i=k ⌈di + 1⌉2 − pk. Assume that (Pm) is true for some m ∈ [2, k], and let
us show (Pm−1):



Applying the induction hypothesis:

k
∑

i=m−1

pi 6 8

(

k
∑

i=m

⌈di + 1⌉2

)

− pm + pm−1 .

There are three cases to consider:

– Case 1: ⌈dm−1⌉2 6 8 and 2|code1(tm)| 6 8 ⇒ pm−1 = 8.

k
∑

i=m−1

pi 6 8

(

k
∑

i=m

⌈di + 1⌉2

)

− pm + 8

Since ⌈dm−1 + 1⌉2 > 1:

k
∑

i=m−1

pi 6 8

(

k
∑

i=m−1

⌈di + 1⌉2

)

− pm

Since pm > pm−1:

k
∑

i=m−1

pi 6 8

(

k
∑

i=m−1

⌈di + 1⌉2

)

− pm−1

– Case 2: ⌈dm−1⌉2 > 2|code1(tm)| ⇒ pm−1 = ⌈dm−1⌉2.

k
∑

i=m−1

pi 6 8

(

k
∑

i=m

⌈di + 1⌉2

)

− pk + ⌈dm−1⌉2

6 8

(

k
∑

i=m−1

⌈di + 1⌉2

)

− pk − 7 ⌈dm−1 + 1⌉2

6 8

(

k
∑

i=m−1

⌈di + 1⌉2

)

− pm−1

– Case 3: ⌈dm−1⌉2 < 2|code1(tm)| and 8 < 2|code1(tm)| ⇒ pm−1 = 2|code1(tm)|.

k
∑

i=m−1

pi 6 8

(

k
∑

i=m

⌈di + 1⌉2

)

− pm + 2|code1(tm)| .

Since pm−1 = 2|code1(tm)| = 22⌈log((log(pm)−3)+1)⌉ 6
1
2pm:

k
∑

i=m−1

pi 6 8

(

k
∑

i=m−1

⌈di + 1⌉2

)

− 1

2
pm

6 8

(

k
∑

i=m−1

⌈di + 1⌉2

)

− pm−1 .



So (Pm) is true for any positive m 6 k. Hence:

k
∑

i=1

pi 6 8

(

k
∑

i=1

⌈di + 1⌉2

)

.

The maximum label length is determined by the label of the last leaf of xk,
say yk,j . We can bound ℓ(yk,j) by:

ℓ(yk,j) 6 2

k
∑

i=1

pi 6 24
k
∑

i=1

⌈di + 1⌉2 6 25
k
∑

i=1

(di + 1) 6 25n .

The length labels ℓ(yk,j) is at most ⌈log n⌉+5. The effective labels, ℓ′(v), use
one more bit. So the label length is at most ⌈log n⌉ + 6.

3 Binary trees

Theorem 2. The family of binary trees with n vertices enjoys an adjacency

labeling scheme with labels of length at most log n+O(1) bits, supporting constant

time adjacency query. Moreover, all the labels can be constructed in O(n) time.

3.1 Description of the labeling scheme

Let T be a rooted binary tree with n vertices. For any vertex v, let Tv denote
the subtree of T rooted at v. Let rT be the root of T . We denote by v− and
v+ respectively the left and the right child of v (if exist). We assume that the
children of every inner vertex v are ordered such that the weight of v− is at
most the weight of v+, i.e., |V (Tv−)| 6 |V (Tv+)|. For the shake of the proof, we
assume that v− exists for every inner vertex v, possibly by completing the tree
with some extra vertices. Note that this at most double the size of the tree.

The traversal considered in our scheme is a prefix traversal of T in which
v− is visited before v+, for every inner vertex v. Let s(v) be the length of the
interval assigned to v, and let p(v) be the length of the interval of values assigned
to the labels of vertices of Tv (see Fig. 1). In the scheme, the interval associate
with v is at the beginning of the interval of Tv (on Fig. 2 arrows s(v) and p(v)
are aligned on the left). The interval of Tv− is at distance s(v) from ℓ(v) (i.e.,
the difference of the left boundaries of the intervals is s(v)). The interval of Tv+

begins at distance s(v)+q(v−) from ℓ(v) (cf. Fig. 2), for a suitable length q(v−).

In addition, our scheme imposes that s(v) is a power of 2, and that q(v−) is
a square. More precisely, s(v) = 2m(v) for some integer m(v) > 0, and q(v−) =

⌈
√

p(v−) ⌉2. Observe that for every v, q(v) = p(v) + O(
√

p(v) ), and that q(v)
can be encoded with half many bits than for p(v).



p(v)

ℓ(v)

ℓ(v−) ℓ(v+)

p(v+)q(v−)

Fig. 1. Traversal of the tree.

To compute the adjacency with its children, vertex v stores a single bit 0 if
it is a leaf, and the quadruple (s(v−), s(v+), q(v−), 1) if it is inner. To encode
this information, we propose the following suffix-free code:

C(v) =

{

0 if v is a leaf

code1(m(v−)) ◦ code1(m(v+)) ◦ code2(
√

q(v−) ) ◦ 1 otherwise

We set s(v) = 2|C(v)|−1, i.e., m(v) = |C(v)| − 1. To compute the labels we
need first to compute s(v) and p(v) for each vertex v of T . This is done in linear
time with a postfix traversal considering the recursive relation:

p(v) =

{

2 if v is a leaf
q(v−) + p(v+) + 2s(v) otherwise

Then, the labels can be computed in linear time with a traversal of T , and
applying Claim 1.4 with w = C(v).

3.2 Adjacency test

Lemma 3. Let any pair of vertices v and u, the adjacency of v and u can be

computed in constant time from ℓ(v) and ℓ(u).

Proof. W.l.o.g., we can consider that ℓ(v) < ℓ(u). To test adjacency between v
and u, we use the following conditions:

v and u are adjacent if and only if y is inner and:

– either ℓ(u) ∈ [ℓ(v) + s(v), ℓ(v) + s(v) + s(v−)) (in this case u = v−);



ℓ(v+)

s(v)

ℓ(v)

s(v) s(v−)

s(v−)

ℓ(v−)

p(v−)

q(v−)

p(v)

s(v+)

s(v+)

p(v+)

Fig. 2. Description of the labeling.

– or ℓ(u) ∈ [ℓ(v) + s(v) + q(v−), ℓ(v) + s(v) + q(v−) + s(v+)) (in this case
u = v+)

We can remark that this test can be computed in constant time from the
labels of the vertices. Indeed, s(v), s(v−), s(v+), and q(v−) can be extracted in
constant time from ℓ(u).

It remains to prove the validity of this test. If v is a leaf (and ℓ(v) < ℓ(u)),
v and u cannot be adjacent. To check it, it suffices to extract the last bit of
ℓ(v). Now assume v is inner. By construction, if u = v− then ℓ(u) ∈ [ℓ(v) +
s(v), ℓ(v) + s(v) + s(v−)). In the same way, if u = v+ then ℓ(u) ∈ [ℓ(v) +
s(v) + q(v−), ℓ(v) + s(v) + q(v−) + s(v+)). Moreover, ℓ(v−) is the only label in
[ℓ(v) + s(v), ℓ(v) + s(v) + s(v−)) because, in the construction we make a jump
from ℓ(v) to ℓ(v−) of length s(v) and we make another jump from ℓ(v−) to
ℓ(v−−) (if exists) of length at least s(v−).

With the same argument, we prove that ℓ(v+) is the only label in [ℓ(v) +
s(v) + q(v−), ℓ(v) + s(v) + q(v−) + s(v+)).

3.3 Label length

Lemma 4. The length of the labels is at most log n + O(1).

Proof. Let Bn be the family of all binary trees of at most n vertices such that
every leaf has a sibling (i.e., v− and v+ exist for every inner vertex v).

For every tree T ∈ Bn with n > 3:

p(rT ) = q(rT
−) + p(rT

+) + 2s(rT ) where

log s(rT ) = |C(rT )| − 1 = |code1(m(rT
−))| + |code1(m(rT

+))| + |code2(⌈
√

p(rT
−)⌉)|

= |code1(log s(rT
−))| + |code1(log s(rT

+))| + |code2(⌈
√

p(rT
−)⌉)|



Let P (n) = maxT∈Bn
p(rT ), and S(n) = maxT∈Bn

s(rT ). Because every label
assigned to T ranges in [0, P (n)), our goal is to upper bound P (n) by O(n).

Let i = |V (TrT
−)| be the weight of the left subtree. We have p(rT

−) 6 P (i)
and p(rT

+) 6 P (n− 1− i). Similarly, s(rT
−) 6 S(i) and s(rT

+) 6 S(n− 1− i).
By the ordering of the children, observe that i 6 n− 1− i, i.e., i can only range
in I = {1, . . . , ⌊(n − 1)/2⌋}.

From previous equations we derive (recall that q(v−) = ⌈
√

p(v−) ⌉2):

P (n) = max
i∈I

{

⌈

√

P (i)
⌉2

+ P (n − i − 1) + 2S

}

where

log S = |code1(log S(i))| + |code1(log S(n − i − 1))| + |code2(⌈
√

P (i)⌉)|

with P (1) = 2 and S(1) = 1. Note that for x ∈ N, 2lg x 6 x + 1. The two first
terms of log S can be bounded by:

|code1(log S(i))| = 2 ⌊lg log S(i)⌋ + 2, and thus

2|code1(log S(i))|
6 4 log2 S(i) + 4, and similarly

2|code1(log S(n−i−1))|
6 4 log2 S(n − i − 1) + 4 .

By construction, p(v) > 2s(v) for every v, thus S(n) 6 P (n)/2 for every n. So,
bounding (x − 1)2 6 x2 − 1, we obtain:

2|code1(log S(i))|
6 4 log2 P (i) and 2|code1(log S(n−i−1))|

6 4 log2 P (n − i − 1) .

Let u =
√

P (i). We have u > 1. The third term of log S can be bounded by:

|code2(⌈u⌉)| = ⌊lg ⌈u⌉⌋ + 2 ⌊lg ⌊lg ⌈u⌉⌋⌋ + 3, and thus

2|code2(⌈u⌉)|
6 8 · (⌈u⌉ + 1) · (⌊lg ⌈u⌉⌋2 + 1) 6 16u(log2 u + 2) .

Therefore,

S 6 4 · log2 P (i) · log2 P (n − i − 1)) · 16
√

P (i) · (log2
√

P (i) + 2)

6 16
√

P (i) · (log2 P (i) + 8) · log2 P (i) · log2 P (n − i − 1)

One can check that for x > 1, ⌈√x ⌉2 6 x + 2
√

x. Hence:

P (n) 6 max
i∈I

{

P (i) + 2
√

P (i) + P (n − i − 1) + 2S
}

6 max
i∈I

{

P (i) + P (n − i − 1) + 34
√

P (i) log4 P (i) log2 P (n − i − 1)
}

In particular, we deduce that ∃α, β, γ, δ ∈ R
+, δ < 1/2 < γ < 1 and δ + γ < 1

such that:

P (n) 6 max
i∈I

{

P (i) + P (n − i − 1) + αP (i)γP (n − i − 1)δ + β
}

.

The following claim shows that P (n) = O(n), and so the label length is log n +
O(1).



Claim. Let P (n) be a sequence. If there are α, β, γ, δ ∈ R
+, δ < γ < 1, δ + γ < 1

such that P (n) 6 maxi∈I

{

P (i) + P (n − i − 1) + αP (i)γP (n − i − 1)δ + β
}

and
P (1) > 0, then P (n) = O(n).

Proof. Let a and b be two positive constants we will determine later. Let us
prove by induction the property (Qn):

(Qn) : P (n) 6 an − bnγ+δ .

Q1 is true if and only if a and b satisfy P (1) 6 a− b. Assume that Qi is true for
i < n.

P (n) 6 max
i∈I

{

an − biγ+δ − b(n − i − 1)γ+δ + α(an)γ(a(n − i − 1))δ − (a − β)
}

6 an − (a − β) + max
i∈I

{h(n, i) + f(n, i)}

with h(n, i) = −biγ+δ − b(n − i − 1)γ+δ and f(n, i) = aγ+δnγ(n − i − 1)δ.

In order to bound maxi∈I h(n, i), we compute:

∂

∂i
h(n, i) = biγ+δ(n − i − 1)γ+δ

(

i1−γ−δ − (n − i − 1)1−γ−δ

i(n − i − 1)

)

For i ∈ I, ∂
∂i

h(n, i) 6 0 because i 6 n − i − 1 and γ > δ. So, we obtain:

max
i∈I

h(n, i) 6 − bnγ+δ
6 − 2γ+δb

(n

2

)γ+δ

In order to bound maxi∈I f(n, i), we compute:

∂

∂i
f(n, i) = aγ+δiγ(n − i − 1)δ

(

γ(n − i − 1) − δi

i(n − i − 1)

)

.

For i ∈ I, ∂
∂i

f(n, i) > 0 because i 6 n − i − 1 and γ > δ. So:

max
i∈I

f(n, i) 6 aγ+δ
(n

2

)γ+δ

and thus,
P (n) 6 an −

(

2γ+δb − aγ+δ
)

nγ+δ − (a − β) .

The two constants must fulfill the following equalities:






P (1) 6 a − b
2γ+δb − aγ+δα > b
a − β > 0

For instance, it suffices to choose b such that:

a − P (1) > b > aγ+δα with a > β

which is possible for a large enough since γ + δ < 1.

This completes the proof of Lemma 4.



4 Conclusion

The unsolved implicit graph representation conjecture of [KNR88,KNR92] asks
whether every hereditary4 family of graphs with 2O(n log n) labeled graphs of n
vertices enjoys a O(log n)-bit adjacency labeling scheme. This is motivated by
the fact that every family with at least 2cn log n labeled graphs of n vertices
requires adjacency labels of at least c log n bits.

Our schemes suggest that, at least for trees, labels of log n + O(1) bits may
be possible. Therefore, we propose to prove or to disprove the following:

Every hereditary family of graphs with at most n!2O(n) = 2n log n+O(n) labeled

graphs of n vertices enjoys an adjacency labeling scheme with labels of log n +
O(1) bits.

We observe that several well-known families of graphs are concerned by this
proposition: trees, planar graphs, bounded treewidth graphs, graphs of bounded
genus, graphs excluding a fixed minor (cf. [NRTW05] for counting such graphs).
Proving the latter conjecture appears to be hard, e.g., the best upper bound for
planar graphs is only 3 log n + O(log∗ n).

References

[AAK+05] Serge Abiteboul, Stephen Alstrup, Haim Kaplan, Tova Milo, and Theis
Rauhe. Compact labeling schemes for ancestor queries. SIAM Journal on
Computing, 2005.

[ABR05] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes for small
distances in trees. SIAM Journal on Discrete Mathematics, 19(2):448–462,
2005.

[AGKR04] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest
common ancestors: A survey and a new algorithm for a distributed envi-
ronment. Theory of Computing Systems, 37:441–456, 2004.

[AKM01] Serge Abiteboul, Haim Kaplan, and Tova Milo. Compact labeling schemes
for ancestor queries. In 12th Symposium on Discrete Algorithms (SODA),
pages 547–556. ACM-SIAM, January 2001.

[AR02] Stephen Alstrup and Theis Rauhe. Small induced-universal graphs and
compact implicit graph representations. In 43rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 53–62. IEEE Com-
puter Society Press, November 2002.

[BF67] Melvin A. Breuer and Jon Folkman. An unexpected result on coding the
vertices of a graph. Journal of Mathematical Analysis and Applications,
20:583–600, 1967.

[BG05] Fabrice Bazzaro and Cyril Gavoille. Localized and compact data-structure
for comparability graphs. In 16th Annual International Symposium on Al-
gorithms and Computation (ISAAC), volume 3827 of Lecture Notes in Com-
puter Science, pages 1122–1131. Springer, December 2005.

[Bre66] Melvin A. Breuer. Coding the vertexes of a graph. IEEE Transactions on
Information Theory, IT-12:148–153, 1966.

4 That is a family of graphs closed under induced subgraph taking.



[DL02] Feodor F. Dragan and Irina Lomonosov. New routing schemes for interval
graphs, circular-arc graphs, and permutation graphs. In 14th IASTED In-
ternational Conference on Parallel and Distributed Computing and Systems
(PDCS), pages 78–83, November 2002.

[DL04] Feodor F. Dragan and Irina Lomonosov. On compact and efficient rout-
ing in certain graph classes. In 15th Annual International Symposium on
Algorithms and Computation (ISAAC), volume 3341 of Lecture Notes in
Computer Science, pages 402–414. Springer, December 2004.

[FG01] Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Fernando Orejas,
Paul G. Spirakis, and Jan van Leeuwen, editors, 28th International Collo-
quium on Automata, Languages and Programming (ICALP), volume 2076
of Lecture Notes in Computer Science, pages 757–772. Springer, July 2001.

[GP03a] Cyril Gavoille and Christophe Paul. Optimal distance labeling schemes for
interval and circular-arc graphs. In G. Di Battista and U. Zwick, editors,
11th Annual European Symposium on Algorithms (ESA), volume 2832 of
Lecture Notes in Computer Science, pages 254–265. Springer, September
2003.

[GP03b] Cyril Gavoille and David Peleg. Compact and localized distributed data
structures. Journal of Distributed Computing, 16:111–120, May 2003.
PODC 20-Year Special Issue.

[KM01] Haim Kaplan and Tova Milo. Short and simple labels for small distances
and other functions. In 7th International Workshop on Algorithms and Data
Structures (WADS), volume 2125 of Lecture Notes in Computer Science,
pages 32–40. Springer, August 2001.

[KNR88] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representa-
tion of graphs. In 20th Annual ACM Symposium on Theory of Computing
(STOC), pages 334–343. ACM Press, May 1988.

[KNR92] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation
of graphs. SIAM Journal on Discrete Mathematics, 5:596–603, 1992.

[NRTW05] Serguei Norine, Neil Robertson, Robin Thomas, and Paul Wollan. Proper
minor-closed families are small. Journal of Combinatorial Theory, Series
B, 2005. To appear.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In 13th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
1–10. ACM Press, July 2001.


