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Abstract

In this paper we give a linear algorithm to edge partition a toroidal graph, i.e., graph
that can be embedded on the orientable surface of genus one without edge crossing,
into three forests plus a set of at most three edges. For triangulated toroidal graphs,
this algorithm gives a linear algorithm for finding three edge-disjoint spanning trees.
This is in a certain way an extension of the well-known algorithm of Schnyder’s
decomposition for planar graph.
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1 Motivation and Background

The problem of finding the maximum number of edge-disjoint spanning trees
arises in the context of constructing efficient multicast communication in
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wormhole-routed networks. In wormhole routing [6], each intermediate node
forwards the unit of information transfer called worm to the desired output
port as soon as the head of the worm is received. Although one spanning
tree is enough to construct a deadlock-free multicast routing algorithm in
wormhole-routed networks [5,9], it is clear that finding multiple edge-disjoint
spanning trees in the network allows us to use more edges of the graph and so
to decrease communication latency.

In 1973, Kundu has shown that triangulated (or maximal) toroidal graphs
have 3 edge-disjoint spanning trees [4]. Unfortunately, his proof does not
lead to an algorithm. Up to now, the most efficient algorithm is the O(m2)
algorithm time of Roskind and Tarjan [7] designed for finding the maximum
number of edge-disjoint spanning trees in a graph with m edges. So we have
an O(n2) algorithm to find the 3 spanning trees (at most) into toroidal graphs
due to the Euler’s formula (m ≤ 3n).

One of the most known algorithms for tree partition of graph is the Schny-
der’s one [8]. This linear algorithm partition the edges of a triangulated planar
graph into 3 trees {T1, T2, T3} each rooted on a vertex of the outer face such
that the neighborhood of each inner vertex v consists in 6 blocks U1, D3, U2,
D1, U3 and D2 in counter-clockwise order where Uj (resp. Dj) consists in the
parent (resp. the children) of v in Tj for j ∈ {1, 2, 3}.

The orientable surface of genus g is denoted Sg. For instance S0 is the
sphere, S1 the torus. The genus of a graph G, denoted g(G), is the minimum
g such that G can be embedded in Sg without edge crossing. For the rest of
the paper, we will consider triangulations of torus, i.e., graphs of genus 1 that
are embedded on the torus (see linear time algorithm of [3]) and such that all
its faces are triangles. In the case of a non-triangulated embedding, we use a
O(n) time algorithm to triangulate the graph, without adding multiple edges,
adding O(n) vertices. An embedding is 2-cell if all its faces are 2-cells, i.e., a
region homeomorphic to the open unit disk in R

2.

Let us consider an embedding G of Sg. Let C be a cycle of G. C is
contractible if it divides the surface Sg into two disjoint regions so that one of
them is a 2-cell. Otherwise C is non-contractible. If C is non-contractible, then
it is either separating if it divides the surface S into two disjoint regions, or
non-separating otherwise. The interesting property of non-contractible non-
separating cycles is that their removal reduces the genus of a graph by one [1].

2 Sketch of the Algorithm

The main result of this paper is the following theorem.
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Fig. 1. Planarization of graph G.

Theorem 2.1 In linear time, the edges of every toroidal graph can be parti-

tioned into three forests plus at most three edges.

We make a few remarks about this result. First, this partition is tight
in the sense that we need to remove 3 edges to partition into 3 trees any
triangulation of the torus. Indeed, such graphs have 3n edges due to Euler’s
formula and the total of edges of 3 trees in the graph is at most 3n − 3. The
second remark we can make is that a simple planarization combined with the
Schnyder’s trees do not suffice because we may need to remove at least Ω(

√
n)

vertices or Ω(
√

nΔ) edges to obtain a planar graph [2] (Δ being the maximum
degree of the graph). So, we cannot simply planarize the graph G and find a
partition of G from H without extra properties on the partition of H and the
planarizing edge set. Finally, we can remark that the 3 edges that are not in
the 3 trees cannot be chosen arbitrarily. In the case of a triangulated graph,
the graph resulting of the removal of the 3 edges must be 3 edge-connected
and therefore the 3 edges cannot be contained in a separating triangle. The
algorithm consists in 3 steps described briefly bellow.

• Step 1: Graph partition into a planar subgraph H and a tambourine T .
The first step of the algorithm consists in a planarization of the graph. We

need a special planarization to use partition of the resulting planar graph
H . We decompose the graph into a planar graph H plus a set of edges T

defined by a pair of non-contractible non-separating cycles (C1, C2) called
tambourine. Edges of T have one end in C1 and in C2. Moreover, the edge-
set T is the set of edges adjacent to C1 (resp. C2) that are on one side of C1

(resp. C2) (see Fig. 1 for a schema of planarization). With these properties,
we obtain a graph H entirely triangulated except the 2 faces bounded by
C1 and C2. To do this decomposition, we use the O(n) algorithm of Djidjev
and Venkatesan [2] to find a non-separating non-contractible cycle C. From
this cycle, we compute the tambourine (C1, C2).

• Step 2: Edge partition of H into 3 forests A1, A2 and A3 plus a set of at
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most 3 edges.
For this purpose, we find an edge partition of the graph H such that the

edges of the tambourine can be partioned into the three forests and added
to H without creating a cycle. The most important property used is that
every vertex x of C1 ∪ C2, except at most 3 vertices has a missing color
in the graph H , i.e., there is a color i ∈ {1, 2, 3} such that the connected
component of the forest Ai which contains the vertex x does not contain
other vertices of C1 ∪ C2. To have this property, we contract each of the
two faces C1 and C2 of H obtaining a new graph H ′. We then compute a
realizer of H ′ and from this realizer, we deduce the partition wanted for H .

• Step 3: Edge partition into 3 forests of G from the edge partition of H .
We start with the partition of H computed in Step 2 and we insert each

edge of the tambourine T into one of the forests Fi according to the missing
color of one of its ends. The choice is done such that each vertex is used for
only one edge and there is no path in the tambourine constituted of edges of
one forest Ai between two vertices from which the missing color is different
from i. That ensures that there is no cycle in Ai in G.

3 Possible Improvements and Open Problems

A possible improvement of the result would be to find a partition that have
extra properties about the edge ordering around each vertex in spite of the
three Schnyder’s trees for plane triangulation. Note that in our partition all
vertices at distance at least two from the tambourine have Schnyder ordering.
Another example of desirable property would be to bound the diameter of any
tree by O(D), where D is a diameter of the graph.

A possible extension of our result is the generalization for graphs of genus
g > 1. The first idea that comes to mind is to use recursion with the torus
as a basis. We start from a graph G of genus g and we decompose it into a
subgraph H of genus g − 1 plus a tambourine T . Then, from a partition of H

we obtain a partition of G. Unfortunately, our method for finding tambourine
for triangulation of torus does not apply directly for higher genus.

Another possible improvement is to use the result of Thomassen [10] on
graph with large edge-width. Such graphs have a collection of cycles that are
far apart and whose removal results in a planar graph. So, for such graphs we
can find a collection of tambourines that are far apart and whose removing
results in a planar graph H . So we can directly use the algorithm on H and
find a partition optimal in term of removed edges.
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