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Abstract. In this paper we determine the stretch factor of L1-Delaunay
and L∞-Delaunay triangulations, and we show that it is equal to√

4 + 2
√
2 ≈ 2.61. Between any two points x, y of such triangulations,

we construct a path whose length is no more than
√

4 + 2
√
2 times the

Euclidean distance between x and y, and this bound is the best possi-
ble. This definitively improves the 25-year old bound of

√
10 by Chew

(SoCG ’86). This is the first time the stretch factor of the Lp-Delaunay
triangulations, for any real p ≥ 1, is determined exactly.

Keywords: :Delaunay triangulations, L1-metric, L∞-metric, stretch
factor.

1 Introduction

Given a finite set of points P on the plane, the Voronöı diagram of P is the
decomposition of the plane into polygonal regions, one for each point of P , such
that the points in the region associated with a point are closer to it than to
any other point of P . The Delaunay triangulation for P is a spanning subgraph
of the complete Euclidean graph on P that is the dual of the Voronöı diagram
of P . In some applications (including on-line routing [BM04]), the Delaunay
triangulation is used as a spanner, defined as a spanning subgraph in which the
distance between any pair of points is no more than a constant multiplicative
ratio of the Euclidean distance between the points. The constant ratio is typically
referred to as the stretch factor of the spanner. While Delaunay triangulations
have been studied extensively, obtaining a tight bound on its stretch factor has
been elusive even after decades of attempts.

In the mid-1980s, it was not known whether Delaunay triangulations were
spanners at all. In order to gain an understanding of the spanning properties

� Member of the “Institut Universitaire de France”. Supported by the ANR-11-BS02-
014 “DISPLEXITY” project and the équipe-projet INRIA “CEPAGE”.

�� Supported by a Fulbright Aquitaine Regional grant and a DePaul University grant.

L. Epstein and P. Ferragina (Eds.): ESA 2012, LNCS 7501, pp. 205–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



206 N. Bonichon et al.

Table 1. Key stretch factor upper bounds (optimal values are bold)

Paper Graph Stretch factor

[DFS87] L2-Delaunay π(1 +
√
5)/2 ≈ 5.08

[KG92] L2-Delaunay 4π/(3
√
3) ≈ 2.41

[Xia11] L2-Delaunay 1.998

[Che89] TD-Delaunay 2

[Che86] L1-,L∞-Delaunay
√
10 ≈ 3.16

[this paper] L1-,L∞-Delaunay
√

4+ 2
√
2 ≈ 2.61

of Delaunay triangulations, Chew considered related, “easier” structures. In his
seminal 1986 paper [Che86], he proved that an L1-Delaunay triangulation —
the dual of the Voronöı diagram of P based on the L1-metric rather than the
L2-metric — has a stretch factor bounded by

√
10. Chew then continued on

and showed that a TD-Delaunay triangulation — the dual of a Voronöı diagram
defined using a Triangular Distance, a distance function not based on a circle
(L2-metric) or a square (L1-metric) but an equilateral triangle — has a stretch
factor of 2 [Che89]. Finally, Dobkin et al. [DFS87] succeeded in showing that
the (classical, L2-metric) Delaunay triangulation of P is a spanner as well. The
bound on the stretch factor they obtained was subsequently improved by Keil
and Gutwin [KG92] as shown in Table 1. The bound by Keil and Gutwin stood
unchallenged for many years until Xia improved the bound to below 2 [Xia11].

None of the techniques developed so far lead to a tight bound on the stretch
factor of a Delaunay triangulation. There has been some progress recently on
the lower bound side. The trivial lower bound of π/2 ≈ 1.5707 has recently been
improved to 1.5846 [BDL+11] and then to 1.5932 [XZ11].

While much effort has been made on studying the stretch factor of (classical)
Delaunay triangulations, since Chew’s original work little has been done on Lp-
Delaunay triangulations for p �= 2. It is known that Lp-Delaunay triangulations
are spanners: Bose et al. [BCCS08] have shown that Delaunay triangulations
that are based on any convex distance function are spanners whose stretch fac-
tor depends only on the shape of the associated convex body. However, due
to the general approach, the bounds on the stretch factor that they obtain
are loose: the bound for L2-Delaunay triangulations, for example, is greater
than 24.

The general picture is that, in spite of much effort, with the exception of the
triangular distance the exact value of the stretch factor of Delaunay triangula-
tions based on any convex function is unknown. In particular, the stretch factor
of Lp-Delaunay triangulations is unknown for each p ≥ 1.

Our contribution. We show that the exact stretch factor of L1-Delaunay tri-

angulations and L∞-Delaunay triangulations is
√
4 + 2

√
2 ≈ 2.61, ultimately

improving the 3.16 bound of Chew [Che86].
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2 Preliminaries

Given a set P of points in the two-dimensional Euclidean space, the Euclidean
graph E is the complete weighted graph embedded in the plane whose nodes are
identified with the points. We assume a Cartesian coordinate system is associated
with the Euclidean space and thus every point can be specified with x and y
coordinates. For every pair of nodes u and w, the edge (u,w) represents the
segment [uw] and the weight of edge (u,w) is the Euclidean distance between u
and w: d2(u,w) =

√
dx(u,w)2 + dy(u,w)2 where dx(u,w) (resp. dy(u,w)) is the

difference between the x (resp. y) coordinates of u and w.
We say that a subgraph H of a graph G is a t-spanner of G if for any pair

of vertices u, v of G, the distance between u and v in H is at most t times the
distance between u and v in G; the constant t is referred to as the stretch factor
of H (with respect to G). H is a t-spanner (or spanner for some t constant) of
P if it is a t-spanner of E.

In our paper, we deal with the construction of spanners based on Delaunay
triangulations. As we saw in the introduction, the L1-Delaunay triangulation is
the dual of the Voronöı diagram based on the L1-metric d1(u,w) = dx(u,w) +
dy(u,w). A property of the L1-Delaunay triangulations, actually shared by all
Lp-Delaunay triangulations, is that all their triangles can be defined in terms of
empty circumscribed convex bodies (squares for L1 or L∞ and circles for L2).
More precisely, let a square in the plane be a square whose sides are parallel to
the x and y axis and let a tipped square be a square tipped at 45◦. For every
pair of points u, v ∈ P , (u, v) is an edge in the L1-Delaunay triangulation of P
iff there is a tipped square that has u and v on its boundary and contains no
point of P in its interior (cf. [Che89]).

If a square with sides parallel to the x and y axes, rather than a tipped
square, is used in this definition then a different triangulation is defined; it cor-
responds to the dual of the Voronöı diagram based on the L∞-metric d∞(u,w) =
max{dx(u,w), dy(u,w)}. We refer to this triangulation as the L∞-Delaunay tri-
angulation. This triangulation is nothing more than the L1-Delaunay triangu-
lation of the set of points P after rotating all the points by 45◦ around the
origin. Therefore Chew’s bound of

√
10 on the stretch factor of the L1-Delaunay

triangulation ([Che86]) applies to L∞-Delaunay triangulations as well. In the
remainder of this paper, we will be referring to L∞-Delaunay (rather than L1)
triangulations because we will be (mostly) using the L∞-metric and squares,
rather than tipped squares.

One issue with Delaunay triangulations is that there might not be a unique
triangulation of a given set of points P . To insure uniqueness and keep our
arguments simple, we make the usual assumption that the points in P are in
general position, which for us means that no four points lie on the boundary of
a square and no two points share the same abscissa or the same ordinate.

We end this section by giving a lower bound on the stretch factor of L∞-
Delaunay triangulations.
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Proposition 1. For every ε > 0, there is a set of points P in the plane such that

the L∞-Delaunay triangulation on P has stretch factor at least
√
4 + 2

√
2− ε.

This lower bound applies, of course, to L1-Delaunay triangulations as well. The
proof of this proposition, omitted for lack of space, relies on the example shown
in Fig. 1.
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√
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√
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Fig. 1. a) An L∞-Delaunay triangulation with stretch factor arbitrarily close to√
4 + 2

√
2. The coordinates of points a, b, c1, and c2 are (0, 0), (1,

√
2−1), (δ,

√
2−2δ),

and (1− δ, 2δ − 1), respectively. b) A closer look at the first few faces of this triangu-
lation.

3 Main Result

In this section we obtain a tight upper bound on the stretch factor of an L∞-
Delaunay triangulation. It follows from this key theorem:

Theorem 1. Let T be the L∞-Delaunay triangulation on a set of points P
in the plane and let a and b be any two points of P . If x = d∞(a, b) =
max{dx(a, b), dy(a, b)} and y = min{dx(a, b), dy(a, b)} then

dT (a, b) ≤ (1 +
√
2)x+ y

where dT (a, b) denotes the distance between a and b in triangulation T .

Corollary 1. The stretch factor of the L1- and the L∞-Delaunay triangulation
on a set of points P is at most

√
4 + 2

√
2 ≈ 2.6131259 . . .
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Proof. By Theorem 1, an upper-bound of the stretch factor of an L∞-Delaunay
triangulation is the maximum of the function

(1 +
√
2)x + y

√
x2 + y2

over values x and y such that 0 < y ≤ x. The maximum is reached when x and

y satisfy y/x =
√
2 − 1, and the maximum is equal to

√
4 + 2

√
2. As L1- and

L∞-Delaunay triangulations have the same stretch factor, this result also holds
for L1-Delaunay triangulations. �

To prove Theorem 1, we will construct a bounded length path in T between two
arbitrary points a and b of P . To simplify the notation and the discussion, we
assume that point a has coordinates (0, 0) and point b has coordinates (x, y)
with 0 < y ≤ x. The line containing segment [ab] divides the Euclidean plane
into two half-planes; a point in the same half-plane as point (0, 1) is said to be
above segment [ab], otherwise it is below. Let T1, T2, T3, . . . , Tk be the sequence of
triangles of triangulation T that line segment [ab] intersects when moving from a
to b. Let h1 and l1 be the nodes of T1 other than a, with h1 lying above segment
[ab] and l1 lying below. Every triangle Ti, for 1 < i < k, intersects line segment
[ab] twice; let hi and li be the endpoints of the edge of Ti that intersects segment
[ab] last, when moving on segment [ab] from a to b, with hi being above and li
being below segment [ab]. Note that either hi = hi−1 and Ti = �(hi, li, li−1)
or li = li−1 and Ti = �(hi−1, hi, li), for 1 < i < k. We also set h0 = l0 = a,
hk = b, and lk = lk−1. For 1 ≤ i ≤ k, we define Si to be the square whose sides
pass through the three vertices of Ti (see Fig. 2); since T is an L∞-Delaunay
triangulation, the interior of Si is devoid of points of P . We will refer to the sides
of the square using the notation: N (north), E (east), S (south), and W (west).
We will also use this notation to describe the position of an edge connecting two
points lying on two sides of a square: for example, a WN edge connects a point
on the west and a point on the N side. We will say that an edge is gentle if
the line segment corresponding to it in the graph embedding has a slope within
[−1, 1]; otherwise we will say that it is steep.

We will prove Theorem 1 by induction on the distance, using the L∞-metric,
between a and b. Let R(a, b) be the rectangle with sides parallel to the x and y
axes and with vertices at points a and b. If there is a point of P inside R(a, b), we
will easily apply induction. The case when R(a, b) does not contain points of P —
and in particular the points hi and li for 0 < i < k — is more difficult and we need
to develop tools to handle it. The following Lemma describes the structure of the
triangles T1, . . . , Tk when R(a, b) is empty. We need some additional terminology
first though: we say that a point u is above (resp. below) R(a, b) if 0 < xu < x
and yu > y (resp. yu < 0).

Lemma 1. If (a, b) �∈ T and no point of P lies inside rectangle R(a, b), then
point a lies on the W side of square S1, point b lies on the E side of square Sk,
points h1, . . . , hk all lie above R(a, b), and points l1, . . . , lk all lie below R(a, b).
Furthermore, for any i such that 1 < i < k:
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a) Either Ti = �(hi−1, hi, li−1 = li), points hi−1, hi, and li−1 = li lie on the
sides of Si in clockwise order, and (hi−1, hi) is a WN, WE, or NE edge in
Si

b) Or Ti = �(hi−1 = hi, li−1, li), points hi−1 = hi, li, and li−1 lie on the
sides of Si in clockwise order, and (li−1, li) is a WS, WE, or SE edge in
Si.

These properties are illustrated in Fig. 2.

Proof. Since points of P are in general position, points a, h1, and l1 must lie
on 3 different sides of S1. Because segment [ab] intersects the interior of S1 and
since a is the origin and b is in the first quadrant, a can only lie on the W or
S side of S1. If a lies on the S side then l1 �= b would have to lie inside R(a, b),
which is a contradiction. Therefore a lies on the W side of S1 and, similarly, b
lies on the E side of Sk.

Since points hi (0 < i < k) are above segment [ab] and points li (0 < i < k)
are below segment [ab], and because all squares Si (0 < i < k) intersect [ab],
points h1, . . . , hk all lie above R(a, b), and points l1, . . . , lk all lie below R(a, b).

The three vertices of Ti can be either hi = hi−1, li−1, and li or hi−1, hi, and
li−1 = li. Because points of T are in general position, the three vertices of Ti

must appear on three different sides of Si. Finally, because hi−1 and hi are above
R(a, b), they cannot lie on the S side of Si, and because li−1 and li are below
R(a, b), they cannot lie on the N side of Si.

If Ti = �(hi−1, hi, li−1 = li), points hi−1, hi, li must lie on the sides of Si in
clockwise order. The only placements of points hi−1 and hi on the sides of Si that
satisfy all these constraints are as described in a). If Ti = �(hi−1 = hi, li−1, li),
points hi, li, li−1 must lie on the sides of Si in clockwise order. Part b) lists the
placements of points li−1 and li that satisfy the constraints. �

In the following definition, we define the points on which induction can be applied
in the proof of Theorem 1.

S1

S2
S3

b

a

h1

l1,2

h2,3

l3

Fig. 2. Triangles T1 (with points a, h1, l1), T2 (with points h1, h2, and l2), and T3

(with points l2, h3, and l3) and associated squares S1, S2, and S3. When traveling from
a to b along segment [a, b], the edge that is hit when leaving Ti is (hi, li).
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Definition 1. Let R(a, b) be empty. Square Sj is inductive if edge (lj , hj) is
gentle. The point c = hj or c = lj with the larger abscissa is the inductive point
of inductive square Sj.

The following lemma will be the key ingredient of our inductive proof of Theo-
rem 1.

Lemma 2. Assume that R(a, b) is empty. If no square S1, . . . , Sk is inductive
then

dT (a, b) ≤ (1 +
√
2)x+ y .

Otherwise let Sj be the first inductive square in the sequence S1, S2, . . . , Sk. If
hj is the inductive point of Sj then

dT (a, hj) + (yhj − y) ≤ (1 +
√
2)xhj .

If lj is the inductive point of Sj then

dT (a, lj)− ylj ≤ (1 +
√
2)xlj .

Given an inductive point c, we can use use Lemma 2 to bound dT (a, c) and then
apply induction to bound dT (c, b), but only if the position of point c relative to
the position of point b is good, i.e., if x − xc ≥ |y − yc|. If that is not the case,
we will use the following Lemma:

Lemma 3. Let R(a, b) be empty and let the coordinates of point c = hi or c = li
satisfy 0 < x− xc < |y − yc|.

a) If c = hi, and thus 0 < x − xhi < yhi − y, then there exists j, with
i < j ≤ k such that all edges in path hi, hi+1, hi+2, . . . , hj are NE edges in
their respective squares and x− xhj ≥ yhj − y ≥ 0.

b) If c = li, and thus 0 < x− xli < y− yli , then there exists j, with i < j ≤ k
such that all edges in path li, li+1, li+2, . . . , lj are SE edges and x − xlj ≥
y − ylj ≥ 0.

Proof.We only prove the case c = hj as the case c = li follows using a symmetric
argument.
We construct the path hi, hi+1, hi+2, . . . , hj iteratively. If hi = hi+1, we just
continue building the path from hi+1. Otherwise, (hi, hi+1) is an edge of Ti+1

which, by Lemma 1, must be a WN, WE, or NE edge in square Si+1. Since the
S side of square Si+1 is below R(a, b) and because x − xhi < yhi − y, point hi

cannot be on the W side of Si+1 (otherwise b would be inside square Si+1).
Thus (hi, hi+1) is a NE edge. If x − xhi+1 ≥ yhi+1 − y we stop, otherwise we
continue the path construction from hi+1. �

We can now prove the main theorem.

Proof of Theorem 1. The proof is by induction on the distance, using the
L∞-metric, between points of P (since P is finite there is only a finite number
of distances to consider).
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Let a and b be the two points of P that are the closest points, using the L∞-
metric. We assume w.l.o.g. that a has coordinates (0, 0) and b has coordinates
(x, y) with 0 < y ≤ x. Since a and b are the closest points using the L∞-metric,
the largest square having a as a southwest vertex and containing no points of P
in its interior, which we call Sa must have b on its E side. Therefore (a, b) is an
edge in T and dT (a, b) = d2(a, b) ≤ x+ y ≤ (1 +

√
2)x+ y.

For the induction step, we again assume, w.l.o.g., that a has coordinates (0, 0)
and b has coordinates (x, y) with 0 < y ≤ x.
Case 1: R(a, b) is not empty

We first consider the case when there is at least one point of P lying inside
rectangle R(a, b). If there is a point c inside R(a, b) such that yc ≤ xc and
y − yc ≤ x − xc (i.e., c lies in the region B shown in Fig. 3 then we can apply
induction to get dT (a, c) ≤ (1+

√
2)xc+yc and dT (c, b) ≤ (1+

√
2)(x−xc)+y−yc

and use these to obtain the desired bound for dT (a, b).
We now assume that there is no point inside regionB. If there is still a point in

R(a, b) then there must be one that is on the border of Sa, the square we defined
in the basis step, or Sb, defined as the largest square having b as a northeast
vertex and containing no points of P in its interior. W.l.o.g., we assume the
former and thus there is an edge (a, c) ∈ T such that either yc > xc (i.e., c is
inside region A shown in Fig. 3 or y − yc > x − xc (i.e., c is inside region C).
Either way, dT (a, c) = d2(a, c) ≤ xc+yc. If c is in region A, since x−xc ≥ y−yc,
by induction we also have that dT (c, b) ≤ (1 +

√
2)(x − xc) + (y − yc). Then

dT (a, b) ≤ dT (a, c) + dT (c, b)

≤ xc + yc + (1 +
√
2)(x− xc) + (y − yc) ≤ (1 +

√
2)x+ y

In the second case, since x − xc < y − yc, by induction we have that dT (c, b) ≤
(1 +

√
2)(y − yc) + (x− xc). Then, because y < x,

dT (a, b) ≤ dT (a, c) + dT (c, b)

≤ xc + yc + (1 +
√
2)(y − yc) + (x− xc) ≤ (1 +

√
2)x+ y

Case 2: The interior of R(a, b) is empty
If no square S1, S2, . . . , Sk is inductive, dT (a, b) ≤ (1+

√
2)x+ y by Lemma 2.

Otherwise, let Si be the first inductive square in the sequence and suppose that
hi is the inductive point of Si. By Lemma 3, there is a j, i ≤ j ≤ k, such that
hi, hi+1, hi+2, . . . , hj is a path in T of length at most (xhj − xhi) + (yhi − yhj)

A
B

C

a

b

Fig. 3. Partition of R(a, b) into three regions in Case 1 of the proof of Theorem 1
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and such that x−xhj ≥ yhj −y ≥ 0. Since hj is closer to b, using the L∞-metric,
than a is, we can apply induction to bound dT (hj , b). Putting all this together
with Lemma 2, we get:

dT (a, b) ≤ dT (a, hi) + dT (hi, hj) + dT (hj , b)

≤ (1 +
√
2)xhi − (yhi − y) + (xhj − xhi) + (yhi − yhj)

+(1 +
√
2)(x− xhj ) + (yhj − y) ≤ (1 +

√
2)x .

If li is the inductive point of Si, by Lemma 3 there is a j, i ≤ j ≤ k, such
that li, li+1, li+2, . . . , lj is a path in T of length at most (xhj − xhi) + (yhj − yhi)
and such that x− xhj ≥ y− yhj ≥ 0. Because the position of j with respect to b
is good and since lj is closer to b, using the L∞-metric, than a is, we can apply
induction to bound dT (lj , b). Putting all this together with Lemma 2, we get:

dT (a, b) ≤ dT (a, li) + dT (li, lj) + dT (lj , b)

≤ (1 +
√
2)xli + yli + (xlj − xli) + (ylj − yli) + (1 +

√
2)(x − xlj )

+(y − ylj) ≤ (1 +
√
2)x + y .

�
What remains to be done is to prove Lemma 2. To do this, we need to develop
some further terminology and tools. Let xi, for 1 ≤ i ≤ k, be the horizontal
distance between point a and the E side of Si, respectively. We also set x0 = 0.

Definition 2. A square Si has potential if

dT (a, hi) + dT (a, li) + dSi(hi, li) ≤ 4xi

where dSi(hi, li) is the Euclidean distance when moving from hi to li along the
sides of Si, clockwise.

Lemma 4. If R(a, b) is empty then S1 has potential. Furthermore, for any 1 ≤
i < k, if Si has potential but is not inductive then Si+1 has potential.

Proof. If R(a, b) is empty then, by Lemma 1, a lies on the W side of S1 and x1

is the side length of square S1. Also, h1 lies on the N or E side of S1, and l1 lies
on the S or E side of S1. Then dT (a, h1) + dT (a, l1) + dS1(h1, l1) is bounded by
the perimeter of S1 which is 4x1.

Now assume that Si, for 1 ≤ i < k, has potential but is not inductive. Squares
Si and Si+1 both contain points li and hi. Because Si is not inductive, edge
(li, hi) must be steep and thus dx(li, hi) < dy(li, hi). To simplify the arguments,
we assume that li is to the W of hi, i.e., xli < xhi . The case xli > xhi can be
shown using equivalent arguments.

By Lemma 1, Ti = �(hi−1, hi, li−1 = li) or Ti = �(hi−1 = hi, li−1, li) and
there has to be a side of Si between the sides on which li and hi lie, when
moving clockwise from li to hi. Using the constraints on the position of hi and
li within Si from Lemma 1 and using the assumptions that (li, hi) is steep and
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Si

Si+1

hi

li Δx

Si

Si+1

hi

li

Δx Si

Si+1

hi

li

Δx

a) b) c)

Fig. 4. The first, second and fourth case in the proof of Lemma 4. In each case, the
difference dSi+1(hi, li)− dSi(hi, li) is shown to be at most 4Δx, where Δx = xi+1 − xi.

that xli < xhi , we deduce that li must be on the S side and hi must be on the
N or E side of Si.

If hi is on the N side of Si then, because xli < xhi , hi must also be on the N
side of Si+1 and either li is on the S side of Si+1 and

dSi+1(hi, li)− dSi(hi, li) = 2(xi+1 − xi) (1)

as shown in Fig. 4a) or li is on the W side of Si+1, in which case

dSi+1(hi, li)− dSi(hi, li) ≤ 4(xi+1 − xi) (2)

as shown in Fig. 4b).
If hi is on the E side of Si then, because xi+1 > xi (since (li, hi) is steep),

hi must be on the N side of Si+1 and either li is on the S side of Si+1 and
inequality (1) holds or li is on the W side of Si+1 and inequality (2) holds, as
shown in Fig. 4c).

Since Si has potential, in all cases we obtain:

dT (a, hi) + dT (a, li) + dSi+1(hi, li) ≤ 4xi+1 . (3)

Assume Ti+1 = �(hi, hi+1, li = li+1); in other words, (hi, hi+1) is an edge of
T with hi+1 lying somewhere on the boundary of Si+1 between hi and li, when
moving clockwise from hi to li. Then dT (a, hi+1) ≤ dT (a, hi) + d2(hi, hi+1). By
the triangular inequality, d2(hi, hi+1) ≤ dSi+1(hi, hi+1) and we have that:

dT (a, hi+1) + dT (a, li+1) + dSi+1(hi+1, li+1) ≤ dT (a, hi) + dT (a, li) + dSi+1(hi, li)

≤ 4xi+1 .

Thus Si+1 has potential. The argument for the case when Ti+1 = �(hi =
hi+1, li, li+1) is symmetric. �

Definition 3. A vertex c (hi or li) of Ti is promising in Si if it lies on the E
side of Si.
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Lemma 5. If square Si has potential and c = hi or c = li is a promising point
in Si then

dT (a, c) ≤ 2xc .

Proof. W.l.o.g., assume c = hi. Since hi is promising, xc = xhi = xi. Because
Si has potential, either dT (a, hi) ≤ 2xhi or dT (a, li) + dSi(li, hi) ≤ 2xhi . In the
second case, we can use edge (li, hi) and the triangular inequality to obtain
dT (a, hi) ≤ dT (a, li) + |lihi| ≤ 2xhi . �

We now define the maximal high path and the minimal low path.

Definition 4.

– If hj is promising in Sj, the maximal high path ending at hj is simply
hj; otherwise, it is the path hi, hi+1, . . . , hj such that hi+1, . . . , hj are not
promising and either i = 0 or hi is promising in Si.

– If lj is promising in Sj, the maximal low path ending at lj is simply lj;
otherwise, it is the path li, li+1, . . . , lj such that li+1, . . . , lj are not promising
and either i = 0 or li is promising in Si.

Note that by Lemma 1, all edges on the path hi, hi+1, . . . , hj are WN edges
and thus the path length is bounded by (xhj − xhi) + (yhj − yhi). Similarly, all
edges in path li, li+1, . . . , lj are WS edges and the length of the path is at most
(xlj − xli) + (yli − ylj ).

We now have the tools to prove Lemma 2.

Proof of Lemma 2. If R(a, b) is empty then, by Lemma 1, b is promising.
Thus, by Lemma 4 and Lemma 5, if no square S1, . . . , Sk is inductive then
dT (a, b) ≤ 2x < (1 +

√
2)x+ y.

Assume now that there is at least one inductive square in the sequence of squares
S1, . . . , Sk. Let Sj be the first inductive square and assume, for now, that hj is
the inductive point in Sj . By Lemma 4, every square Si, for i < j, is a potential
square.

Since (lj , hj) is gentle, it follows that d2(lj , hj) ≤ √
2(xhj − xlj ). Let

li, li+1, . . . , lj−1 = lj be the maximal low path ending at lj . Note that dT (li, lj) ≤
(xlj − xli) + (yli − ylj ). Either li = l0 = a or li is a promising point in potential
square Si; either way, by Lemma 5, we have that dT (a, li) ≤ 2xli . Putting all
this together, we get

dT (a, hj) + (yhj − y) ≤ dT (a, li) + dT (li, lj) + d2(lj , hj) + yhj

≤ 2xli + (xlj − xli) + (yli − ylj ) +
√
2(xhj − xlj ) + yhj

≤ √
2xhj + xlj + yhj − ylj

≤ (1 +
√
2)xhj

where the last inequality follows xlj + yhj − ylj ≤ xhj , i.e., from the assumption
that edge (lj , hj) is gentle.

The case when c = lj is the inductive point in square Sj is shown similarly.
�
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4 Conclusion and Perspectives

The L1-Delaunay triangulation is the first type of Delaunay triangulation to
be shown to be a spanner [Che86]. Progress on the spanning properties of the
TD-Delaunay and the classical L2-Delaunay triangulation soon followed. In this
paper, we determine the precise stretch factor of an L1- and L∞-Delaunay tri-
angulation and close the problem for good.

We believe that our proof techniques can be extended and that they will lead,
yet again, to new insights on the stretch factor of other types of Delaunay trian-
gulations. For example, let Pk denote the convex distance function defined by a
regular k-gon. We observe that the stretch factor of Pk-Delaunay triangulations
is known for k = 3, 4 since P3 is the triangular distance function of [Che89], and
P4 is nothing else than the L∞-metric. Determining the stretch factor of Pk-
Delaunay triangulations for larger k would undoubtedly be an important step
towards understanding the stretch factor of classical Delaunay triangulations.
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