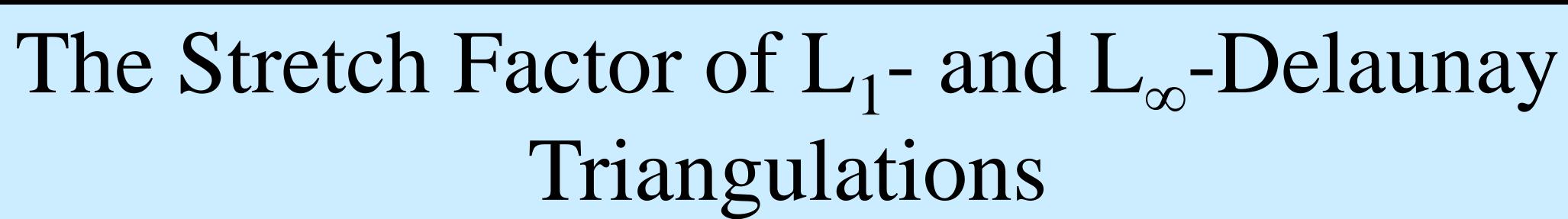
STOC'12



N. Bonichon, C. Gavoille, N. Hanusse, L. Perkovic

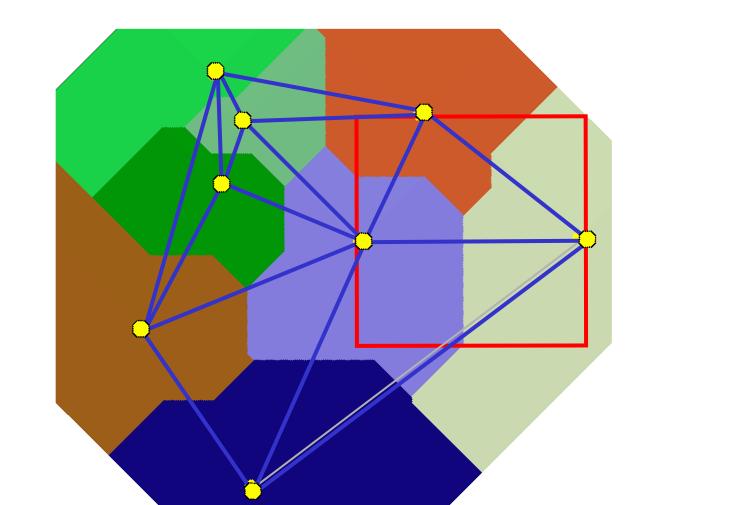
[bonichon, gavoille, hanusse]@labri.fr, lperkovic@cs.depaul.edu

L_{∞} -Delaunay Triangulation

Definition : Given a point set S, the L_{∞} -Delaunay Triangulation G of S is the Delaunay Triangulation based on the L_{∞} norm.

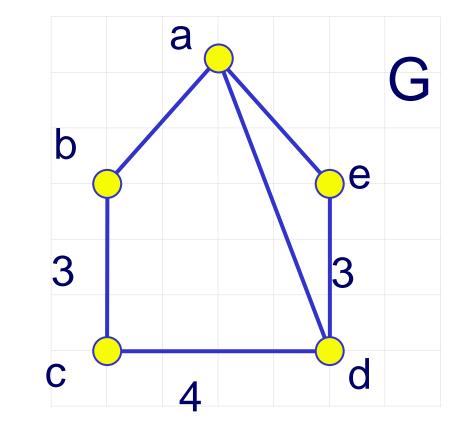
In other words, there is an edge (u,v) in G iff there exists a square supporting u and v empty of points of S.

Definition: Let S be a point set of the plane. Let G=(S,E) be a weighted graph such that the weight of an edge (u,v) is $||\overrightarrow{uv}||$. The stretch factor of G is



where $d_G(u,v)$ is the distance between u and v in the graph G.

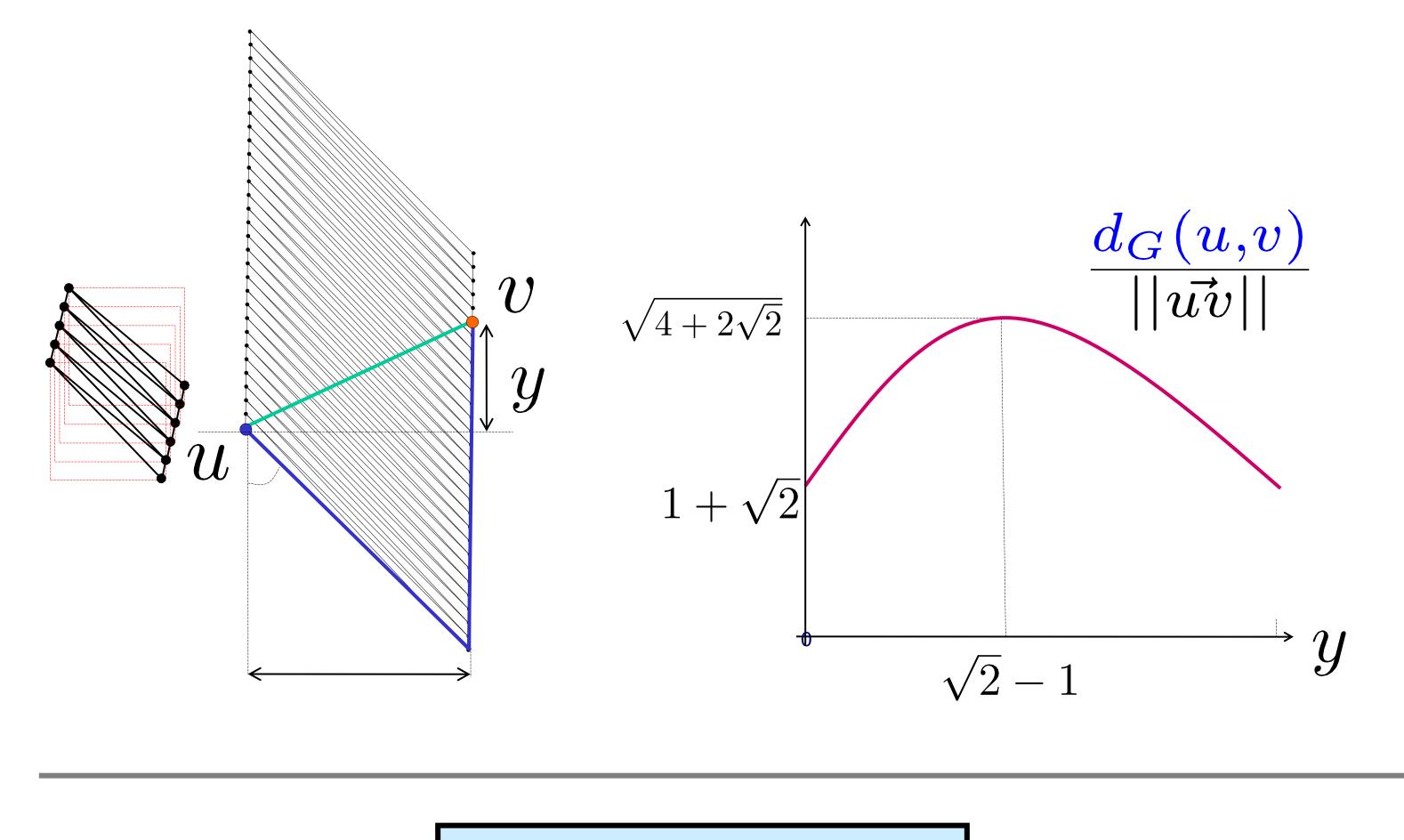
In this example: $d_G(b, e) = 4\sqrt{2}$ and $||\vec{be}|| = 4$. The stretch factor of G is $\sqrt{2}$.



Theorem: The stretch factor of an L_{∞} -Delaunay Triangulation is at most $\sqrt{4+2\sqrt{2}} \approx 2.61$. Moreover this bound is tight.

Best previous bound: $\sqrt{10}$.

L_{∞} -Delaunay Triangulation stretch factor: Lower bound



L_{∞} -Delaunay Triangulation stretch factor: Upper bound

Lemma: Let G be the L_{∞} -Delaunay triangulation of S. Let a and b be 2 points of S. Let $x = d_x(a, b)$ and $y = d_y(a, b)$. If $y \le x$, $d_G(a,b) \le (1+\sqrt{2})x + y.$

Sketch of proof

 $\boldsymbol{\mathcal{A}}$

Stretch factor of Delaunay triangulations defined by arbitrary polygons:

p-gon	Lower bound	Upper bound
р=3	2 [Chew 89]	2 [Chew 89]
p=4	2.61	2.61
p=5	1.70	?
р=6	2	?
<i>p</i> >6	1/2 perimeter	?
p=∞	> ¹ / ₂ perimeter	1.998 [Xia 11]

- We consider the sequence of faces that cross segment [ab].
- A face is **inductive** if its second edge crossing [ab] has a slope within + - 1.
- We then show that
 - if there is no inductive face then $d_G(a, b) \leq (1 + \sqrt{2})x + y$.
 - otherwise let c the latest point of the first inductive face. * if $y_c < y_b$ then $d_G(a, c) \le (1 + \sqrt{2})x_c + y_c$ * if $y_c > y_b$ then $d_G(a, c) \le (1 + \sqrt{2})x_c + 2y - y_c$

