
Digital Object Identifier (DOI) 10.1007/s00373-006-0647-2
Graphs and Combinatorics (2006) 22:185–202

Graphs and
Combinatorics
© Springer-Verlag 2006

Planar Graphs, via Well-Orderly Maps and Trees

Nicolas Bonichon1, Cyril Gavoille2, Nicolas Hanusse3, Dominique Poulalhon4,
and Gilles Schaeffer5

1 Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux I, France.
e-mail: {1bonichon, 2gavoille, 3hanusse}@labri.fr

4 Laboratoire d’Informatique Algorithmique, Fondements et Applications (LIAFA) case
7014, 2, place Jussieu, 75251 Paris Cedex 05, France.
e-mail: poulalhon@liafa.jussieu.fr

5 Laboratoire d’Informatique de l’École Polytechnique (LIX) École polytechnique, 91128
Palaiseau Cedex, France.
e-mail: gilles.schaeffer@lix.polytechnique.fr

Abstract. The family of well-orderly maps is a family of planar maps with the property
that every connected planar graph has at least one plane embedding which is a well-orderly
map. We show that the number of well-orderly maps with n nodes is at most 2αn+O(log n), where
α ≈ 4.91. A direct consequence of this is a new upper bound on the number p(n) of unlabeled
planar graphs with n nodes, log2 p(n) � 4.91n.

The result is then used to show that asymptotically almost all (labeled or unlabeled),
(connected or not) planar graphs with n nodes have between 1.85n and 2.44n edges.

Finally we obtain as an outcome of our combinatorial analysis an explicit linear-time
encoding algorithm for unlabeled planar graphs using, in the worst-case, a rate of 4.91 bits
per node and of 2.82 bits per edge.

Key words. Planar graph, Triangulation, Realizer, Well-orderly

1. Introduction

Counting the number of (non-isomorphic) planar graphs with n nodes is a
well-known long-standing unsolved graph-enumeration problem (cf. [LW87]). There
is no known closed formula or asymptotic estimate for the number of unlabeled pla-
nar graphs.

There are only upper and lower bounds on the growth rate of the sequence of
numbers p(n) of unlabeled planar graphs with n nodes. This growth rate, defined
as µ = limn→∞ p(n)1/n, currently ranges between 27.2268 and 32.1556 (a superad-
ditivity argument shows that such a limit exists [DVW96, MSW05]).

The lower bound on µ comes from asymptotics on the number of labeled planar
graphs. This asymptotic is of the form n!λn+o(n) [DVW96, MSW05], and a non triv-
ial estimation of λ has been given in [OPT03]. Recently [GN] completely determined
λ and gave a precise estimation of it: λ ≈ 27.2268777685. The upper bound on µ,
due to [BGH03], comes from a succinct encoding of planar graphs. More precisely,

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: No Embed Thumbnails: No Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

186 N. Bonichon et al.

after a suitable embedding and triangulation of the planar graph, it is shown that
such embeddings can be represented by a binary string of length at most 5.007n bits.
Such a representation implies that p(n) � 25.007n ≈ (32.1556)n.

Technically, enumerating unlabeled graphs is more difficult than counting the la-
beled version. And, as pointed out in [BGW02], almost all labeled 2- and
1-connected planar graphs have exponentially large automorphism groups. In other
words, Wright’s Theorem [Wri71] does not hold for random planar graphs; the
asymptotic number of labeled and unlabeled planar graphs differ in more than the
n! factor, i.e., λ < µ. So, an asymptotic on the number of labeled planar graphs
would not give a sharp lower bound on the growth rate of p(n). The situation with
respect of the upper bound is not better. A planar graph can be embedded in many
ways, and to recover the graph from a suitable triangulation requires a deep under-
standing of plane triangulations, in particular their enumeration with respect to
several parameters depending on the input graph.

Besides the pure combinatorial aspect, the “encoding” approach is also relevant
in Computer Science where a lot of attention is given to the efficient representation
of discrete objects. At least two fields of application of high interest are concerned
with succinct planar graph representation: Computer Graphics [KADS02, KR99,
Ros99] and Networking [FJ89, GH99, Lu02, Tho01].

1.1. Related Works

Obviously, without a sharp asymptotic formula, properties and behavior of large
random objects cannot be described precisely. For lack of an adequate model, very
little is known about random planar graphs. However, random generation of planar
graphs has been investigated in the last decade.

Using a simple Markov chain, Denis et al. [DVW96] showed that, experimen-
tally, random labeled planar graphs have 2n edges. In fact, Bodirsky et al. [BGK03]
have designed the first polynomial-time (uniform) random generator of labeled pla-
nar graphs. Although limited in their experiments (mainly by the time complexity of
this algorithm), they showed that actually the number of edges in a random labeled
planar graph is more than 2n. The best proved bounds on the number of edges
in a random labeled planar graph were 1.85n [GM02] and 2.54n [BGH03]; for the
unlabeled case these bounds are 1.70n and 2.54n [BGH03]. Very recently Giménez
and Noy [GN] showed that the number of edges in random labeled planar graphs
is asymptotically normal with linear mean (≈ 2.21n) and variance.

Succinct representation of n-node m-edge planar graphs has a long history.
Turán [Tur84] pioneered a 4m-bit encoding that has been improved later by Keeler
and Westbrook [KW95] to 3.58m. Munro and Raman [MR97] then proposed a
2m+8n bit encoding based on the 4-page embedding of planar graphs (see [Yan89]).
In a series of articles, Lu et al. [CLL01, CGH+98] refined the coding to 4m/3 + 5n

thanks to orderly spanning trees, a generalization of Schnyder’s trees [Sch90].

1.2. Our Results

Any planar embedding of an n-node planar graph can be seen as a subgraph of an
n-node triangulation of the plane. Given a triangulation and a set of edges to be
kept (or removed), a planar map and the corresponding graph can be constructed.

Planar Graphs, via Well-Orderly Maps and Trees 187

The converse is false in general. There is no known method to uniquely associate a
triangulation to a planar graph.

However, in [BGH03], a linear-time algorithm is given to construct a triangu-
lation of the plane in a canonical way for any planar graph, once given a planar
embedding. The reader should keep in mind that there is a-priori no unique embed-
ding of a planar graph. Some planar embeddings have interesting graph properties
based on the Schnyder’s partition [Sch90] of triangulations into trees. A new class of
planar embeddings is proposed in [BGH03]: the well-orderly maps, a more restric-
tive version of the orderly maps of Chuang et al. [CLL01]. The two main properties
of well-orderly maps that can be exploited for graph coding are: (1) every planar
graph admits such an embedding, and (2) given a well-orderly map, we can uniquely
associate a triangulation.

The main result of this paper is to give a good approximation for the number
of well-orderly maps. As a by-product, it gives a new upper bound on the number
of planar graphs: p(n) � 30.061n. More interestingly, the combinatorial analysis
enables us to give an explicit coding of such maps (and thus of planar graphs) as a
function of n and m, the number of edges: log2(30.061) ≈ 4.91 bits per node or 2.82
bits per edge (clearly, 2.82m bits is always smaller than 4m/3 + 5n bits because, for
any connected planar graph with at least 3 vertices, m � 3n − 6). A new bound on
the number of edges of a random unlabeled planar graph is presented as well.

The paper is organized as follows. We describe in Section 2 the relationships
between well-orderly maps, super-triangulations and Schnyder’s trees, also called
realizers. The new coding is presented in Section 3, and in Section 4 the applications
to the number of unlabeled planar graphs and to the number of edges in random
planar graphs are given. Another application of our results is an upper bound on
the minimal grid area of a random triangulation of the plane. We show that plane
triangulations can be drawn on grids of dimensions at most (7/8)n × (7/8)n using
straightlines and (11/16)n × (5/6)n using polylines.

2. Encoding Planar Graphs with Minimal Realizers

In this section we collect some results from [BGH03] about planar graphs,
well-orderly maps, super-triangulations and realizers. In the last paragraph, these
results are used to prove a new representation theorem.

2.1. Planar Graphs and Well-Orderly Maps

A planar map (or plane graph) is an embedding of a connected planar graph on
the plane so that edges meet only at their endpoints. When the plane is cut along
the edges, the remaining connected components are called the faces. Apart from the
unbounded component, all these faces are homeomorphic to discs. A planar map is
rooted if one of its edges is distinguished and oriented. This determines a root edge,
a root node (its origin) and a root face (to its left), also called the external face or
outerface. A triangulation of the plane (or a maximal plane graph) is a planar map
such that all the faces are triangles. In this paper, only simple planar graphs or maps
are considered.

188 N. Bonichon et al.

A plane tree is, as usual, a rooted tree (the root is a node) such that the siblings of
a node are linearly ordered. Equivalently, it is a planar map with one face. Among
the nodes of a tree, we distinguish the root, the inner nodes and the leaves. A span-
ning tree of a planar map is a subset of its edges that forms a tree connecting all its
nodes.

Let T be a rooted spanning tree of a planar map H , and let v1, . . . , vn be the
clockwise preordering of the nodes in T . Two nodes are unrelated if neither of them
is an ancestor of the other in T . An edge of H is unrelated if its endpoints are
unrelated.

A node vi is orderly in H with respect to T if the edges incident to vi in H form the
following four (possibly empty) blocks in clockwise order around vi (see Fig. 2(b)):

– BP (vi): the edge incident to the parent of vi in T ;
– B<(vi): edges that are unrelated in T and incident to nodes vj with j < i;
– BC(vi): edges that are incident to the children of vi in T ; and
– B>(vi): edges that are unrelated in T and incident to nodes vj with j > i.

A node vi is well-orderly if it is orderly and if the clockwise first edge (vi, vj) ∈
B>(vi), if it exists, has the property that the parent of vj is an ancestor of vi .

A rooted spanning tree T of H is a well-orderly tree of H if all the nodes of T

are well-orderly in H with respect to T . A planar map H is a well-orderly map with
root v if it contains a well-orderly tree with root v. Observe that a well-orderly tree
is necessarily spanning.

Theorem 1 ([BGH03]). Let G be a connected planar graph, and let v be any node
of G. Then G admits a map, computable in linear time, that is a well-orderly map of
root v. Moreover, a well-orderly map of root v has a unique well-orderly tree of root v,
which can also be computed in linear time.

In Fig. 1 two orderly trees T 0 span the same triangulation but only one is the
well-orderly tree.

Observe that by definition of well-orderly nodes, an edge of H which is related
with respect to a well-orderly tree T (i.e. one endpoint is a descendant of the other
one in T) must belong to the tree T : indeed all edges are either unrelated or connect
a node to its father. In particular all the edges incident in H to the root of T are
in T .

2.2. Minimal Realizers and Super-Triangulations

A realizer of a triangulation is a partition of its interior edges (the edges that do
not lie on the external face) into three sets T0, T1, T2 of directed edges such that the
following conditions hold for each interior node v (see Fig. 2(a)):

– the clockwise order of the edges incident with v is: leaving in T0, entering in T1,
leaving in T2, entering in T0, leaving in T1 and entering in T2;

– there is exactly one leaving edge incident with v in each of the sets T0, T1, and
T2.

Planar Graphs, via Well-Orderly Maps and Trees 189

(a) (b)

Fig. 1. Two realizers for a triangulation. The tree T 0 rooted in r0 (the tree with bold edges
augmented with the edges (r0, r1) and (r0, r2)) is well-orderly in (b), but only orderly in (a)
since node v is not well-orderly

(a) (b)

Fig. 2. Relationship between realizer and orderly tree: (a) edge-orientation rule around a
node for a realizer, and (b) blocks ordering around an orderly node

Hereafter, when R = (T0, T1, T2) is a realizer, R also denotes the underlying trian-
gulation. The edges of a tree Ti are given the color i for i = 0, 1, 2.

Observe that if (T0, T1, T2) is a realizer, then (T1, T2, T0) and (T2, T0, T1) are also
realizers. This cyclic permutation of the three sets of edges does not in general pro-
vide all the distinct realizers of a given triangulation. Fig. 1 depicts two realizers for
the same triangulation.

Actually, the number of n-node realizers is asymptotically 24n+O(log n)

(cf. [Bon02]), whereas the number of triangulations is only (256/27)n+O(log n)

(cf. [Tut62]).
Schnyder showed in [Sch90] that if (T1, T2, T3) is a realizer then each set Ti

induces a tree rooted in one node of the external face and spanning all interior
nodes. Moreover, for each Ti , we denote by T i the tree composed of Ti augmented
with the two edges of the external face incident to the root of Ti . For every non-root
node u ∈ Ti , we denote by pi(u) the parent of u in Ti .

190 N. Bonichon et al.

(a) (b)

(c)

Fig. 3. (a) A planar graph G with an embedding which is not well-orderly. An easy way to see
that it is not a well-orderly is to observe that the edges (v1, v2), (v1, v3), (v1, v4), (v2, v6) must
be in any spanning tree of G rooted at v1 such that G has only parent edges and unrelated
edges. In such trees, v2 is clearly not an orderly node. (b) A well-orderly map of G. (c) A
super-triangulation of G (dotted edges are not in G)

A realizer S = (T0, T1, T2) is a super-triangulation of a graph G if:

(1) V (S) = V (G) and E(G) ⊆ E(S);
(2) E(T0) ⊆ E(G);
(3) T 0 is a well-orderly tree of S; and
(4) for every inner node v of T2, (v, p1(v)) ∈ E(G).

Lemma 1 ([BGH03]). Let H be a well-orderly map, and T its unique well-orderly tree of
root r0. Assume thatT has at least two leaves. Let r2 and r1 be the clockwise first and last
leaves of T respectively. Then, there is a unique super-triangulation (T0, T1, T2) of the
underlying graph of H preserving the embedding H , and such that each Ti has root ri .
Moreover, T0 = T \ {r1, r2} and the super-triangulation is computable in linear time.

There is an alternative characterization of super-triangulation in terms of mini-
mal realizers. A cw-triangle (or clockwise triangle), is a triple of nodes (u, v, w) (not
necessarily corresponding to a face) of a realizer such that p2(u) = v, p1(v) = w,
and p0(w) = u. A minimal realizer is a realizer that does not contain any clockwise
triangle. In the realizer depicted in Fig. 1(a), (u, v, w) forms a cw-triangle, whereas
the realizer of Fig. 1(b) has no cw-triangle.

Planar Graphs, via Well-Orderly Maps and Trees 191

Lemma 2 ([BGH03]). Let S = (T0, T1, T2) be any realizer. The following statements
are equivalent:

(1) S is a super-triangulation for some graph G.
(2) S is a minimal realizer.
(3) The tree T i is well-orderly in S, for every i ∈ {0, 1, 2}.

2.3. Results of the Paper

Theorem 2 (Coding version [BGH03]). The following encoding sequence holds:

– Any connected planar graph can be embedded as a well-orderly map.
– Any well-orderly map can be represented as a minimal realizer (T1, T2, T3) with a

subset of marked edges each of which is either in T2 or is an edge (u, v) of T1 such
that u is a leaf of T1.

Our first new result in this paper is that in fact the second encoding is almost tight.

Theorem 3 (Counting version). Let Hn (resp. Hn,m) denote the set of well-orderly maps
with n nodes (resp. with n nodes and m edges), and Rn,� denote the set of minimal real-
izers (T0, T1, T2) with n nodes and l leaves in T2. Then

1
8

n−3∑

�=1

|Rn,�|2n+� � |Hn| �
n−3∑

�=1

|Rn,�|2n+�;

1
8

n−3∑

�=max{1,2n−m−6}
|Rn,�|

(
n + �

m − 2n + 6 + �

)

� |Hn,m| �
n−3∑

�=max{1,2n−m−6}
|Rn,�|

(
n + �

m − 2n + 6 + �

)
.

Proof (Theorem 3). Let S = (T0, T1, T2) be an element of Rn,�, and G be a con-
nected planar graph such that S is a super-triangulation of G i.e. E(T0) ⊆ E(G).
The number of edges of a triangulation with n nodes is 3n − 6. Among the 3n − 6
edges of S, there are (n − 3) edges that belong to T0 and n − 3 − � edges (v, p1(v))

such that v is an inner node of T2 (recall that Ti does not contain the roots of Tj �=i).
All these edges belong also to G (see the definition of super-triangulations). In S

there are n + � other edges; so there are at most 2n+� subgraphs of S satisfying
the previous conditions and

(
n+�

m−2n+6+�

)
m-edge subgraphs of S also satisfying the

previous conditions. This inequality implies the upper bounds.
Since a well-orderly map admits a unique super-triangulation (see Lemma 1),

the lower bounds in Theorem 3 will follow once we prove that for each realizer
S ∈ Rn,l , the number of well-orderly maps that admit S as a super-triangulation is
at least 2n+�−3, among which

(
n+�

m−2n+6+�

)
have m edges. Let

E′ = E(S) \ (
E(T 0) ∪ {

(v, p1(v)) | v is an inner node of T2
} ∪ {(r1, r2)}

)

192 N. Bonichon et al.

Fig. 4. On the left, a planted tree of Bn (the root is indicated by a square). Then from left to
right, the partial closure of the tree

Since the cardinality of E′ is (3n − 6) − (n − 1) − (n − 3 − �) − 1 = n + � − 3, it is
sufficient to prove that by removing any subset of edges of E′ we obtain a different
well-orderly map. First we observe that by removing different subsets of edges, we
clearly obtain different maps since the spanning tree T0 is always kept. It remains
to check the well-orderly condition.

Since S is a well-orderly map, the property is true when no edges are removed.
Let us assume that the submap G1 of S obtained by removing some edges of E′
is well-orderly and consider the submap G2 obtained by removing one more edge
(u, v) ∈ E′. In G1, T 0 is a well orderly tree, and (u, v) is unrelated edge with respect
to T 0, so that T 0 is an orderly spanning tree of G2. It remains to check that u and
v are well-orderly. We distinguish two cases:

– (u, v) ∈ T2: node v was an inner node of the tree T2 in G1, hence the edge
e′ = (v, p1(v)) belongs to G1 and to G2. Since the edge e′ is the clockwise first
edge of B>(v) and the node p0(p1(v)) is still an ancestor of v in T0, v is well-
orderly. As for the node u, since no edge of the block B>(u) has changed between
G1 and G2, u is still well-orderly.

– (u, v) ∈ T1: this implies that u is a leaf of the tree T2 in G1 and in G2. It follows
that B>(u) = {(u, v)} in G1 and B>(u) = ∅ in G2. By definition, u (and also T 0,
since B>(v) is the same in G1 as in G2) is well-orderly. �

3. Counting and Coding Trees

In this section we briefly recall a result from [PS03] about minimal realizers and
plane trees. An encoding of well-orderly maps follows.

3.1. Minimal Realizers and Plane Trees

A tree is planted if it is rooted on a leaf. Let Bn be the set of planted plane trees with
n nodes and 2n leaves such that each node is adjacent to 2 leaves. Given a planted
plane tree T in Bn, its canonical orientation shall be toward the root for all inner
edges, and toward the leaf for all dangling edges.

A triple (e1, e2, e3) of edges of a map M is an admissible triple if e1 = (v0, v1),
e2 = (v1, v2) and e3 = (v2, v3) appear consecutively in the clockwise direction
around the infinite face and if v3 is a vertex of degree 1. The local closure of M at
the admissible triple (e1, e2, e3) is obtained by fusing the leaf v3 on node v0 so as to

Planar Graphs, via Well-Orderly Maps and Trees 193

(a) (b)

Fig. 5. The structure after a partial closure, and the complete closure

create triangular face. Observe that by construction the orientation of the dangling
edge prevents the formation of cw-triangles.

The local closure of a tree T of Bn is the map obtained by performing itera-
tively the local closure of any available admissible triple in a greedy way. As shown
in [PS03], the local closure is well defined independently of the order of local clo-
sures. Moreover all the bounded faces of the resulting map are triangular and the
outer face has the structure shown on Fig. 5 (a). In particular there are exactly two
canonical dangling edges in the infinite face that are immediately followed by dan-
gling edges in the clockwise direction around the infinite face. A tree T is balanced if
its root is one of the two canonical leaves. Finally, the complete closure of a balanced
tree T is the map obtained from the partial closure of T by fusing each remain-
ing non-canonical leaf with following canonical leaf in the clockwise direction and
adding a root edge, as illustrated by Fig. 5 (b).

Theorem 4 ([PS03]). Complete closure is one-to-one correspondence between balanced
trees with n − 2 and triangulations with n nodes. Moreover, the orientation of inner
edges of the triangulation that is induced by the tree corresponds, via the coloration
rule of Fig. 2(a) to a minimal realizer of the triangulation.

Observe that the color of the edges can be deduced from their orientation directly
on the balanced tree from the application of the rule of Fig. 2(a).

The following new lemma will serve to predict the entering edges created by
complete closure at a node.

Lemma 3. Let v be an inner node of a balanced tree B. Let e1 = (v, u) and e2 = (v, w)

be two consecutive edges around v in clockwise order. During the closure algorithm, no
edges will be inserted between e1 and e2 if and only if:

(a) w is a leaf of B, or
(b) w is an inner node of B and the node t such that the edge e3 = (w, t) is the next

edge around w after e2 in clockwise order is a leaf of B.

194 N. Bonichon et al.

Proof. Let v an inner node of a balanced tree B. Let us consider two consecutive
edges (v, u), (v, w) around v in clockwise order. If w is a leaf, then during the closure
it will merge with a node w′ and close a triangular face enclosing the corner between
(v, u) and (v, w). No other edge can thus arrive at this corner. Assume now that
w is an inner node of B. Let (w, t) be the next edge around w in clockwise order.
If t is a leaf of B then it will merge with u to form a triangular face and again no
edge can arrive in the corner between (v, u) and (v, w). In the other cases, (v, w) is
an inner edge followed by another inner edge (w, t). Since an edge that forming a
triangular face that encloses the corner between (v, u) and (v, w) must from w, the
corner is not enclosed. But at the end of the partial closure, there are no more pairs
of consecutive inner edges: some edge must have arrived in the corner. �

Lemma 4. Let R = (T0, T1, T2) be the minimal realizer encoded by a balanced tree B.
A node v of B is a leaf of T2 if and only if v has no incoming edge colored 2 in B and,

1. the parent edge of v in B is colored 2, or
2. the parent edge of v in B is colored 1, or
3. the parent edge of v in B is colored 0 and v is the last child with an edge colored 0

in clockwise order around PB(v) and
(a) the parent edge of PB(v) is colored 0, or
(b) the parent edge of PB(v) is colored 2.

The number of vertices of B satisfying these conditions is denoted �(B).

Proof. For the node v to be a leaf in T2, it must have no incoming edge of color 2 in
B, and no edge must be inserted between its outgoing edges of color 0 and 1. When
the parent edge of v has color 2 or 1, the outgoing edge of color 0 connects to a
leaf and Case (a) of the previous lemma ensures that no edge arrives between this
outgoing edge of color 0 and the outgoing edge of color 1. When the parent edge
of v has color 0, if the next edge in clockwise order around the parent PB(v) of v

in B is an outgoing edge (of color 1), then Case (b) of the previous lemma ensures
that no edge of color 2 arrives.

Finally we need to check in the remaining cases that an incoming edge of color 2
indeed arrives between the two outgoing edges of color 0 and 1. This could happen if
the corner we consider was part of the unbounded face after the partial closure. But
in the remaining cases, both the edge (v, PB(v)) and the next edge in clockwise order
around PB(v) are incoming. Since the form of the boundary after partial closure
prohibits two consecutive incoming edges, the proof of the lemma is complete. �

From Lemma 4 and Theorem 2, we obtain:

Theorem 5. Any well-orderly map with n nodes can be coded by a pair (B, W) where B

is balanced tree of Bn−2 and W a bit string of length n+ �(B). Encoding and decoding
takes linear time.

Planar Graphs, via Well-Orderly Maps and Trees 195

Fig. 6. A decomposition of colored trees allowing to track the contributions to �

3.2. A Context-Free Grammar for Colored Trees

We shall now give a recursive decomposition of trees in which the parameter � of
Lemma 4 can be followed.

To do this we consider the three sets Fi , for i = 0, 1, 2 of trees with a root edge
of color i. To a tree T of Fi , i = 1, 2, we associate the parameter k(T) = �(T). To
a tree T of F0 we associate the parameter k(T) defined as �(T) except for the root
node which contributes to k(T) if it has no incoming edge of color 2, and a second
parameter k′(T) defined as �(T) except for the root node which never contributes.

The decomposition is obtained, classically, at the root node: a tree with root
edge of color 0 consists of a root node that carries, in clockwise order, a sequence of
subtrees of root color 1, an outgoing edge of color 2, a sequence of subtrees of root
color 0, an outgoing edge of color 1, and a sequence of subtrees of root color 2. The
parameter � is almost additive on subtrees. However, due to Rule 3 in Lemma 4,
the root of a subtree with root edge of color 0 may or may not be susceptible to
contribute depending upon how it is attached. In other terms, depending of how it
is attached, a subtree T ′ with root color 0 contributes k(T ′) or k′(T ′).

In Fig. 6 the decomposition is pictured schematically: an incoming edge repre-
sents a tree, a triangle represents a possibly empty sequence of subtrees, and colors
correspond to root colors. For color 0, plain and dashed lines respectively indicate
positions where the contribution is given by parameters k or k′. Finally root nodes
that contribute to the parameters are pictured in a box.

196 N. Bonichon et al.

3.3. Generating Functions of Trees and the Asymptotic Number of Well-Orderly
Maps

The reader can refer to [GJ83] for a general presentation of the enumeration of
decomposable structures using grammars and generating series.

We consider the generating functions Fi(z, u) of trees with root color i, i =
0, 1, 2, with respect to the number of edges and the parameter k, and F ′

0(z, u) of
trees with root color 0 with respect to the number of edges and the parameter k′:

Fi ≡ Fi(z, u) =
∑

T ∈Fi

z|T |uk(T) and F ′
0 ≡ F ′

0(z, u) =
∑

T ∈F0

z|T |uk′(T).

Recall that with respect to additive parameters, the generating function of a possibly
empty sequence of elements of a set S is the quasi-inverse 1/(1−f) of the generating
function f of S. Therefore the previous decomposition translates into the following
system of equations:

F0 =
z
(

1 + F ′
0

1−F0

)

(1 − F1)(1 − F2)
,

F ′
0 =

z
(
u + F2

1−F2

) (
1 + F ′

0
1−F0

)

1 − F1

F1 =
z
(
u + F2

1−F2

)

(1 − F1)(1 − F0)
,

F2 =
z
(
u + F2

1−F2

) (
1 + F ′

0
1−F0

)

1 − F1
,

or

F0 =
z
(

1 + F2
1−F0

)

(1 − F1)(1 − F2)
,

F1 =
z
(
u + F2

1−F2

)

(1 − F1)(1 − F0)
,

F2 =
z
(
u + F2

1−F2

) (
1 + F2

1−F0

)

1 − F1
,

where the observation that F ′
0(z, u) = F2(z, u) in the left hand side system yields

the right hand side one. This system of equations completely defines the generat-
ing series F0(z, u). Algebraic elimination (see [FS, Appendix B1]) in this system
leads immediately (using a computer algebra software) to an algebraic equation
�0(z, u, F0(z, u)) = 0 of degree 4 for F0(z, u).

We are particularly interested in specialization of this equation to the case u = 2,
since the coefficient fn of zn in

F(z) = F0(z, 2) =
∑

T ∈F0

z|T |2�(T),

counts n-node trees weighted by 2�(u), and thus overcounts n-nodes balanced trees
with the same weight. According to Theorem 3, upon multiplying by 2n, this yields
an upper bound on the number of well-orderly maps with n nodes.

From elementary complex analysis, we have that log fn ∼ log(ρ−n), where ρ is
the radius of convergence of the series F(z) = ∑

n fnz
n. Applying the implicit func-

tion theorem (see [FS, Appendix B4]) to the (algebraic) equation �(z, F (z)) = 0

Planar Graphs, via Well-Orderly Maps and Trees 197

defining F(z), we can compute its radius of convergence by means of the roots of
∂�
∂F

, and finally obtain:

ρ =
(√

189 + 114
√

3 − 6
√

3 − 9
)

/4 ≈ 15.0306.

From Theorem 5 we obtain:

Theorem 6. The number of well-orderly maps with n nodes satisfies

1
n

log2 |Hn| � 1 + log2 1/ρ + o(1) ≈ 4.9098.

3.4. A Code for Colored Trees

Let S be a binary string. We denote by #S the number of binary strings having the
same length and the same number of 1’s as S. More precisely, if S is of length x and
has y 1’s, then we set #S := (

x
y

)
. The following lemma is proved in [BGH02].

Lemma 5. Any binary string S of length n can be coded into a binary string of length
log2(#S) + o(n). Moreover, knowing n, coding and decoding S can be done in linear
time, assuming a RAM model of computation on �(log n) bit words.

Lemma 6. LetB be a balanced tree such that the corresponding realizerR=(T0, T1, T2)

has i2 inner nodes in the tree T2. The balanced tree B can be encoded with 5 binary
strings S1, S2, S3, S4 and S5 and 4 integers a0, a

′
0, a1, i2 � n such that: #S1 = (

n−a0
i2−a0

)
,

#S2 = (n−a1
a′

0

)
, #S3 = (

n+a1
a1

)
, #S4 = (

a1+a0+a′
0

a0

)
and #S5 = (n−a1−a′

0
n−a1−a′

0−i2

)
.

Proof. Let B be a colored balanced tree. We partition the nodes of B in the following
way:

– A1: the set of nodes v such that the edge (v, PB(v)) is colored 1.
– A2: the set of nodes v such that the edge (v, PB(v)) is colored 2.
– A′

0: the set of nodes v and such that the edge (PB(v), PB(PB(v)) is colored either
0 or 2, and such that v is the last child in clockwise order with the edge (v, PB(v))

is colored 0.
– A0: the set of nodes that are not in the previous sets.

Note that the root of B is in A0 and for every node v of A0, the edge (v, PB(v)) is col-
ored 0. If we consider the grammar of the Fig. 6, the set A′

0 corresponds to the nodes
that have been generated with the “dashed-line” rules. Let a0 (resp. a′

0, a1, a2, i2) be
the number of nodes of A0 (resp. A′

0, A1, A2, I2). Assume that we are coding the
balanced tree B. The only information we need, for each node in the prefix clock-
wise order, is its number of children in A0, in A′

0, in A1 and in A2. In order to
encode efficiently a well-orderly map, we need to introduce another parameter in
our encoding. Let I2 be the set of nodes of B that will be inner nodes in the tree T2
of the corresponding realizer R = (T0, T1, T2).

We give some preliminary remarks:

198 N. Bonichon et al.

1. Nodes of A1 can not have children in A′
0.

2. Every node of A0 ∪ A′
0 ∪ A2 has at most one child in A′

0.
3. A0 ⊆ I2 (see Lemma 4).
4. Every node of A′

0 ∪ A1 ∪ A2 which is also in I2 has at least one child in A2 (see
Lemma 4).

5. Every node of V \A1 can have children in A0 only if it has a child in A′
0.

6. Only nodes of I2 can have children in T2.

To encode the balanced tree, we will build 5 binary strings. With these strings
we will determine, for each node, its number of children in each subset.

In the first string, S1, tells which node belongs to I2. Since all the nodes of A0 are
in I2 (see remark 3), S1 stores the information for all the other nodes. So for each
node of V \A0, the corresponding bit is set to 1 if the node belongs to I2 and is set
to 0 otherwise. Hence the string S1 contains n − a0 bits and i2 − a0 1’s.

The second string S2, is used to determine whether or not a node has a child
in A′

0. Since all the nodes of A1 have a child in A′
0 (see remark 1), S2 stores this

information for all the other nodes: the corresponding bit is set to 1 if the node has
one child in A′

0 and to 0 otherwise. Hence the string S2 contains n − a1 bits and a′
0

1’s.
The string S3 stores, for each node, its number of children in A1 in a

“Lukasiewicz” way. For each v node of B in the prefix clockwise order, we ap-
pend to S3 as many 1’s as the number of children of v in A1 and then we insert a 0.
Hence the string S3 contains n + a1 bits and a1 1’s.

The string S4 stores the number of children in A0. This information has to be
stored for each node of A1 and for each node that has a child in A′

0 (see remark
5). So for each of these nodes, we proceed as for the string S3. Hence the string S4
contains a1 + a′

0 + a0 bits and a0 1’s.
The string S5 helps to determine the number of children in A2. We only need to

store this information for the nodes of I2 (see remark 6). Moreover, for these nodes
that are in A0

⋃
A′

0

⋃
A2, we already know that they have at least one child in A2;

so we only need to count the other 1’s. So for each of these nodes, we proceed as for
the strings S3 and S4. We obtain a string i2 + (a2 − (i2 −a0)) = n−a1 −a′

0 bits with
a2 − (i2 − a0) = n − a1 − a′

0 − i2 1’s. �

Lemma 7. Let H be a well-orderly map with n nodes and m edges. H can be encoded
with 6 binary strings (5 for the minimal realizer and a last one to store the missing
edges) and 4 integers a0, a1, a

′
0, i2 ∈ [0, n] such that: #S1 = (

n−a0
i2−a0

)
, #S2 = (n−a1

a′
0

)
,

#S3 = (
n+a1
a1

)
, #S4 = (

a1+a0+a′
0

a0

)
, #S5 = (n−a1−a′

0
n−a1−a′

0−i2

)
, #S6 = (2n−i2

m−n−i2

)
.

Proof. With S1 − S5 a minimal realizer is encoded (Lemma 6). The last string indi-
cates the edges to delete in order to rebuild the well-orderly map: for each v, one bit
is used to indicate if the edge (v, p2(v)) has to be removed and for each leaf v of T2,
one bit is used to indicate if the edge (v, p1(v)) has to be removed. �

Planar Graphs, via Well-Orderly Maps and Trees 199

Fig. 7. (a) Number of bits necessary to encode a well-orderly map with m = αn edges, where
1 � α � 3. (b) Coding analysis: Number of bits per edges of a well-orderly map with m = αn
edges, where 1 � α � 3

4. Applications

In view of Theorems 2 and 6, the number of connected planar graphs is at most
24.9098n. As shown in [BGH03], the numbers of connected and general planar graphs
differ by at most a polynomial factor in n.

Theorem 7. The number p(n) of unlabeled planar graphs on n nodes satisfies, for every
n large enough:

log2 p(n) � αn + O(log n) with α ≈ 4.9098.

This result is completed by the lower bound log2 p(n) � βn + O(log n), with β ≈
4.767 coming from asymptotics of labeled planar graphs [GN].

The length of the coding of well-orderly map depends of the number of the edges
of the well-orderly map.

The following two results are obtained from the analysis of the length of the
code of Lemma 7. The length of this code depends on the number of edges of the
well-orderly map (see Fig. 7).

Theorem 8. Every connected planar graph with n nodes and m edges can be encoded
in linear time with at most 4.91n + o(n) bits or 2.82m + o(m) bits.

Proof. Combining Theorem 2 and Lemma 7, we obtain an explicit coding with at
most W = W(n, m) = log2(#S1) + log2(#S2) + log2(#S3) + log2(#S4) log2(#S5) +
log2(#S6) + O(log(n)) bits where S1, . . . , S6 are given in Lemma 7. Thanks to
Lemma 5 we can encode in linear time a planar graph with W + o(n) bits, which is
W + o(n) bits or W + o(m) bits (since G is connected, we have n − 1 � m � 3n − 6
and so log n = log m + O(1)). Analyzing the maximum length of the codes (over
all parameters a0, a1, . . . , i2 and m or n), we obtain that W � 4, 91n + o(n) or
W � 2, 28m + o(m) (See Fig. 7 (a) and Fig. 7 (b)). �

200 N. Bonichon et al.

Theorem 9. Almost all unlabeled planar graphs on n nodes have at least 1.85n edges
and at most 2.44n edges. Moreover, the result holds also for unlabeled connected planar
graphs.

Proof. (sketch). Our code can be parameterized with the number of edges. The
length of the coding is no more than W(m, n) + O(log n) bits. Using a reduction
from arbitrary planar graphs to connected planar graphs, we can apply our upper
bound. Combined with the 4.767n bit lower bound of [GN], we derive two numbers
µ1 = 1.85 and µ2 = 2.44 such that our representation is below 4.767 (See Fig. 7
(a)). �

5. The Average Size of Planar Drawings

Theorem 10. The average number of leaves in a tree of a minimal realizer is 5n/8+o(n)

and the average number of 3-colored faces in a minimal realizer is n/8 + o(n).

Proof. Using classical techniques on generating function, we obtain that the average
number of leaves of the tree T0 of a minimal realizer is 5n/8 + o(n). By symmetry,
this result is clearly true for the two other trees of the realizer. Since for any realizer,
�0 +�1 +�2 +	 = 2n−5, where �i is the number of leaves in Ti and 	 is the number
of 3-colored faces of the realizer [BLSM02b], the second result follows directly. �

In [ZH03] a straight-line drawing algorithm based on minimal realizers is pre-
sented. This algorithm first computes the minimal realizer of a triangulation of the
graph. Then the graph is drawn on a grid of dimensions (n − 1 −) × (n − 1 −),
where 	 is the number of 3-colored faces of the so obtained minimal realizer. Our
analysis gives an average complexity of such drawings:

Corollary 1. The average grid size required (i.e., the average width and the average

height) to draw a triangulation is at most
(

7n
8 + o(n)

)
×

(
7n
8 + o(n)

)
.

In [BLSM02a] a polyline drawing algorithm also based on minimal realizers is
proposed. The graph is then drawn on a grid (n − ⌊

�
2

⌋ − 1) × �, where � is the
number of leaves of the tree T0 of the obtained minimal realizer R = (T0, T1, T2).
Our analysis gives an average complexity of such drawings:

Corollary 2. The average grid size required to draw a triangulation is at most(
11n
16 + o(n)

)
×

(
5n
8 + o(n)

)
.

References

[BGH02] Bonichon, N., Gavoille, C., Hanusse, N.: An information upper bound of planar
graphs using triangulation. Research Report RR-1279-02, LaBRI, University of
Bordeaux, 351, cours de la Libération, 33405 Talence Cedex, France, September
2002

Planar Graphs, via Well-Orderly Maps and Trees 201

[BGH03] Bonichon, N., Gavoille, C., Hanusse, N.: An information-theoretic upper bound
of planar graphs using triangulation. In: 20th Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS), volume 2607 of Lecture Notes in
Computer Science, pages 499–510. Springer, February 2003

[BGK03] Bodirsky, M., Gröpl, C., Kang, M.: Generating labeled planar graphs uniformly
at random. In: 30th International Colloquium on Automata, Languages and
Programming (ICALP), volume 2719 of LNCS, pages 1095–1107, 2003

[BGW02] Bender, E.A., Gao, Z., Wormald, N.C.: The number of labeled 2-connected pla-
nar graphs. The Electronic Journal of Combinatorics 9(1), R43 (2002)

[BLSM02a] Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar
polyline drawings. In: 28th International Workshop, Graph - Theoretic Con-
cepts in Computer Science (WG), volume 2573 of LNCS, pages 35–46. Springer,
2002

[BLSM02b] Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In:
29th International Colloquium on Automata, Languages and Programming
(ICALP). volume 2380 of LNCS, pages 1043–1053. Springer, 2002

[Bon02] Bonichon, N.: A bijection between realizers of maximal plane graphs and pairs
of non-crossing Dyck paths. In: Formal Power Series & Algebraic Combinatorics
(FPSAC). July 2002

[CGH+98] Chih-Nan Chuang, R., Garg, A., He X., Kao M.-Y., Lu H.-I.: Compact enco-
dings of planar graphs via canonical orderings and multiple parentheses. In:
25th International Colloquium on Automata, Languages and Programming
(ICALP), volume 1443 of LNCS, pages 118–129. Springer, July 1998

[CLL01] Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly spanning trees with applications to
graph encoding and graph drawing. In: 12th Symposium on Discrete Algorithms
(SODA), pages 506–515. ACM-SIAM, January 2001

[DVW96] Denise, A., Vasconcellos, M., Welsh, D. J. A.: The random planar graph. Con-
gressus Numerantium 113, 61–79 (1996)

[FJ89] Frederickson, G. N., Janardan, R.: Efficient message routing in planar networks.
SIAM Journal on Computing, 18(4), 843–857, August (1989)

[FS] Flajolet, P., Sedgewick,R.: Analytic combinatorics. Future book available online
at the URL http://algo.inria.fr/flajolet/Publications/books.html

[GH99] Gavoille, C., Hanusse, N.: Compact routing tables for graphs of bounded genus.
In: 26th International Colloquium on Automata, Languages and Programming
(ICALP), volume 1644 of LNCS, pages 351–360. Springer, July 1999

[GJ83] Goulden, I. P., Jackson, D. M.: Combinatorial Enumeration. John Wiley & Sons,
1983

[GM02] Gerke, S., McDiarmid, C. J. H.: On the number of edges in random planar graphs.
Combinatorics, Probability & Computing, 2002 (to appear)

[GN] Giménez, O., Noy, M.: Asymptotic enumeration and limit laws of planar graphs.
preprint arXiv:Math.CO/051269

[KADS02] Khodakovsky, A., Alliez, P., Desbrun, M. Schröder, P.: Near-optimal connectiv-
ity encoding of 2-manifold polygon meshes. Graphical Models, 2002. To appear
in a special issue

[KR99] King, D., Rossignac, J.: Guaranteed 3.67V bit encoding of planar triangle graphs.
In: 11th Canadian Conference on Computational Geometry. pp 146–149, August
1999

[KW95] Keeler, K. Westbrook, J.: Short encodings of planar graphs and maps. Discrete
Applied Mathematics 58, 239–252 (1995)

[Lu02] Lu, H.-I.: Improved compact routing tables for planar networks via orderly span-
ning trees. In: 8th Annual International Computing & Combinatorics Conference
(COCOON), volume 2387 of LNCS, pages 57–66. Springer, August 2002

[LW87] Liskovets, V. A., Walsh, T. R.: Ten steps to counting planar graphs. Congressus
Numerantium 60, 269–277 (1987)

202 N. Bonichon et al.

[MR97] Munro, J. I., Raman, V.: Succinct representation of balanced parentheses, static
trees and planar graphs. In: 38th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 118–126. IEEE Computer Society Press,
October 1997

[MSW05] McDiarmid, C., Steger, A., Welsh, D. J. A.: Random planar graphs. J. Comb.
Theory Ser. B 93(2), 187–205 (2005)

[OPT03] Osthus, D., Prömel, H. J., Taraz, A.: On random planar graphs, the number of
planar graphs and their triangulations. Journal of Combinatorial Theory, Series
B 88, 119–134 (2003)

[PS03] Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations.
In: 30th International Colloquium on Automata, Languages and Programming
(ICALP), volume 2719 of LNCS, pages 1080–1094. Springer, July 2003

[Ros99] Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics 5(1), 47–61 (1999)

[Sch90] Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symposium on Dis-
crete Algorithms (SODA), pp 138–148. ACM-SIAM, 1990

[Tho01] Thorup, M.: Compact oracles for reachability and approximate distances in pla-
nar digraphs. In 42th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society Press, October 2001.

[Tur84] Turán, G.: Succinct representations of graphs. Discrete Applied Mathematics 8,
289–294 (1984)

[Tut62] Tutte, W. T.: A census of planar triangulations. Canadian Journal of Mathematics
14, 21–38 (1962)

[Wri71] Wright, E. M.: Graphs on unlabelled nodes with a given number of edges. Acta
Math. 126, 1–9 (1971)

[Yan89] Yannakakis, M.: Embedding planar graphs in four pages. Journal of Computer
and System Sciences 38, 36–67 (1989)

[ZH03] Zhang, H., He, X.: Compact visibility representation and straight-line grid
embedding of plane graphs. In: Workshop on Algorithms and Data Structures
(WADS), volume 2748 of LNCS, pages 493–504. Springer, July 2003

Received: October 1, 2004
Final version received: September 26, 2005

