The Stretch Factor of $L_{1^{-}}$and L_{∞}-Delaunay Triangulations

Nicolas Bonichon ${ }^{1}$, Cyril Gavoille ${ }^{2, \star}$, Nicolas Hanusse ${ }^{3}$, and Ljubomir Perković ${ }^{4, \star \star}$
${ }^{1}$ LaBRI - INRIA Bordeaux Sud-Ouest, Bordeaux, France
${ }^{2}$ LaBRI - University of Bordeaux, Bordeaux, France
${ }^{3}$ LaBRI - CNRS, Bordeaux, France
\{bonichon, gavoille, hanusse\}@labri.fr
${ }^{4}$ DePaul University, Chicago, USA
lperkovic@cs.depaul.edu

Abstract

In this paper we determine the stretch factor of L_{1}-Delaunay and L_{∞}-Delaunay triangulations, and we show that it is equal to $\sqrt{4+2 \sqrt{2}} \approx 2.61$. Between any two points x, y of such triangulations, we construct a path whose length is no more than $\sqrt{4+2 \sqrt{2}}$ times the Euclidean distance between x and y, and this bound is the best possible. This definitively improves the 25 -year old bound of $\sqrt{10}$ by Chew (SoCG '86). This is the first time the stretch factor of the L_{p}-Delaunay triangulations, for any real $p \geq 1$, is determined exactly.

Keywords: :Delaunay triangulations, L_{1}-metric, L_{∞}-metric, stretch factor.

1 Introduction

Given a finite set of points P on the plane, the Voronoï diagram of P is the decomposition of the plane into polygonal regions, one for each point of P, such that the points in the region associated with a point are closer to it than to any other point of P. The Delaunay triangulation for P is a spanning subgraph of the complete Euclidean graph on P that is the dual of the Voronoï diagram of P. In some applications (including on-line routing [BM04), the Delaunay triangulation is used as a spanner, defined as a spanning subgraph in which the distance between any pair of points is no more than a constant multiplicative ratio of the Euclidean distance between the points. The constant ratio is typically referred to as the stretch factor of the spanner. While Delaunay triangulations have been studied extensively, obtaining a tight bound on its stretch factor has been elusive even after decades of attempts.

In the mid-1980s, it was not known whether Delaunay triangulations were spanners at all. In order to gain an understanding of the spanning properties

[^0]Table 1. Key stretch factor upper bounds (optimal values are bold)

Paper	Graph	Stretch factor
DFS87	L_{2}-Delaunay	$\pi(1+\sqrt{5}) / 2 \approx 5.08$
KG92	L_{2}-Delaunay	$4 \pi /(3 \sqrt{3}) \approx 2.41$
Xia11	L_{2}-Delaunay	1.998
Che89	TD-Delaunay	$\mathbf{2}$
Che86	$L_{1}-, L_{\infty}$-Delaunay	$\sqrt{\mathbf{1 0}} \approx 3.16$
[this paper]	$L_{1^{-}}, L_{\infty}$-Delaunay	$\sqrt{\mathbf{4 + 2} \sqrt{\mathbf{2}} \approx \mathbf{2 . 6 1}}$

of Delaunay triangulations, Chew considered related, "easier" structures. In his seminal 1986 paper Che86, he proved that an L_{1}-Delaunay triangulation the dual of the Voronoï diagram of P based on the L_{1}-metric rather than the L_{2}-metric - has a stretch factor bounded by $\sqrt{10}$. Chew then continued on and showed that a TD-Delaunay triangulation - the dual of a Voronoï diagram defined using a Triangular Distance, a distance function not based on a circle (L_{2}-metric) or a square (L_{1}-metric) but an equilateral triangle - has a stretch factor of 2 Che89. Finally, Dobkin et al. DFS87 succeeded in showing that the (classical, L_{2}-metric) Delaunay triangulation of P is a spanner as well. The bound on the stretch factor they obtained was subsequently improved by Keil and Gutwin KG92 as shown in Table 1 The bound by Keil and Gutwin stood unchallenged for many years until Xia improved the bound to below 2 Xia11.

None of the techniques developed so far lead to a tight bound on the stretch factor of a Delaunay triangulation. There has been some progress recently on the lower bound side. The trivial lower bound of $\pi / 2 \approx 1.5707$ has recently been improved to 1.5846 [$\mathrm{BLL}^{+} 11$] and then to 1.5932 XZ11].

While much effort has been made on studying the stretch factor of (classical) Delaunay triangulations, since Chew's original work little has been done on $L_{p^{-}}$ Delaunay triangulations for $p \neq 2$. It is known that L_{p}-Delaunay triangulations are spanners: Bose et al. BCCS08 have shown that Delaunay triangulations that are based on any convex distance function are spanners whose stretch factor depends only on the shape of the associated convex body. However, due to the general approach, the bounds on the stretch factor that they obtain are loose: the bound for L_{2}-Delaunay triangulations, for example, is greater than 24.

The general picture is that, in spite of much effort, with the exception of the triangular distance the exact value of the stretch factor of Delaunay triangulations based on any convex function is unknown. In particular, the stretch factor of L_{p}-Delaunay triangulations is unknown for each $p \geq 1$.

Our contribution. We show that the exact stretch factor of L_{1}-Delaunay triangulations and L_{∞}-Delaunay triangulations is $\sqrt{4+2 \sqrt{2}} \approx 2.61$, ultimately improving the 3.16 bound of Chew Che86.

2 Preliminaries

Given a set P of points in the two-dimensional Euclidean space, the Euclidean graph \mathcal{E} is the complete weighted graph embedded in the plane whose nodes are identified with the points. We assume a Cartesian coordinate system is associated with the Euclidean space and thus every point can be specified with x and y coordinates. For every pair of nodes u and w, the edge (u, w) represents the segment $[u w]$ and the weight of edge (u, w) is the Euclidean distance between u and $w: d_{2}(u, w)=\sqrt{d_{x}(u, w)^{2}+d_{y}(u, w)^{2}}$ where $d_{x}(u, w)\left(\right.$ resp. $\left.d_{y}(u, w)\right)$ is the difference between the x (resp. y) coordinates of u and w.

We say that a subgraph H of a graph G is a t-spanner of G if for any pair of vertices u, v of G, the distance between u and v in H is at most t times the distance between u and v in G; the constant t is referred to as the stretch factor of H (with respect to G). H is a t-spanner (or spanner for some t constant) of P if it is a t-spanner of \mathcal{E}.

In our paper, we deal with the construction of spanners based on Delaunay triangulations. As we saw in the introduction, the L_{1}-Delaunay triangulation is the dual of the Voronoï diagram based on the L_{1}-metric $d_{1}(u, w)=d_{x}(u, w)+$ $d_{y}(u, w)$. A property of the L_{1}-Delaunay triangulations, actually shared by all L_{p}-Delaunay triangulations, is that all their triangles can be defined in terms of empty circumscribed convex bodies (squares for L_{1} or L_{∞} and circles for L_{2}). More precisely, let a square in the plane be a square whose sides are parallel to the x and y axis and let a tipped square be a square tipped at 45°. For every pair of points $u, v \in P,(u, v)$ is an edge in the L_{1}-Delaunay triangulation of P iff there is a tipped square that has u and v on its boundary and contains no point of P in its interior (cf. Che89).

If a square with sides parallel to the x and y axes, rather than a tipped square, is used in this definition then a different triangulation is defined; it corresponds to the dual of the Voronoï diagram based on the L_{∞}-metric $d_{\infty}(u, w)=$ $\max \left\{d_{x}(u, w), d_{y}(u, w)\right\}$. We refer to this triangulation as the L_{∞}-Delaunay triangulation. This triangulation is nothing more than the L_{1}-Delaunay triangulation of the set of points P after rotating all the points by 45° around the origin. Therefore Chew's bound of $\sqrt{10}$ on the stretch factor of the L_{1}-Delaunay triangulation ([Che86]) applies to L_{∞}-Delaunay triangulations as well. In the remainder of this paper, we will be referring to L_{∞}-Delaunay (rather than L_{1}) triangulations because we will be (mostly) using the L_{∞}-metric and squares, rather than tipped squares.

One issue with Delaunay triangulations is that there might not be a unique triangulation of a given set of points P. To insure uniqueness and keep our arguments simple, we make the usual assumption that the points in P are in general position, which for us means that no four points lie on the boundary of a square and no two points share the same abscissa or the same ordinate.

We end this section by giving a lower bound on the stretch factor of $L_{\infty^{-}}$ Delaunay triangulations.

Proposition 1. For every $\varepsilon>0$, there is a set of points P in the plane such that the L_{∞}-Delaunay triangulation on P has stretch factor at least $\sqrt{4+2 \sqrt{2}}-\varepsilon$.

This lower bound applies, of course, to L_{1}-Delaunay triangulations as well. The proof of this proposition, omitted for lack of space, relies on the example shown in Fig. 1

a)

b)

Fig. 1. a) An L_{∞}-Delaunay triangulation with stretch factor arbitrarily close to $\sqrt{4+2 \sqrt{2}}$. The coordinates of points a, b, c_{1}, and c_{2} are $(0,0),(1, \sqrt{2}-1),(\delta, \sqrt{2}-2 \delta)$, and ($1-\delta, 2 \delta-1$), respectively. b) A closer look at the first few faces of this triangulation.

3 Main Result

In this section we obtain a tight upper bound on the stretch factor of an $L_{\infty^{-}}$ Delaunay triangulation. It follows from this key theorem:

Theorem 1. Let T be the L_{∞}-Delaunay triangulation on a set of points P in the plane and let a and b be any two points of P. If $x=d_{\infty}(a, b)=$ $\max \left\{d_{x}(a, b), d_{y}(a, b)\right\}$ and $y=\min \left\{d_{x}(a, b), d_{y}(a, b)\right\}$ then

$$
d_{T}(a, b) \leq(1+\sqrt{2}) x+y
$$

where $d_{T}(a, b)$ denotes the distance between a and b in triangulation T.
Corollary 1. The stretch factor of the L_{1-} and the L_{∞}-Delaunay triangulation on a set of points P is at most

$$
\sqrt{4+2 \sqrt{2}} \approx 2.6131259 \ldots
$$

Proof. By Theorem 11 an upper-bound of the stretch factor of an L_{∞}-Delaunay triangulation is the maximum of the function

$$
\frac{(1+\sqrt{2}) x+y}{\sqrt{x^{2}+y^{2}}}
$$

over values x and y such that $0<y \leq x$. The maximum is reached when x and y satisfy $y / x=\sqrt{2}-1$, and the maximum is equal to $\sqrt{4+2 \sqrt{2}}$. As $L_{1}-$ and L_{∞}-Delaunay triangulations have the same stretch factor, this result also holds for L_{1}-Delaunay triangulations.

To prove Theorem 1 we will construct a bounded length path in T between two arbitrary points a and b of P. To simplify the notation and the discussion, we assume that point a has coordinates $(0,0)$ and point b has coordinates (x, y) with $0<y \leq x$. The line containing segment $[a b]$ divides the Euclidean plane into two half-planes; a point in the same half-plane as point $(0,1)$ is said to be above segment $[a b]$, otherwise it is below. Let $T_{1}, T_{2}, T_{3}, \ldots, T_{k}$ be the sequence of triangles of triangulation T that line segment $[a b]$ intersects when moving from a to b. Let h_{1} and l_{1} be the nodes of T_{1} other than a, with h_{1} lying above segment [ab] and l_{1} lying below. Every triangle T_{i}, for $1<i<k$, intersects line segment [ab] twice; let h_{i} and l_{i} be the endpoints of the edge of T_{i} that intersects segment [ab] last, when moving on segment $[a b]$ from a to b, with h_{i} being above and l_{i} being below segment $[a b]$. Note that either $h_{i}=h_{i-1}$ and $T_{i}=\triangle\left(h_{i}, l_{i}, l_{i-1}\right)$ or $l_{i}=l_{i-1}$ and $T_{i}=\triangle\left(h_{i-1}, h_{i}, l_{i}\right)$, for $1<i<k$. We also set $h_{0}=l_{0}=a$, $h_{k}=b$, and $l_{k}=l_{k-1}$. For $1 \leq i \leq k$, we define S_{i} to be the square whose sides pass through the three vertices of T_{i} (see Fig. (2); since T is an L_{∞}-Delaunay triangulation, the interior of S_{i} is devoid of points of P. We will refer to the sides of the square using the notation: N (north), E (east), S (south), and W (west). We will also use this notation to describe the position of an edge connecting two points lying on two sides of a square: for example, a WN edge connects a point on the west and a point on the N side. We will say that an edge is gentle if the line segment corresponding to it in the graph embedding has a slope within $[-1,1]$; otherwise we will say that it is steep.

We will prove Theorem 1 by induction on the distance, using the L_{∞}-metric, between a and b. Let $R(a, b)$ be the rectangle with sides parallel to the x and y axes and with vertices at points a and b. If there is a point of P inside $R(a, b)$, we will easily apply induction. The case when $R(a, b)$ does not contain points of P and in particular the points h_{i} and l_{i} for $0<i<k$ - is more difficult and we need to develop tools to handle it. The following Lemma describes the structure of the triangles T_{1}, \ldots, T_{k} when $R(a, b)$ is empty. We need some additional terminology first though: we say that a point u is above (resp. below) $R(a, b)$ if $0<x_{u}<x$ and $y_{u}>y$ (resp. $y_{u}<0$).
Lemma 1. If $(a, b) \notin T$ and no point of P lies inside rectangle $R(a, b)$, then point a lies on the W side of square S_{1}, point b lies on the E side of square S_{k}, points h_{1}, \ldots, h_{k} all lie above $R(a, b)$, and points l_{1}, \ldots, l_{k} all lie below $R(a, b)$. Furthermore, for any i such that $1<i<k$:
a) Either $T_{i}=\triangle\left(h_{i-1}, h_{i}, l_{i-1}=l_{i}\right)$, points h_{i-1}, h_{i}, and $l_{i-1}=l_{i}$ lie on the sides of S_{i} in clockwise order, and $\left(h_{i-1}, h_{i}\right)$ is a WN, WE, or NE edge in S_{i}
b) $\operatorname{Or} T_{i}=\triangle\left(h_{i-1}=h_{i}, l_{i-1}, l_{i}\right)$, points $h_{i-1}=h_{i}$, l_{i}, and l_{i-1} lie on the sides of S_{i} in clockwise order, and $\left(l_{i-1}, l_{i}\right)$ is a WS, WE, or $S E$ edge in S_{i}.

These properties are illustrated in Fig. 2,
Proof. Since points of P are in general position, points a, h_{1}, and l_{1} must lie on 3 different sides of S_{1}. Because segment [ab] intersects the interior of S_{1} and since a is the origin and b is in the first quadrant, a can only lie on the W or S side of S_{1}. If a lies on the S side then $l_{1} \neq b$ would have to lie inside $R(a, b)$, which is a contradiction. Therefore a lies on the W side of S_{1} and, similarly, b lies on the E side of S_{k}.

Since points $h_{i}(0<i<k)$ are above segment [ab] and points $l_{i}(0<i<k)$ are below segment $[a b]$, and because all squares $S_{i}(0<i<k)$ intersect [ab], points h_{1}, \ldots, h_{k} all lie above $R(a, b)$, and points l_{1}, \ldots, l_{k} all lie below $R(a, b)$.

The three vertices of T_{i} can be either $h_{i}=h_{i-1}, l_{i-1}$, and l_{i} or h_{i-1}, h_{i}, and $l_{i-1}=l_{i}$. Because points of T are in general position, the three vertices of T_{i} must appear on three different sides of S_{i}. Finally, because h_{i-1} and h_{i} are above $R(a, b)$, they cannot lie on the S side of S_{i}, and because l_{i-1} and l_{i} are below $R(a, b)$, they cannot lie on the N side of S_{i}.

If $T_{i}=\triangle\left(h_{i-1}, h_{i}, l_{i-1}=l_{i}\right)$, points h_{i-1}, h_{i}, l_{i} must lie on the sides of S_{i} in clockwise order. The only placements of points h_{i-1} and h_{i} on the sides of S_{i} that satisfy all these constraints are as described in $a)$. If $T_{i}=\triangle\left(h_{i-1}=h_{i}, l_{i-1}, l_{i}\right)$, points h_{i}, l_{i}, l_{i-1} must lie on the sides of S_{i} in clockwise order. Part b) lists the placements of points l_{i-1} and l_{i} that satisfy the constraints.

In the following definition, we define the points on which induction can be applied in the proof of Theorem 1

Fig. 2. Triangles T_{1} (with points a, h_{1}, l_{1}), T_{2} (with points h_{1}, h_{2}, and l_{2}), and T_{3} (with points l_{2}, h_{3}, and l_{3}) and associated squares S_{1}, S_{2}, and S_{3}. When traveling from a to b along segment $[a, b]$, the edge that is hit when leaving T_{i} is $\left(h_{i}, l_{i}\right)$.

Definition 1. Let $R(a, b)$ be empty. Square S_{j} is inductive if edge $\left(l_{j}, h_{j}\right)$ is gentle. The point $c=h_{j}$ or $c=l_{j}$ with the larger abscissa is the inductive point of inductive square S_{j}.

The following lemma will be the key ingredient of our inductive proof of Theorem 1 .

Lemma 2. Assume that $R(a, b)$ is empty. If no square S_{1}, \ldots, S_{k} is inductive then

$$
d_{T}(a, b) \leq(1+\sqrt{2}) x+y
$$

Otherwise let S_{j} be the first inductive square in the sequence $S_{1}, S_{2}, \ldots, S_{k}$. If h_{j} is the inductive point of S_{j} then

$$
d_{T}\left(a, h_{j}\right)+\left(y_{h_{j}}-y\right) \leq(1+\sqrt{2}) x_{h_{j}} .
$$

If l_{j} is the inductive point of S_{j} then

$$
d_{T}\left(a, l_{j}\right)-y_{l_{j}} \leq(1+\sqrt{2}) x_{l_{j}} .
$$

Given an inductive point c, we can use use Lemma 2 to bound $d_{T}(a, c)$ and then apply induction to bound $d_{T}(c, b)$, but only if the position of point c relative to the position of point b is good, i.e., if $x-x_{c} \geq\left|y-y_{c}\right|$. If that is not the case, we will use the following Lemma:

Lemma 3. Let $R(a, b)$ be empty and let the coordinates of point $c=h_{i}$ or $c=l_{i}$ satisfy $0<x-x_{c}<\left|y-y_{c}\right|$.
a) If $c=h_{i}$, and thus $0<x-x_{h_{i}}<y_{h_{i}}-y$, then there exists j, with $i<j \leq k$ such that all edges in path $h_{i}, h_{i+1}, h_{i+2}, \ldots, h_{j}$ are $N E$ edges in their respective squares and $x-x_{h_{j}} \geq y_{h_{j}}-y \geq 0$.
b) If $c=l_{i}$, and thus $0<x-x_{l_{i}}<y-y_{l_{i}}$, then there exists j, with $i<j \leq k$ such that all edges in path $l_{i}, l_{i+1}, l_{i+2}, \ldots, l_{j}$ are $S E$ edges and $x-x_{l_{j}} \geq$ $y-y_{l_{j}} \geq 0$.

Proof. We only prove the case $c=h_{j}$ as the case $c=l_{i}$ follows using a symmetric argument.
We construct the path $h_{i}, h_{i+1}, h_{i+2}, \ldots, h_{j}$ iteratively. If $h_{i}=h_{i+1}$, we just continue building the path from h_{i+1}. Otherwise, $\left(h_{i}, h_{i+1}\right)$ is an edge of T_{i+1} which, by Lemma 1, must be a WN, WE, or NE edge in square S_{i+1}. Since the S side of square S_{i+1} is below $R(a, b)$ and because $x-x_{h_{i}}<y_{h_{i}}-y$, point h_{i} cannot be on the W side of S_{i+1} (otherwise b would be inside square S_{i+1}). Thus $\left(h_{i}, h_{i+1}\right)$ is a NE edge. If $x-x_{h_{i+1}} \geq y_{h_{i+1}}-y$ we stop, otherwise we continue the path construction from h_{i+1}.

We can now prove the main theorem.
Proof of Theorem 1, The proof is by induction on the distance, using the L_{∞}-metric, between points of P (since P is finite there is only a finite number of distances to consider).

Let a and b be the two points of P that are the closest points, using the $L_{\infty^{-}}$ metric. We assume w.l.o.g. that a has coordinates $(0,0)$ and b has coordinates (x, y) with $0<y \leq x$. Since a and b are the closest points using the L_{∞}-metric, the largest square having a as a southwest vertex and containing no points of P in its interior, which we call S_{a} must have b on its E side. Therefore (a, b) is an edge in T and $d_{T}(a, b)=d_{2}(a, b) \leq x+y \leq(1+\sqrt{2}) x+y$.

For the induction step, we again assume, w.l.o.g., that a has coordinates $(0,0)$ and b has coordinates (x, y) with $0<y \leq x$.
Case 1: $R(a, b)$ is not empty
We first consider the case when there is at least one point of P lying inside rectangle $R(a, b)$. If there is a point c inside $R(a, b)$ such that $y_{c} \leq x_{c}$ and $y-y_{c} \leq x-x_{c}$ (i.e., c lies in the region B shown in Fig. 3 then we can apply induction to get $d_{T}(a, c) \leq(1+\sqrt{2}) x_{c}+y_{c}$ and $d_{T}(c, b) \leq(1+\sqrt{2})\left(x-x_{c}\right)+y-y_{c}$ and use these to obtain the desired bound for $d_{T}(a, b)$.

We now assume that there is no point inside region B. If there is still a point in $R(a, b)$ then there must be one that is on the border of S_{a}, the square we defined in the basis step, or S_{b}, defined as the largest square having b as a northeast vertex and containing no points of P in its interior. W.l.o.g., we assume the former and thus there is an edge $(a, c) \in T$ such that either $y_{c}>x_{c}$ (i.e., c is inside region A shown in Fig. 3 or $y-y_{c}>x-x_{c}$ (i.e., c is inside region C). Either way, $d_{T}(a, c)=d_{2}(a, c) \leq x_{c}+y_{c}$. If c is in region A, since $x-x_{c} \geq y-y_{c}$, by induction we also have that $d_{T}(c, b) \leq(1+\sqrt{2})\left(x-x_{c}\right)+\left(y-y_{c}\right)$. Then

$$
\begin{aligned}
d_{T}(a, b) & \leq d_{T}(a, c)+d_{T}(c, b) \\
& \leq x_{c}+y_{c}+(1+\sqrt{2})\left(x-x_{c}\right)+\left(y-y_{c}\right) \leq(1+\sqrt{2}) x+y
\end{aligned}
$$

In the second case, since $x-x_{c}<y-y_{c}$, by induction we have that $d_{T}(c, b) \leq$ $(1+\sqrt{2})\left(y-y_{c}\right)+\left(x-x_{c}\right)$. Then, because $y<x$,

$$
\begin{aligned}
d_{T}(a, b) & \leq d_{T}(a, c)+d_{T}(c, b) \\
& \leq x_{c}+y_{c}+(1+\sqrt{2})\left(y-y_{c}\right)+\left(x-x_{c}\right) \leq(1+\sqrt{2}) x+y
\end{aligned}
$$

Case 2: The interior of $R(a, b)$ is empty
If no square $S_{1}, S_{2}, \ldots, S_{k}$ is inductive, $d_{T}(a, b) \leq(1+\sqrt{2}) x+y$ by Lemma 2 , Otherwise, let S_{i} be the first inductive square in the sequence and suppose that h_{i} is the inductive point of S_{i}. By Lemma 3, there is a $j, i \leq j \leq k$, such that $h_{i}, h_{i+1}, h_{i+2}, \ldots, h_{j}$ is a path in T of length at most $\left(x_{h_{j}}-x_{h_{i}}\right)+\left(y_{h_{i}}-y_{h_{j}}\right)$

Fig. 3. Partition of $R(a, b)$ into three regions in Case 1 of the proof of Theorem 1
and such that $x-x_{h_{j}} \geq y_{h_{j}}-y \geq 0$. Since h_{j} is closer to b, using the L_{∞}-metric, than a is, we can apply induction to bound $d_{T}\left(h_{j}, b\right)$. Putting all this together with Lemma 2, we get:

$$
\begin{aligned}
d_{T}(a, b) \leq & d_{T}\left(a, h_{i}\right)+d_{T}\left(h_{i}, h_{j}\right)+d_{T}\left(h_{j}, b\right) \\
\leq & (1+\sqrt{2}) x_{h_{i}}-\left(y_{h_{i}}-y\right)+\left(x_{h_{j}}-x_{h_{i}}\right)+\left(y_{h_{i}}-y_{h_{j}}\right) \\
& +(1+\sqrt{2})\left(x-x_{h_{j}}\right)+\left(y_{h_{j}}-y\right) \leq(1+\sqrt{2}) x
\end{aligned}
$$

If l_{i} is the inductive point of S_{i}, by Lemma 3 there is a $j, i \leq j \leq k$, such that $l_{i}, l_{i+1}, l_{i+2}, \ldots, l_{j}$ is a path in T of length at most $\left(x_{h_{j}}-x_{h_{i}}\right)+\left(y_{h_{j}}-y_{h_{i}}\right)$ and such that $x-x_{h_{j}} \geq y-y_{h_{j}} \geq 0$. Because the position of j with respect to b is good and since l_{j} is closer to b, using the L_{∞}-metric, than a is, we can apply induction to bound $d_{T}\left(l_{j}, b\right)$. Putting all this together with Lemma 2 we get:

$$
\begin{aligned}
d_{T}(a, b) \leq & d_{T}\left(a, l_{i}\right)+d_{T}\left(l_{i}, l_{j}\right)+d_{T}\left(l_{j}, b\right) \\
\leq & (1+\sqrt{2}) x_{l_{i}}+y_{l_{i}}+\left(x_{l_{j}}-x_{l_{i}}\right)+\left(y_{l_{j}}-y_{l_{i}}\right)+(1+\sqrt{2})\left(x-x_{l_{j}}\right) \\
& +\left(y-y_{l_{j}}\right) \leq(1+\sqrt{2}) x+y
\end{aligned}
$$

What remains to be done is to prove Lemma 2 To do this, we need to develop some further terminology and tools. Let x_{i}, for $1 \leq i \leq k$, be the horizontal distance between point a and the E side of S_{i}, respectively. We also set $x_{0}=0$.

Definition 2. A square S_{i} has potential if

$$
d_{T}\left(a, h_{i}\right)+d_{T}\left(a, l_{i}\right)+d_{S_{i}}\left(h_{i}, l_{i}\right) \leq 4 x_{i}
$$

where $d_{S_{i}}\left(h_{i}, l_{i}\right)$ is the Euclidean distance when moving from h_{i} to l_{i} along the sides of S_{i}, clockwise.

Lemma 4. If $R(a, b)$ is empty then S_{1} has potential. Furthermore, for any $1 \leq$ $i<k$, if S_{i} has potential but is not inductive then S_{i+1} has potential.

Proof. If $R(a, b)$ is empty then, by Lemma 1, a lies on the W side of S_{1} and x_{1} is the side length of square S_{1}. Also, h_{1} lies on the N or E side of S_{1}, and l_{1} lies on the S or E side of S_{1}. Then $d_{T}\left(a, h_{1}\right)+d_{T}\left(a, l_{1}\right)+d_{S_{1}}\left(h_{1}, l_{1}\right)$ is bounded by the perimeter of S_{1} which is $4 x_{1}$.

Now assume that S_{i}, for $1 \leq i<k$, has potential but is not inductive. Squares S_{i} and S_{i+1} both contain points l_{i} and h_{i}. Because S_{i} is not inductive, edge $\left(l_{i}, h_{i}\right)$ must be steep and thus $d_{x}\left(l_{i}, h_{i}\right)<d_{y}\left(l_{i}, h_{i}\right)$. To simplify the arguments, we assume that l_{i} is to the W of h_{i}, i.e., $x_{l_{i}}<x_{h_{i}}$. The case $x_{l_{i}}>x_{h_{i}}$ can be shown using equivalent arguments.

By Lemma 1, $T_{i}=\triangle\left(h_{i-1}, h_{i}, l_{i-1}=l_{i}\right)$ or $T_{i}=\triangle\left(h_{i-1}=h_{i}, l_{i-1}, l_{i}\right)$ and there has to be a side of S_{i} between the sides on which l_{i} and h_{i} lie, when moving clockwise from l_{i} to h_{i}. Using the constraints on the position of h_{i} and l_{i} within S_{i} from Lemma 1 and using the assumptions that $\left(l_{i}, h_{i}\right)$ is steep and

Fig. 4. The first, second and fourth case in the proof of Lemma 4 In each case, the difference $d_{S_{i+1}}\left(h_{i}, l_{i}\right)-d_{S_{i}}\left(h_{i}, l_{i}\right)$ is shown to be at most $4 \Delta_{x}$, where $\Delta_{x}=x_{i+1}-x_{i}$.
that $x_{l_{i}}<x_{h_{i}}$, we deduce that l_{i} must be on the S side and h_{i} must be on the N or E side of S_{i}.

If h_{i} is on the N side of S_{i} then, because $x_{l_{i}}<x_{h_{i}}, h_{i}$ must also be on the N side of S_{i+1} and either l_{i} is on the S side of S_{i+1} and

$$
\begin{equation*}
d_{S_{i+1}}\left(h_{i}, l_{i}\right)-d_{S_{i}}\left(h_{i}, l_{i}\right)=2\left(x_{i+1}-x_{i}\right) \tag{1}
\end{equation*}
$$

as shown in Fig. 4 a) or l_{i} is on the W side of S_{i+1}, in which case

$$
\begin{equation*}
d_{S_{i+1}}\left(h_{i}, l_{i}\right)-d_{S_{i}}\left(h_{i}, l_{i}\right) \leq 4\left(x_{i+1}-x_{i}\right) \tag{2}
\end{equation*}
$$

as shown in Fig. 4b).
If h_{i} is on the E side of S_{i} then, because $x_{i+1}>x_{i}$ (since $\left(l_{i}, h_{i}\right)$ is steep), h_{i} must be on the N side of S_{i+1} and either l_{i} is on the S side of S_{i+1} and inequality (1) holds or l_{i} is on the W side of S_{i+1} and inequality (2) holds, as shown in Fig. 45).

Since S_{i} has potential, in all cases we obtain:

$$
\begin{equation*}
d_{T}\left(a, h_{i}\right)+d_{T}\left(a, l_{i}\right)+d_{S_{i+1}}\left(h_{i}, l_{i}\right) \leq 4 x_{i+1} \tag{3}
\end{equation*}
$$

Assume $T_{i+1}=\triangle\left(h_{i}, h_{i+1}, l_{i}=l_{i+1}\right)$; in other words, $\left(h_{i}, h_{i+1}\right)$ is an edge of T with h_{i+1} lying somewhere on the boundary of S_{i+1} between h_{i} and l_{i}, when moving clockwise from h_{i} to l_{i}. Then $d_{T}\left(a, h_{i+1}\right) \leq d_{T}\left(a, h_{i}\right)+d_{2}\left(h_{i}, h_{i+1}\right)$. By the triangular inequality, $d_{2}\left(h_{i}, h_{i+1}\right) \leq d_{S_{i+1}}\left(h_{i}, h_{i+1}\right)$ and we have that:

$$
\begin{aligned}
d_{T}\left(a, h_{i+1}\right)+d_{T}\left(a, l_{i+1}\right)+d_{S_{i+1}}\left(h_{i+1}, l_{i+1}\right) & \leq d_{T}\left(a, h_{i}\right)+d_{T}\left(a, l_{i}\right)+d_{S_{i+1}}\left(h_{i}, l_{i}\right) \\
& \leq 4 x_{i+1}
\end{aligned}
$$

Thus S_{i+1} has potential. The argument for the case when $T_{i+1}=\triangle\left(h_{i}=\right.$ $\left.h_{i+1}, l_{i}, l_{i+1}\right)$ is symmetric.

Definition 3. A vertex $c\left(h_{i}\right.$ or $\left.l_{i}\right)$ of T_{i} is promising in S_{i} if it lies on the E side of S_{i}.

Lemma 5. If square S_{i} has potential and $c=h_{i}$ or $c=l_{i}$ is a promising point in S_{i} then

$$
d_{T}(a, c) \leq 2 x_{c}
$$

Proof. W.l.o.g., assume $c=h_{i}$. Since h_{i} is promising, $x_{c}=x_{h_{i}}=x_{i}$. Because S_{i} has potential, either $d_{T}\left(a, h_{i}\right) \leq 2 x_{h_{i}}$ or $d_{T}\left(a, l_{i}\right)+d_{S_{i}}\left(l_{i}, h_{i}\right) \leq 2 x_{h_{i}}$. In the second case, we can use edge $\left(l_{i}, h_{i}\right)$ and the triangular inequality to obtain $d_{T}\left(a, h_{i}\right) \leq d_{T}\left(a, l_{i}\right)+\left|l_{i} h_{i}\right| \leq 2 x_{h_{i}}$.

We now define the maximal high path and the minimal low path.

Definition 4.

- If h_{j} is promising in S_{j}, the maximal high path ending at h_{j} is simply h_{j}; otherwise, it is the path $h_{i}, h_{i+1}, \ldots, h_{j}$ such that h_{i+1}, \ldots, h_{j} are not promising and either $i=0$ or h_{i} is promising in S_{i}.
- If l_{j} is promising in S_{j}, the maximal low path ending at l_{j} is simply l_{j}; otherwise, it is the path $l_{i}, l_{i+1}, \ldots, l_{j}$ such that l_{i+1}, \ldots, l_{j} are not promising and either $i=0$ or l_{i} is promising in S_{i}.

Note that by Lemma 1, all edges on the path $h_{i}, h_{i+1}, \ldots, h_{j}$ are WN edges and thus the path length is bounded by $\left(x_{h_{j}}-x_{h_{i}}\right)+\left(y_{h_{j}}-y_{h_{i}}\right)$. Similarly, all edges in path $l_{i}, l_{i+1}, \ldots, l_{j}$ are WS edges and the length of the path is at most $\left(x_{l_{j}}-x_{l_{i}}\right)+\left(y_{l_{i}}-y_{l_{j}}\right)$.

We now have the tools to prove Lemma 2 ,
Proof of Lemma 2, If $R(a, b)$ is empty then, by Lemma 1 b is promising. Thus, by Lemma 4 and Lemma 5, if no square S_{1}, \ldots, S_{k} is inductive then $d_{T}(a, b) \leq 2 x<(1+\sqrt{2}) x+y$.
Assume now that there is at least one inductive square in the sequence of squares S_{1}, \ldots, S_{k}. Let S_{j} be the first inductive square and assume, for now, that h_{j} is the inductive point in S_{j}. By Lemma 4, every square S_{i}, for $i<j$, is a potential square.

Since $\left(l_{j}, h_{j}\right)$ is gentle, it follows that $d_{2}\left(l_{j}, h_{j}\right) \leq \sqrt{2}\left(x_{h_{j}}-x_{l_{j}}\right)$. Let $l_{i}, l_{i+1}, \ldots, l_{j-1}=l_{j}$ be the maximal low path ending at l_{j}. Note that $d_{T}\left(l_{i}, l_{j}\right) \leq$ $\left(x_{l_{j}}-x_{l_{i}}\right)+\left(y_{l_{i}}-y_{l_{j}}\right)$. Either $l_{i}=l_{0}=a$ or l_{i} is a promising point in potential square S_{i}; either way, by Lemma [5] we have that $d_{T}\left(a, l_{i}\right) \leq 2 x_{l_{i}}$. Putting all this together, we get

$$
\begin{aligned}
d_{T}\left(a, h_{j}\right)+\left(y_{h_{j}}-y\right) & \leq d_{T}\left(a, l_{i}\right)+d_{T}\left(l_{i}, l_{j}\right)+d_{2}\left(l_{j}, h_{j}\right)+y_{h_{j}} \\
& \leq 2 x_{l_{i}}+\left(x_{l_{j}}-x_{l_{i}}\right)+\left(y_{l_{i}}-y_{l_{j}}\right)+\sqrt{2}\left(x_{h_{j}}-x_{l_{j}}\right)+y_{h_{j}} \\
& \leq \sqrt{2} x_{h_{j}}+x_{l_{j}}+y_{h_{j}}-y_{l_{j}} \\
& \leq(1+\sqrt{2}) x_{h_{j}}
\end{aligned}
$$

where the last inequality follows $x_{l_{j}}+y_{h_{j}}-y_{l_{j}} \leq x_{h_{j}}$, i.e., from the assumption that edge $\left(l_{j}, h_{j}\right)$ is gentle.

The case when $c=l_{j}$ is the inductive point in square S_{j} is shown similarly.

4 Conclusion and Perspectives

The L_{1}-Delaunay triangulation is the first type of Delaunay triangulation to be shown to be a spanner Che86. Progress on the spanning properties of the TD-Delaunay and the classical L_{2}-Delaunay triangulation soon followed. In this paper, we determine the precise stretch factor of an $L_{1^{-}}$and L_{∞}-Delaunay triangulation and close the problem for good.

We believe that our proof techniques can be extended and that they will lead, yet again, to new insights on the stretch factor of other types of Delaunay triangulations. For example, let P_{k} denote the convex distance function defined by a regular k-gon. We observe that the stretch factor of P_{k}-Delaunay triangulations is known for $k=3,4$ since P_{3} is the triangular distance function of Che89, and P_{4} is nothing else than the L_{∞}-metric. Determining the stretch factor of $P_{k^{-}}$ Delaunay triangulations for larger k would undoubtedly be an important step towards understanding the stretch factor of classical Delaunay triangulations.

References

[BCCS08] Bose, P., Carmi, P., Collette, S., Smid, M.: On the Stretch Factor of Convex Delaunay Graphs. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 656-667. Springer, Heidelberg (2008)
$\left[\mathrm{BDL}^{+} 11\right]$ Bose, P., Devroye, L., Löffler, M., Snoeyink, J., Verma, V.: Almost all Delaunay triangulations have stretch factor greater than $\pi / 2$. Comp. Geometry 44, 121-127 (2011)
[BFvRV12] Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive routing in the half- θ_{6}-graph. In: 23rd ACM Symp. on Discrete Algorithms (SODA), pp. 1319-1328 (2012)
[BM04] Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theoretical Computer Science 324(2-3), 273-288 (2004)
[Che86] Paul Chew, L.: There is a planar graph almost as good as the complete graph. In: 2nd Annual ACM Symposium on Computational Geometry (SoCG), pp. 169-177 (August 1986)
[Che89] Paul Chew, L.: There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences 39(2), 205-219 (1989)
[DFS87] Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. In: 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 20-26. IEEE Computer Society Press (October 1987)
[KG92] Mark Keil, J., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete \& Computational Geometry 7(1), 1328 (1992)
[Xia11] Xia, G.: Improved upper bound on the stretch factor of delaunay triangulations. In: 27th Annual ACM Symposium on Computational Geometry (SoCG), pp. 264-273 (June 2011)
[XZ11] Xia, G., Zhang, L.: Toward the tight bound of the stretch factor of Delaunay triangulations. In: 23rd Canadian Conference on Computational Geometry (CCCG) (August 2011)

[^0]: * Member of the "Institut Universitaire de France". Supported by the ANR-11-BS02014 "DISPLEXITY" project and the équipe-projet INRIA "CEPAGE".
 ** Supported by a Fulbright Aquitaine Regional grant and a DePaul University grant.

