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Abstract

In this paper we determine the stretch factor of the L1-Delaunay and L∞-Delaunay

triangulations, and we show that this stretch is
√

4 + 2
√
2 ≈ 2.61. Between any two

points x, y of such triangulations, we construct a path whose length is no more than
√

4 + 2
√
2 times the Euclidean distance between x and y, and this bound is best possible.

This definitively improves the 25-year old bound of
√
10 by Chew (SoCG ’86).

To the best of our knowledge, this is the first time the stretch factor of the well-studied
Lp-Delaunay triangulations, for any real p ≥ 1, is determined exactly.

Keywords: Delaunay triangulations, L1-metric, L∞-metric, stretch factor

1 Introduction

Given a set of points P on the plane, the Delaunay triangulation for P is a spanning subgraph
of the Euclidean graph on P that is the dual of the Voronöı diagram of P . The Delaunay
triangulation is a fundamental structure with many applications in computational geometry
and other areas of Computer Science. In some applications (including on-line routing [BM04]),
the triangulation is used as a spanner, defined as a spanning subgraph in which the distance
between any pair of points is no more than a constant multiplicative ratio of the Euclidean
distance between the points. The constant ratio is typically referred to as the stretch factor of
the spanner. While Delaunay triangulations have been studied extensively, obtaining a tight
bound on its stretch factor has been elusive even after decades of attempts.

In the mid-1980s, it was not known whether Delaunay triangulations were spanners at all.
In order to gain an understanding of the spanning properties of Delaunay triangulations, Chew
considered related, “easier” structures. In his seminal 1986 paper [Che86], he proved that an
L1-Delaunay triangulation — the dual of the Voronöı diagram of P based on the L1-metric
rather than the L2-metric — has a stretch factor bounded by

√
10. Chew then continued on
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Paper Graph Stretch factor

[DFS87] L2-Delaunay π(1 +
√
5)/2 ≈ 5.08

[KG92] L2-Delaunay 4π/(3
√
3) ≈ 2.41

[Xia11] L2-Delaunay 1.998

[Che89] TD-Delaunay 2

[Che86] L1-,L∞-Delaunay
√
10 ≈ 3.16

[this paper] L1-,L∞-Delaunay
√

4+ 2
√
2 ≈ 2.61

Table 1: Key stretch factor upper bounds (optimal values are bold).

and showed that the a TD-Delaunay triangulation — the dual of a Voronöı diagram defined
using a Triangular Distance, a distance function not based on a circle (L2-metric) or a square
(L1-metric) but an equilateral triangle — has a stretch factor of 2 [Che89].

Finally, Dobkin et al. [DFS87] succeeded in showing that the (classical, L2-metric) Delau-
nay triangulation of P is a spanner as well. The bound on the stretch factor they obtained
was subsequently improved by Keil and Gutwin [KG92] as shown in Table 1. The bound by
Keil and Gutwin stood unchallenged for many years until very recently when Xia improved
the bound to below 2 [Xia11].

While progress has been made, none of the techniques developed so far lead to a tight
bound on the spanning ratio. There has been some progress recently on the lower bound side.
The trivial lower bound of π/2 ≈ 1.5707 has recently been improved to 1.5846 [BDL+11] and
then to 1.5932 [XZ11].

While much effort has been made on understanding the stretch factor of Delaunay tri-
angulations, little has been done on the Lp-Delaunay triangulations for p 6= 2. Lee and
Wong [LW80] show that L1-,L∞-Delaunay triangulations have applications in scheduling prob-
lems for 2-dimensional storage, and how to construct, for all real p ≥ 1, Voronöı diagrams in
the Lp-metric in O(n log n) time [Lee80]. Delaunay triangulations based on arbitrary convex
distance functions have been studied in [BCCS08], which shows that such geometric graphs
are indeed plane graphs and spanners whose stretch factor depends only on the shape of the
convex body. However, due to the general approach, the bounds on the stretch factor remain
loose. For instance the bounds they obtain for L2-Delaunay triangulations are > 24.

The general picture is that, in spite of much effort, with the exception of the triangular
distance the exact value of the stretch factor of Delaunay triangulations based on any con-
vex function is unknown. In particular, the stretch factor of Lp-Delaunay triangulations is
unknown for each p ≥ 1.

Our contributions. We show that the exact stretch factor of L1-Delaunay triangulations

and L∞-Delaunay triangulations is
√

4 + 2
√
2 ≈ 2.61, ultimately improving the 3.16 bound

of Chew [Che86].

Technically, we use rectangular coordinates to prove the upper bound. We show that
the distance in the triangulation between any source-destination pair of points lying on the
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border of a horizontal rectangle of length x and of depth y ≤ x is no more than (1+
√
2)x+y.

The stretch factor bound then simply follows. In our proof, we construct the route from the
source to the destination by maintaining two possible short paths, until we reach some special
point (called inductive point) where we can apply our main inductive hypothesis.

Despite the technical aspect of our contribution, we believe that our proof techniques
may give insights into determining the stretch factor of other convex distance based Delau-
nay triangulations. For example, let Pk denote the convex distance function defined by a
regular k-gon. We observe that the stretch factor of Pk-Delaunay triangulations is known
for k = 3, 4 since P3 is the triangular distance function of [Che89], and P4 is nothing else
than the L∞-metric. Determining the stretch factor of Pk-Delaunay triangulations for larger k
would undoubtedly be an important step towards understanding the stretch factor of classical
Delaunay triangulations.

2 Preliminaries

Given a set P of points in the two-dimensional Euclidean space, the Euclidean graph E is the
complete weighted graph embedded in the plane whose nodes are identified with the points.
We assume a Cartesian coordinate system is associated with the Euclidean space and thus
every point can be specified with x and y coordinates. For every pair of nodes u and w, the
edge (u,w) represents the segment [uw] and its weight is the edge length defined in Euclidean
distance: d2(u,w) =

√

dx(u,w)2 + dy(u,w)2 where dx(u,w) (resp. dy(u,w)) is the difference
between the x (resp. y) coordinates of u and w.

We say that a subgraph H of a graph G is a t-spanner of G if for any pair of vertices
u, v of G, the distance between u and v in H is at most t times the distance between u and
v in G; the constant t is referred to as the stretch factor of H (with respect to G). H is a
t-spanner (or spanner for some t constant) if it is a t-spanner of E.

In our paper, we deal with the construction of spanners based on Delaunay triangulations.
As we saw in the introduction, the L1-Delaunay triangulation is the dual of the Voronöı
diagram based on the L1-metric d1(u,w) = dx(u,w) + dy(u,w). A property of the L1-
Delaunay triangulations, actually shared by all Lp-Delaunay triangulations, is that all their
triangles can be defined in terms of empty circumscribed convex bodies (squares for L1 or
L∞ and circles for L2). More precisely, let a square in the plane be a square whose sides
are parallel to the x and y axis and let a tipped square be a square tipped at 45◦. For every
pair of points u, v ∈ P , (u, v) is an edge in the L1-Delaunay triangulation of P iff there is
a tipped square that has u and v on its boundary and contains no point of P in its interior
(cf. [Che89]).

If a square with sides parallel to the x and y axes, rather than a tipped square, is used
in this definition then a different triangulation is defined; it corresponds to the dual of the
Voronöı diagram based on the L∞-metric d∞(u,w) = max{dx(u,w), dy(u,w)}. We refer to
this triangulation as the L∞-Delaunay triangulation. This triangulation is nothing more
than the L1-Delaunay triangulation of the set of points P after rotating all the points by 45◦

around the origin. Therefore Chew’s bound of
√
10 on the stretch factor of the L1-Delaunay

triangulation ([Che86]) applies to L∞-Delaunay triangulations as well. In the remainder of
this paper, we will be referring to L∞-Delaunay (rather than L1) triangulations because we
will be (mostly) using the L∞-metric and squares, rather than tipped squares.
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One issue with Delaunay triangulations is that there might not be a unique triangulation
of a given set of points P . To insure uniqueness and keep our arguments simple, we make
the usual assumption that the points in P are in general position, which for us means that
no four points lie on the boundary of a square and no two points share the same abscissa or
the same ordinate.

We end this section by giving a lower bound on the stretch factor of L∞-Delaunay trian-
gulations.

Proposition 1 For every ε > 0, there exists a set of points P in the plane such that the
L∞-Delaunay triangulation on P has stretch factor at least

√

4 + 2
√
2− ε .

This lower bound applies, of course, to L1-Delaunay triangulations as well. The proof of
this proposition relies on the example of Figure 1.

Proof. Given δ > 0, we define the set of points P as follows. Let point a be the origin
and let points b, c1, and c2 have coordinates (1,

√
2 − 1), (δ,

√
2 − 2δ), and (1 − δ, 1 − 2δ),

respectively. Additional k =
√
2−2δ
δ

− 1 points are placed on line segment [ac1] and another
k on line segment [c2b] in such a way that the difference in y coordinates between successive

points on a segment is δ, as shown in Figures 1. (W.l.o.g. assume that
√
2

δ
and thus k is

an integer so that this can be done.) Let a = p0, p1, p2, p3, . . . , pk, pk+1 = c1 be the labels,
in order as they appear when moving from a to c1, of the points on segment [ac1] and let
c2 = q0, q1, q2, q3, . . . , qk+1 = b be the labels, in order as they appear when moving from c2 to
b, of the points on segment [c2b], as illustrated in Figure 1.

Consider the square S1 of side length 1 − δ and having a and p1 on its west (left) and
north sides, respectively (see Figure 1b)). Since d∞(a, c2) = dx(a, c2) = 1−δ and d∞(p1, c2) =
dy(p1, c2) = 1 − δ, point c2 is exactly the southeast vertex of square S1. By symmetry, it

a

c2

c1

b

1− 2δ

1− δ

√
2− 2δ

√
2− 1

1− 2δ

S1

c2

q1

a

p1

p2

δ

a) b)

Figure 1: a) An L∞-Delaunay triangulation with stretch factor arbitrarily close to
√

4 + 2
√
2.

b) A closer look at the first few faces of this triangulation.
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follows that for every i = 0, 1, 2, . . . , k, if Si is the square of side length 1 − δ with pi and
pi+1 on its west and north sides, then point qi is exactly the southeast vertex of Si. This
means that all points qj with j 6= i as well as all points pj with j 6= i, i + 1 must lie outside
Si. Therefore, for every i = 0, 1, 2, . . . , k, points pi, pi+1, and qi define a triangle in the
L∞-Delaunay triangulation T on P . A similar argument shows that the path q0, q1, . . . , qk+1

is in triangulation T as well. The triangulation T is illustrated in Figure 1a).

Having defined the set of points P and described its L∞-Delaunay triangulation T , we
now analyze the stretch factor of T . A shortest path from a to b in T is, for example,
a, p1, p2, . . . , pk, c1, b. The length of this path is

d2(a, c1) + d2(c1, b) =
√

dx(a, c1)2 + dy(a, c1)2 +
√

dx(c1, b)2 + dy(c1, b)2

=

√

(
√
2− δ)2 + δ2 +

√

(1− δ)2 + (1− 2δ)2

which tends to 2
√
2 as δ tends to 0. The Euclidean distance between a and b is:

d2(a, b) =

√

12 + (
√
2− 1)2 =

√

4− 2
√
2 .

Therefore, it is possible to construct a L∞-Delaunay triangulation whose stretch factor is
arbirtrarily close to:

2
√
2

√

4− 2
√
2
=

√

4 + 2
√
2 .

�

3 Main result

In this section we obtain a tight upper bound on the stretch factor of an L∞-Delaunay
triangulation. It follows from this key theorem:

Theorem 2 Let T be the L∞-Delaunay triangulation on a set of points P in the plane and
let a and b be any two points of P . If x = d∞(a, b) = max{dx(a, b), dy(a, b)} and y =
min{dx(a, b), dy(a, b)} then

dT (a, b) ≤ (1 +
√
2)x+ y

where dT (a, b) denotes the distance between a and b in triangulation T .

Corollary 3 The stretch factor of the L1- and the L∞-Delaunay triangulation on a set of
points P is at most

√

4 + 2
√
2 ≈ 2.6131259 . . .

Proof. By Theorem 2, an upper-bound of the stretch factor of an L∞-Delaunay triangulation
is the maximum of the function

(1 +
√
2)x+ y

√

x2 + y2
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over values x and y such that 0 < y ≤ x. The maximum is reached when x and y satisfy

y/x = 1 +
√
2, and the maximum is equal to

√

1 + (1 +
√
2)2 =

√

4 + 2
√
2. As L1-

and L∞-Delaunay triangulations have the same stretch factor, this result also holds for
L1-Delaunay triangulations. �

To prove Theorem 2, we will construct a bounded length path in T between two arbitrary
points a and b of P . To simplify the notation and the discussion, we assume that point a
has coordinates (0, 0) and point b has coordinates (x, y) with 0 < y ≤ x. The segment [ab]
divides the Euclidean plane into two half-planes; a point in the same half-plane as point (0, 1)
is said to be above segment [ab], otherwise it is below. Let T1, T2, T3, . . . , Tk be the sequence
of triangles of triangulation T that line segment [ab] intersects when moving from a to b. Let
h1 and l1 be the nodes of T1 other than a, with h1 lying above segment [ab] and l1 and lying
below. Every triangle Ti, for 1 < i < k, intersects line segment [ab] twice; let hi and li be the
endpoints of the edge of Ti that intersects segment [ab] last, when moving on segment [ab]
from a to b, with hi being above and li being below segment [ab]. Note that either hi = hi−1

and Ti = △(hi, li, li−1) or li = li−1 and Ti = △(hi−1, hi, li), for 1 < i < k. We also set
h0 = l0 = a, hk = b, and lk = lk−1. For 1 ≤ i ≤ k, we define Si to be the square whose sides
pass through the three vertices of Ti (see Figure 2); since T is an L∞-Delaunay triangulation,
the interior of Si is devoid of points of P . We will refer to the sides of the square using
the notation: N (north), E (east), S (south), and W (west). We will also use this notation
to describe the position of an edge connecting two points lying on two sides a square: for
example, a WN edge connects a point on the west and a point on the N side. We will say
that an edge is gentle if the line segment corresponding to it in the graph embedding has a
slope within [−1, 1]; otherwise we will say that it is steep.

We will prove Theorem 2 by induction on the distance, using the L∞-metric, between a
and b. Let R(a, b) be the rectangle with sides parallel to the x and y axes and with vertices
at points a and b. If there is a point of P inside R(a, b), we will easily apply induction.
The case when R(a, b) does not contain points of P — and in particular the points hi and li
for 0 < i < k — is more difficult and we need to develop tools to handle it. The following
Lemma describes the structure of the triangles T1, . . . , Tk when R(a, b) is empty. We need
some additional terminology first though: we say that a point u is above (resp. below) R(a, b)

S1

S2
S3

b

a

h1

l1,2

h2,3

l3

Figure 2: Triangles T1 (with points a, h1, l1), T2 (with points h1, h2, and l2), and T3 (with
points l2, h3, and l3) and associated squares S1, S2, and S3. When traveling from a to b along
segment [a, b], the edge that is hit when leaving Ti is (hi, li).
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if 0 < xu < x and yu > y (resp. yu < 0).

Lemma 4 If (a, b) 6∈ T and no point of P lies inside rectangle R(a, b), then point a lies on
the W side of square S1, point b lies on the E side of square Sk, points h1, . . . , hk all lie above
R(a, b), and points l1, . . . , lk all lie below R(a, b). Furthermore, for any i such that 1 < i < k:

a) Either Ti = △(hi−1, hi, li−1 = li), points hi−1, hi, and li−1 = li lie on the sides of Si

in clockwise order, and (hi−1, hi) is a WN, WE, or NE edge in Si

b) Or Ti = △(hi−1 = hi, li−1, li), points hi−1 = hi, li, and li−1 lie on the sides of Si in
clockwise order, and (li−1, li) is a WS, WE, or SE edge in Si.

These properties are illustrated in Figure 2.

Proof. Since points of P are in general position, points a, h1, and l1 must lie on 3 different
sides of S1. Because segment [ab] intersects the interior of S1 and since a is the origin and b
is in cone 0 of a, a can only lie on the W or S side of S1. If a lies on the S side then l1 6= b
would have to lie inside R(a, b), which is a contradiction. Therefore a lies on the W side of
S1 and, similarly, b lies on the E side of Sk.

Since points hi (0 < i < k) are above segment [ab] and points li (0 < i < k) are below
segment [ab], and because all squares Si (0 < i < k) intersect [ab], points h1, . . . , hk all lie
above R(a, b), and points l1, . . . , lk all lie below R(a, b).

The three vertices of Ti can be either hi = hi−1, li−1, and li or hi−1, hi, and li−1 = li.
Because points of T are in general position, the three vertices of Ti must appear on three
different sides of Si. Finally, because hi−1 and hi are above R(a, b), they cannot lie on the S
side of Si, and because li−1 and li are below R(a, b), they cannot lie on the N side of Si.

If Ti = △(hi−1, hi, li−1 = li), points hi−1, hi, li must lie on the sides of Si in clockwise
order. The only placements of points hi−1 and hi on the sides of Si that satisfy all these
constraints are as described in a). If Ti = △(hi−1 = hi, li−1, li), points hi, li, li−1 must lie
on the sides of Si in clockwise order. Part b) lists the placements of points li−1 and li that
satisfy the constraints. �

In the following definition, we define the points on which induction can be applied in the
proof of Theorem 2.

Definition 5 Let R(a, b) be empty. Square Sj is inductive if edge (lj , hj) is gentle. The point
c = hj or c = lj with the larger abcissa is the inductive point of inductive square Sj.

The following lemma will be the key ingredient of our inductive proof of Theorem 2.

Lemma 6 Assume that R(a, b) is empty. If no square S1, . . . , Sk is inductive then

dT (a, b) ≤ (1 +
√
2)x+ y .

Otherwise let Sj be the first inductive square in the sequence S1, S2, . . . , Sk. If hj is the
inductive point of Sj then

dT (a, hj) + (yhj
− y) ≤ (1 +

√
2)xhj

.
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If lj is the inductive point of Sj then

dT (a, lj)− ylj ≤ (1 +
√
2)xlj .

Given an inductive point c, we can use use Lemma 6 to bound dT (a, b) and then apply
induction to bound dT (b, c), but only if the position of point c relative to the position of point
b is good, i.e., if x− xc ≥ |y − yc|. If that is not the case, we will use the following Lemma:

Lemma 7 Let R(a, b) be empty and let the coordinates of point c = hi or c = li satisfy
0 < x− xc < |y − yc|.

a) If c = hi, and thus 0 < x − xhi
< yhi

− y, then there exists j, with i < j ≤ k such
that all edges in path hi, hi+1, hi+2, . . . , hj are NE edges in their respective squares and
x− xhj

≥ yhj
− y ≥ 0.

b) If c = li, and thus 0 < x− xli < y − yli, then there exists j, with i < j ≤ k such that
all edges in path li, li+1, li+2, . . . , lj are SE edges and x− xlj ≥ y − ylj ≥ 0.

Proof. We only prove the case c = hj as the case c = li follows using a symmetric argument.

We construct the path hi, hi+1, hi+2, . . . , hj iteratively. If hi = hi+1, we just continue
building the path from hi+1. Otherwise, (hi, hi+1) is an edge of Ti+1 which, by Lemma 4,
must be a WN, WE, or NE edge in square Si+1. Since the S side of square Si+1 is below
R(a, b) and because x− xhi

< yhi
− y, point hi cannot be on the W side of Si+1 (otherwise b

would be inside square Si+1). Thus (hi, hi+1) is a NE edge. If x− xhi+1
≥ yhi+1

− y we stop,
otherwise we continue the path construction from hi+1. �

We can now prove the main theorem.

Proof of Theorem 2. The proof is by induction on the distance, using the L∞-metric,
between points of P (since P is finite there is only a finite number of distances to consider).

Let a and b be the two points of P that are the closest points, using the L∞-metric. We
assume w.l.o.g. that a has coordinates (0, 0) and b has coordinates (x, y) with 0 < y ≤ x.
Since a and b are the closest points using the L∞-metric, the largest square having a as a
southwest vertex and containing no points of P in its interior, which we call Sa must have b
on its E side. Therefore (a, b) is an edge in T and dT (a, b) = d2(a, b) ≤ x+ y ≤ (1+

√
2)x+ y.

For the induction step, we again assume, w.l.o.g., that a has coordinates (0, 0) and b has
coordinates (x, y) with 0 < y ≤ x.

Case 1: R(a, b) is not empty.

A
B

C
a

b

Figure 3: Partition of R(a, b) into three regions in Case 1 of the proof of Theorem 2.
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We first consider the case when there is at least one point of P lying inside rectangle
R(a, b). If there is a point c inside R(a, b) such that yc ≤ xc and y− yc ≤ x− xc (i.e., c lies in
the region B shown in Figure 3 then we can apply induction to get dT (a, c) ≤ (1+

√
2)xc+ yc

and dT (c, b) ≤ (1+
√
2)(x−xc)+y−yc and use these to obtain the desired bound for dT (a, b).

We now assume that there is no point inside region B. If there is still a point in R(a, b)
then there must be one that is on the border of Sa, the square we defined in the basis step, or
Sb, defined as the largest square having b as a northeast vertex and containing no points of P
in its interior. W.l.o.g., we assume the former and thus there is an edge (a, c) ∈ T such that
either yc > xc (i.e., c is inside region A shown in Figure 3 or y − yc > x− xc (i.e., c is inside
region C). Either way, dT (a, c) = d2(a, c) ≤ xc + yc. If c is in region A, since x− xc ≥ y− yc,
by induction we also have that dT (c, b) ≤ (1 +

√
2)(x− xc) + (y − yc). Then

dT (a, b) ≤ dT (a, c) + dT (c, b)

≤ xc + yc + (1 +
√
2)(x− xc) + (y − yc) ≤ (1 +

√
2)x+ y

In the second case, since x− xc < y − yc, by induction we have that dT (c, b) ≤ (1 +
√
2)(y −

yc) + (x− xc). Then, because y < x,

dT (a, b) ≤ dT (a, c) + dT (c, b)

≤ xc + yc + (1 +
√
2)(y − yc) + (x− xc) ≤ (1 +

√
2)x+ y

Case 2: The interior of R(a, b) is empty.

If no square S1, S2, . . . , Sk is inductive, dT (a, b) ≤ (1+
√
2)x+ y by Lemma 6. Otherwise,

let Si be the first inductive square in the sequence and suppose that hi is the inductive point
of Si. By Lemma 7, there is a j, i ≤ j ≤ k, such that hi, hi+1, hi+2, . . . , hj is a path in T of
length at most (xhj

−xhi
)+ (yhi

− yhj
) and such that x−xhj

≥ yhj
− y ≥ 0. Since hj is closer

to b, using the L∞-metric, than a is, we can apply induction to bound dT (hj , b). Putting all
this together with Lemma 6, we get:

dT (a, b) ≤ dT (a, hi) + dT (hi, hj) + dT (hj , b)

≤ (1 +
√
2)xhi

− (yhi
− y) + (xhj

− xhi
) + (yhi

− yhj
) + (1 +

√
2)(x− xhj

) + (yhj
− y)

≤ (1 +
√
2)x .

If li is the inductive point of Si, by Lemma 7 there is a j, i ≤ j ≤ k, such that
li, li+1, li+2, . . . , lj is a path in T of length at most (xhj

− xhi
) + (yhj

− yhi
) and such that

x−xhj
≥ y−yhj

≥ 0. Because the position of j with respect to b is good and since lj is closer
to b, using the L∞-metric, than a is, we can apply induction to bound dT (lj , b). Putting all
this together with Lemma 6, we get:

dT (a, b) ≤ dT (a, li) + dT (li, lj) + dT (lj , b)

≤ (1 +
√
2)xli + yli + (xlj − xli) + (ylj − yli) + (1 +

√
2)(x− xlj ) + (y − ylj)

≤ (1 +
√
2)x+ y .

�

What remains to be done is to prove Lemma 6. To do this, we need to develop some
further terminology and tools. Let xi, for 1 ≤ i ≤ k, be the horizontal distance between point
a and the E side of Si, respectively. We also set x0 = 0.
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Definition 8 A square Si has potential if

dT (a, hi) + dT (a, li) + dSi
(hi, li) ≤ 4xi

where dSi
(hi, li) is the Euclidean distance when moving from hi to li along the sides of Si,

clockwise.

Lemma 9 If R(a, b) is empty then S1 has potential. Furthemore, for any 1 ≤ i < k, if Si

has potential but is not inductive then Si+1 has potential.

Proof. If R(a, b) is empty then, by Lemma 4, a lies on the W side of S1 and x1 is the side
length of square S1. Also, h1 lies on the N or E side of S1, and l1 lies on the S or E side of
S1. Then dT (a, h1) + dT (a, l1) + dS1

(h1, l1) is bounded by the perimeter of square S1 which
is 4x1.

Now assume that Si, for 1 ≤ i < k, has potential but is not inductive. Squares Si and
Si+1 both contain points li and hi. Because Si is not inductive, edge (li, hi) must be steep
and thus dx(li, hi) < dy(li, hi). To simplify the arguments, we assume that li is to the W of
hi, i.e., xli < xhi

. The case xli > xhi
can be shown using equivalent arguments.

Since Ti = △(hi−1, hi, li−1 = li) or Ti = △(hi−1 = hi, li−1, li), there has to be a side of
Si between the sides on which li and hi lie, when moving clockwise from li to hi. Using the
constraints on the position of hi and li within Si from Lemma 4 and using assumptions that
(li, hi) is steep and that xli < xhi

, we deduce that li must be on the S side and hi must be
on the N or E side of Si.

If hi is on the N side of Si then, because xli < xhi
, hi must also be on the N side of Si+1

and either li is on the S side of Si+1 and

dSi+1
(hi, li)− dSi

(hi, li) = 2(xi+1 − xi) (1)

as shown in Figure 4a) or li is on the W side of Si+1, in which case

dSi+1
(hi, li)− dSi

(hi, li) ≤ 4(xi+1 − xi) (2)

as shown in Figure 4b).

If hi is on the E side of Si then, because xi+1 > xi (since (li, hi) is steep), hi must be on
the N side of Si+1 and either li is on the S side of Si+1 and inequality (1) holds or li is on the
W side of Si+1 and inequality (2) holds, as shown in Figure 4c).

Since Si has potential, in all cases we obtain:

dT (a, hi) + dT (a, li) + dSi+1
(hi, li) ≤ 4xi+1 . (3)

Assume Ti+1 = △(hi, hi+1, li = li+1); in other words, (hi, hi+1) is an edge of T with hi+1

lying somewhere on the boundary of Si+1 beween hi and li, when moving clockwise from hi
to li. By the triangular inequality, d2(hi, hi+1) ≤ dSi+1

(hi, hi+1) and we have that:

dT (a, hi+1) + dT (a, li+1) + dSi+1
(hi+1, li+1) ≤ dT (a, hi) + dT (a, li) + d2(hi, hi+1) + dSi+1

(hi+1, li)

≤ dT (a, hi) + dT (a, li) + dSi+1
(hi, li)

≤ 4xi+1 .
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Si

Si+1

hi

li ∆x

Si

Si+1

hi

li

∆x Si

Si+1

hi

li

∆x

a) b) c)

Figure 4: The first, second and fourth case in the proof of Lemma 9. In each case, the
difference dSi+1

(hi, li)− dSi
(hi, li) is shown to be at most 4∆x, where ∆x = xi+1 − xi.

Thus Si+1 has potential. The argument for the case when Ti+1 = △(hi = hi+1, li, li+1) is
symmetric. �

Definition 10 A vertex c (hi or li) of Ti is promising in Si if it lies on the E side of Si.

Lemma 11 If square Si has potential and c = hi or c = li is a promising point in Si then

dT (a, c) ≤ 2xc .

Proof. W.l.o.g., assume c = hi. Since hi is promising, xc = xhi
= xi. Because Si has

potential, either dT (a, hi) ≤ 2xhi
or dT (a, li) + dSi

(li, hi) ≤ 2xhi
. In the second case, we can

use edge (li, hi) and the triangular inequality to obtain dT (a, hi) ≤ dT (a, li)+ |lihi| ≤ 2xhi
. �

Here we define the maximal high and minimal low path.

Definition 12

• If hj is promising in Sj, the maximal high path ending at hj is simply hj ; otherwise,
it is the path hi, hi+1, . . . , hj such that hi+1, . . . , hj are not promising and either i = 0
or hi is promising in Si.

• If lj is promising in Sj, the maximal low path ending at lj is simply lj ; otherwise, it is
the path li, li+1, . . . , lj such that li+1, . . . , lj are not promising and either i = 0 or li is
promising in Si.

Note that by Lemma 4, all edges on the path hi, hi+1, . . . , hj are WN edges and thus the
path length is bounded by (xhj

− xhi
) + (yhj

− yhi
). Similarly, all edges in path li, li+1, . . . , lj

are WS edges and the length of the path is at most (xlj − xli) + (yli − ylj ).

We now have the tools to prove Lemma 6.

Proof of Lemma 6. If R(a, b) is empty then, by Lemma 4, b is promising. Thus, by Lemma 9
and Lemma 11, if no square S1, . . . , Sk is inductive then dT (a, b) ≤ 2x < (1 +

√
2)x+ y.

Assume now that there is at least one inductive square in the sequence of squares
S1, . . . , Sk. Let Sj be the first inductive square and assume, for now, that hj is the inductive
point in Sj . By Lemma 9, every square Si, for i < j, is a potential square.
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Since (lj , hj) is gentle, it follows that d2(lj , hj) ≤
√
2(xhj

− xlj). Let li, li+1, . . . , lj−1 = lj
be the maximal low path ending at lj . Note that dT (li, lj) ≤ (xlj − xli) + (yli − ylj). Either
li = l0 = a or li is a promising point in potential square Si; either way, by Lemma 11, we
have that dT (a, li) ≤ 2xli . Putting all this together, we get

dT (a, hj) + (yhj
− y) ≤ dT (a, li) + dT (li, lj) + d2(lj , hj) + yhj

≤ 2xli + (xlj − xli) + (yli − ylj) +
√
2(xhj

− xlj) + yhj

≤
√
2xhj

+ xlj + yhj
− ylj

≤ (1 +
√
2)xhj

where the last inequality follows xlj + yhj
− ylj ≤ xhj

, i.e., from the assumption that edge
(lj , hj) is gentle.

If, instead, c = lj is the inductive point in inductive square Sj , let hi, hi+1, . . . , hj−1 = hj
be the maximal high path ending at hj . Then dT (hi, hj) ≤ (xhj

− xhi
) + (yhj

− yhi
). Just as

in the first case, we have that dT (a, hi) ≤ 2xhi
and

dT (a, lj)− ylj ≤ dT (a, hi) + dT (hi, hj) + d2(hj , lj)− ylj

≤ 2xhi
+ (xhj

− xhi
) + (yhj

− yhi
) +

√
2(xlj − xhj

)− ylj

≤
√
2xlj + xhj

+ yhj
− ylj

≤ (1 +
√
2)xlj .

where the last inequality follows from xhj
+ yhj

− ylj ≤ xlj , i.e., from the assumption that
(hj , lj) is gentle. �

4 Conclusion and perspectives

The L1-Delaunay triangulation is the first type of Delaunay triangulation to be shown to
be a spanner [Che86]. Progress on the spanning properties of the TD-Delaunay and the
classical L2-Delaunay triangulation soon followed. In this paper, we determine the precise
stretch factor of an L1- and L∞-Delaunay triangulation and close the problem for good. The
techniques we develop in this paper have potential to be successfully applied to Delaunay
triangulations defined by other regular polygons, and possibly even to the classical Delaunay
triangulation.

From a routing perspective, it is of interest to construct routes in geometric graphs that can
be determined locally from a neighbor’s coordinates only [BCD09]. Unfortunately, the route
that is implicitely constructed in our proof is built using non-local decisions. It would be inter-

esting to know whether in the L1-Delaunay triangulation a route with stretch
√

4 + 2
√
2 can

be constructed using a local routing algorithm. For TD-Delaunay triangulations, [BFvRV12]
showed that there is no local routing algorithm that achieves a stretch that is less than
5/
√
3 ≈ 2.88, whereas the stretch factor is actually 2. We leave open the questions regard-

ing the gap between the stretch factor of L1-Delaunay triangulations and the stretch that is
possible using local routing.
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