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Abstract

The freeze-tag problem is an optimization problem in-
troduced by Arkin et al. (SODA’02). This problem
revolves around e�ciently waking up a swarm of inac-
tive robots starting with a single active robot. Each
asleep robot is activated by an awake robot going to its
location. The objective is to minimize the total wake-up
time for all robots, the makespan.

A recent paper by Bonichon et al. considers the ge-
ometric version of the freeze-tag problem on the plane.
They conjectured that for the robots located on the
plane with `2-norm, the makespan is at most (1+2

p
2)r,

where r is the maximum distance between the initial
active robot and any asleep robot. In this paper, we
prove the conjecture for the robots in the convex posi-
tion and for n  7 or n � 281, where n is the number of
asleep robots (The conjecture was known to be true for
n � 528 robots as shown by Bonichon et al.). Moreover,
we show an upper bound of 4.63r for the makespan of
robots in a disk of radius r in the `2-norm, improving
the best known bound of 5

p
2r ⇡ 7.07r.

1 Introduction

The freeze-tag problem is an optimization problem con-
cerned with waking up a swarm of asleep (inactive)
robots in the shortest possible time starting with a sin-
gle awake (active) robot. Consider a set of robots rep-
resented by S and |S| = n+1 for n 2 N. Let p0, . . . , pn
be the locations of the robots in a metric space, with p0
being the location of the initial awake robot.

To activate an asleep robot, an awake robot must
travel to the position of the asleep robot. As soon as
an asleep robot is activated (awakened), it can assist
in waking up the other asleep robots. We assume that
each awake robot moves at the same speed of one unit
per second while the asleep robots do not move. The
makespan (wake-up time) is the time of the last wake-
up. The freeze-tag problem has applications in group
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formation, searching, and recruitment in robotics, as
well as broadcasting and IP multicast problems in net-
work design (see [2, 9] and their references).

The problem can be rephrased as follows: A wake-up
tree of S is a binary weighted spanning tree rooted at
p0 such that the degree of p0 is one and the length of
an edge is the distance between its endpoints (see for
instance Figure 1). The freeze-tag problem is to find a
wake-up tree of S with the minimum (weighted) depth.

AA0 p0 p1

p3

p2

p4

p5
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Figure 1: An example of a wake-up tree with 6 asleep
robots in the Euclidean plane.

In this setup, Arkin et al. [3] give a constant ap-
proximation algorithm for the freeze-tag problem, when
one asleep robot is located on each vertex. They also
show that using an underlying graph metric, the prob-
lem is NP-hard. In a di↵erent paper, Arkin et al. [2]
show that the freeze-tag problem, even on star met-
rics, is NP-complete. Moreover, they show that ob-
taining a 5/3-approximation is NP-hard for general
metrics on weighted graphs. Therefore, a polynomial-
time approximation scheme does not exist unless P =
NP. In a related paper, Könemann et al. [9] consider
the problem of finding a minimum diameter spanning
tree with a bounded maximum degree in a complete
undirected weighted graph and provide an O(

p
log n)-

approximation algorithm for the freeze-tag problem in
the general setting.

In this paper, we consider the geometric freeze-tag
problem for the collection of robots. In the geometric
freeze-tag problem, robots are modeled as points in Rd

in a particular metric for some d 2 N. For d = 3 and `p
norm, it has been shown that the geometric freeze-tag
problem is NP-hard where p � 1 [6, 7, 10]. Sztain-
berg et al. [11] give a heuristic algorithm with a tight
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approximation of ⇥(log1�1/d n) for the makespan of n
asleep robots in d dimensional space. In particular, their
greedy algorithm yields an O(1)-approximation in one
dimension (d = 1) and an O(

p
log n)-approximation in

two dimensions (d = 2). Arkin et al. in [2], for any
constant d 2 N, provide a polynomial-time approxima-
tion scheme when robots are located in Rd equipped
with `p metric. Moreover, their algorithm runs in time
O(n log n+ 2poly(1/✏)).

It is worth mentioning that Hammar et al. [8] study
the online freeze-tag where each asleep robot is revealed
at a specified time. Later, an optimal algorithm for the
online freeze-tag problem was introduced by Burnner et
al. [5].

In the geometric setting, as long as normed spaces are
concerned, the positions of all the robots can be scaled
and translated such that all asleep robots are in a unit
disk, and the initial active robot is at the origin (i.e., the
active robot is at the origin and the distance between
the active robot and the farthest asleep robot is a unit).
Note that in this configuration, the makespan is always
lower bounded by the maximal distance between the
active robot and asleep robots (the radius of the unit
disk). Combinatorial upper bounds for the makespan
of robots in a unit disk with respect to `p norm are
studied by Bonichon et al. [4]. In particular, when
robots are located in the unit disk in the plane with `1
norm, they provide a tight strategy with makespan 5.
They also show [4, Theorem 2] that the makespan for
n asleep robots in the unit disk with one active robot
at the origin is at most 3 + c/

p
n, where c is a constant

depending on the norm.

We focus on the Euclidean freeze-tag problem on the
plane. That is, we consider robots as points in the Eu-
clidean metric space on R2. In this setting, the problem
remains NP-hard [1], and Najafi Yazdi et al. [12] pro-
vide an algorithm with a makespan (5 + 2

p
2 +

p
5) for

the robots located in a unit square that runs in linear
time. Recently, Bonichon et al. [4] proposed an algo-
rithm with a makespan 5

p
2. They also conjectured

that the maximum makespan of robots in a unit disk of
any norm is achieved when the number of robots is four.
For n = 4, we get the worst-case whenever four asleep
robots p1, p2, p3, and p4 form a square with sides of
length

p
2. It takes time 1 to go from the active robot

p0 in the center to p1, and then one robot has to wake
up p2 followed by p3 in time 2

p
2, and the other one

wakes up p4. In the Euclidean freeze-tag problem, this
conjecture translates to the following.

Conjecture 1 ([4]) Let n be a positive integer. There
exists a strategy to wake up n asleep robots inside a unit
disk in Euclidean space starting with an active robot at
the origin in time at most 1 + 2

p
2.

Our main contributions are the following. First we
show that the Conjecture 1 holds for n  7 or n �
281, and also when the robots are in convex position
(Theorems 1, 2, and 3). Then we provide a new upper
bound of 4.63 for the makespan of the Euclidean freeze-
tag problem on the plane, improving upon the best-
known result of 5

p
2 ⇡ 7.07. This also shows that the

optimal upper bound for the Euclidean case is strictly
less than the lower bound of 5 for the `1 norm.

The rest of this paper is organized as follows: The
next section will be dedicated to preliminaries and some
definitions for the geometric objects needed in the se-
quel. In Section 3, we discuss monotonic wake-up strate-
gies for two simple geometric objects as a subroutine. In
Section 4, as a warm-up, we prove Conjecture 1 for small
values of n. Section 5 and Section 6 study the correct-
ness of Conjecture 1 when the asleep robots are in a
convex position and when the number of asleep robots
is at least 281, respectively. Section 7 establishes an
improved makespan of 4.63 for the Euclidean freeze-tag
problem in the plane.

2 Preliminaries

For each 0  i  n, the wake-up time of robot pi is the
length of the path of pi from p0 in the wake-up tree. The
depth of a wake-up tree indicates its makespan. Using
this terminology, a closed geometric region R on the
plane with a specified active robot has a makespan of
at most ⌧ if for every n 2 N, there exists a wake-up tree
for every configuration of n asleep robots in the region
R with a depth at most ⌧ .

Many of the strategies that we will define rely on a
recursive decomposition of regions R into subregions.
Therefore, we will define some regions that will be useful
to us later on.

A cone of angle ✓ and radius r is a geometric region
inside a disk of radius r between two segments with
one endpoint on the center of the disk and the other
endpoint on the boundary such that the angle between
the two segments is ✓ (see Figure 2(a)). The center of
the disk is referred to as the cone’s apex. A cone defined
using a disk of radius one is called a unit cone.

A (unit) crown of angle ✓ and width w is obtained
from a unit cone of angle ✓ by subtracting a smaller cone
of the same angle and radius 1 � w (see Figure 2(b)).
Each non-trivial crown consists of 4 sides: two curved
sides and two straight-line sides. We call the longer
curved side of a crown the exterior side and the shorter
curved side of a crown is called the interior side. For
future reference, we represent the makespan of a unit
crown of angle ✓ and width w starting with two active
robots at a corner on the exterior side of the crown with
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Figure 2: (a) A cone of angle ✓ and radius r. The
monotonic wake-up strategy to solve a cone with one
active robot in the apex. (b) A crown of angle ✓ and
width w. The monotonic wake-up strategy to solve a
crown with two active robots on a corner.

crown(w, ✓).

A dome is the part of a cone between its arc and its
chord (see Figure 6). The radius and angle of a dome
are the same as the corresponding cone.

We define semi-cone to be the region enclosed be-
tween two chords of a unit disk with one common end-
point that does not contain the origin in its interior
(see Figure 7(a)). We call the common endpoint of two
chords the apex of the semi-cone.

Throughout this paper, � stands for the golden ratio,

i.e., � = 1+
p
5

2 . Note that �2 = �+ 1.

3 First Bounds For Geometric Shapes

In this section, we present monotonic wake-up strate-
gies for two simpler geometric objects, namely the unit
cone and the unit crown, as subroutines for the other
algorithms discussed in the rest of the paper. We first
assume that for cones (resp. crowns) robots are ordered
w.r.t the distance (resp. angular distance) from the
apex (resp. a corner). Given a binary wake-up tree,
a strategy is said monotonic if for every path from the
root to leaves, points are ordered w.r.t to the distance
from the root.

We begin this section with a simple observation stat-
ing the triangle inequality in polar notation.

Observation 1 Let A = (ra, ✓a) and B = (rb, ✓b) be
two points in polar notation inside a unit disk. Then
we have ||AB||  |ra � rb| + max(ra, rb) · |✓a � ✓b|. In
particular, since ra, rb  1, we have ||AB||  |ra� rb|+
|✓a � ✓b|.

In the following, |ra � rb| and max(ra, rb) · |✓a � ✓b|
are referred to as the radial distance and angular dis-

tance between A and B, respectively. As the first clas-
sical result, we present a result from [4] that establishes
an upper bound for the makespan of robots positioned
within a unit cone of angle ✓ (refer to Figure 2(a)).

Informally, the initial robot finds the closest asleep
robot in the cone and the cone is partitioned into two
regions, namely, subcones of angle ⇣� and (1 � ⇣)�.
Then the process is repeated similarly in each re-
gion with one active robot. From Observation 1, the
length of the path p0, p1, . . . p` from the initial robot
toward any other robot is at most

P
i |ri � ri�1| +

|✓pi � ✓pi�1 |. The sum of the first terms is at most
1 whereas for the angular detour we have A(✓) 
max {✓ +A(⇣✓), (1� ⇣)✓ +A((1� ⇣)✓)}. If we take
⇣ = 1/2, A(✓) 

P
i�0 ✓/2

i < 2✓. In fact, taking
⇣ = 2� �, we get:

Lemma 1 ([4](Proposition 14)) There exists a
strategy to wake up asleep robots in a cone of angle ✓
and radius one starting with one awake robot at the
center of the cone in time at most 1 + �✓.

As the next geometric subroutine, similar to
Lemma 1, we can construct a monotonic wake-up strat-
egy for a unit crown using a monotonic recursive parti-
tion into sub-crowns.

Lemma 2 There exists a strategy to wake up all of the
robots in a crown of angle ✓ and width w starting with
two awake robots at a corner in time at most ✓ + �w.

If we consider only one awake robot on the bound-
ary, we must consider an extra time to wake up another
robot, and then we can apply the result of Lemma 2.

Corollary 1 There exists a strategy to wake up all of
the robots in a crown of angle ✓ and width w starting
with one awake robot at a corner in time at most ✓ +
(1 + �)w.

Finally, with a strategy analogous to that in
Lemma 2, one can wake up robots within a rectangular
region.

Corollary 2 There exists a strategy to wake up all of
the robots in a rectangle of width w and height h starting
with two awake robots at a corner in time at most h +
�w.

4 Configurations With Small Number of Asleep
Robots

In this section, we state the correctness of Conjecture 1
for the small number of asleep robots.
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Figure 3: Projection of convex points on the disk.

Theorem 1 Let n  7 be a positive integer. There
exists a strategy to wake up n robots in a unit disk in
time less than 1 + 2

p
2.

The statement is trivial for n  3. Let n 2 {4, 5, 6, 7}
and p1 be one of the robots such that the line passing
through p0 and p1 cuts the unit disk C into two parts,
each of which contains at most d(n� 1)/2e robots (dif-
ferent from p0 and p1). Let A and A0 be the intersection
of this line with C, such that p1 is on the segment p0A.

The wake-up strategy is as follows: once the robot p1
is awakened, the two robots are positioned at point A.
Then, each robot takes care of half of the disk. In each
half-disk, the robot will awaken the robot closest to A,
and then the two robots will each awaken at most one
more robot (see Figure 1).

5 Robots In Convex Position

In this section, we assume that the coordinates pi are
ordered in the counter-clockwise cyclic ordering. We
present the following theorem:

Theorem 2 If the point set corresponding to S is in
a convex position within a disk C of radius one, the
makespan of S is upper bounded by 1 + 2

p
2.

Let us sketch the proof of Theorem 2:

• For each pi 2 S, we assign the point p0i 2 C being
the intersection of the ray perpendicular to pi�1pi
emanating from pi and going outside from the con-
vex hull of S. This projection is such that for any
pair pi and pj , ||p0ip0j || � ||pipj || (see Figure 3).

• If S0 is a point set on the disk C, we provide a wake-
up tree T 0 of makespan less or equal to 1 + 2

p
2.

• The wake-up tree T on S is defined from T 0. If
(p0i, p

0
j) belongs to T 0 then (pi, pj) belongs to T . We

p2

p0
p1

p3

p4

p5

p6

↵0

A

B

�
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p3

p4

p8
↵0

p7

p6
p5

Case (I) Case (II)

Figure 4: Robots on the disk. Case (I): The disk is
partitioned into 3 arcs. Case (II): Without the existence
of a small angle, the disk is partitioned into 2 half-disks.
Except for the last robot p8, robots p2 to p7 are awake
using a monotonic complete binary tree from p1.

show that the makespan of T is smaller or equal to
the one of T 0 and thus bounded by 1 + 2

p
2.

Let’s introduce a simple strategy to wake up an arc of
angle ↵ containing k asleep robots while the first robot
pj on the arc in the counter-clockwise order is awake.
In the algorithm Arc Strategy, pj wakes up pj+1,
and any monotonic complete binary wake-up tree can
be considered. By monotonic, we mean that each robot
wakes up another robot with a larger angular position.
The depth of this binary wake-up tree is 1 + blog2 kc.

Disk Strategy takes as an input the point set S
on the boundary of a unit disk and an angle ↵0. Take
� = ⇡ � 2

p
2 and let 1  i  n be an integer where the

angle \pip0pi+1 is the smallest. We consider two cases
(see Figure 4):

• Case (I): If \pip0pi+1  ↵0 then p0 wakes up
pi. For convenience, assume that the line passing
through p0 and pi is horizontal. The two robots
located at pi, wake up in parallel, all the robots
at an angular distance at most ⇡ � � from pi; one
going in the counter-clockwise order through pi+1

and the other one in the clockwise order through
pi�1. As soon as pi+1 is awake, it directly goes to
the position of the disk at an angular distance ⇡��
from pi and wakes up all the remaining robots in
the remaining arc of angle 2�.

• Case (II): If the previous case does not hold, take an
integer 1  j  n such that the angle \pj�1p0pj+1

is the smallest. Again, for convenience, assume that
robots p0 and pj are located on a horizontal line.
As in the previous case, p0 wakes up pj and robots
on the two arcs up to the angular distance ⇡ � ↵0

from pj are awake by two robots emanating from
pj using Arc Strategy. One robot from pj+1
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Figure 5: Illustration of proof of Theorem 3. (a) stage
one. (b) stage two: split into 8 semi-cones and 2 domes.

(resp. pj�1) directly goes to the last robot on the
arc (⇡ � ↵0,⇡) (resp. (↵0 � ⇡,�⇡)). Then the rest
of the robots on the arcs of angle ⇡�↵0 are awake.

To conclude, we show that for ↵0 = ⇡/11, the Disk
Strategy has a makespan less than or equal to 1+2

p
2.

6 Strategies For Large Number of Robots

By examining the constants closely, [4, Theorem 2] im-
plies that Conjecture 1 is correct when n, the number of
asleep robots, is at least 528. In line with [4, Theorem
2], we prove that Conjecture 1 holds when the number
of asleep robots in the unit disk is at least 281. To get
this lower bound on the number of robots, we need to
introduce a wake-up strategy for the domes and semi-
cones.

The sketch of our strategy is the following: (1) Since
n � 281, there is a cone of the angle at most 18⇡

281 such
that it contains at least 9 asleep robots. We first recruit
a team of at least 10 robots (including the initial awake
robot) in the cone ending at the middle of the arc of the
cone Figure 5(a) (2) we partition the disk into 8 semi-
cones with a specific sequence of angles and 2 domes.
Each robot wakes up in parallel each of the regions (see
Figure 5(b)).

Lemma 3 There exists a strategy to wake up asleep
robots in a dome of angle ↵ and radius one in a time at
most ↵/2 + sin (↵/2) + �(1 � cos (↵/2)) with an awake
robot on the corner of the dome.

Let a and b be the length of two chords of a semi-
cone, where a  b and ↵ be the angle between them.
To upper bound the makespan of asleep robots with
one active robot on the apex, one can simply enclose a
semi-cone with a larger cone and apply the Lemma 1
to obtain a makespan of b + b↵� (see Figure 7 (a)). In

�↵

A

O

B

C

H

Figure 6: A dome of angle ↵. Illustration of proof of
Lemma 3. Solving dome(↵) using an enclosing rectan-
gle.
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Figure 7: Illustration of proof of Lemma 4. (a) a semi-
cone. (b) bounding a semi-cone with a simpler geomet-
ric object.

the following lemma, we state an upper bound b+ a↵�
when ↵ < ⇡

4 .

Lemma 4 There exists a strategy to wake up robots in
a semi-cone of angle ↵ < ⇡

4 and side lengths a and b
where a < b, in time at most b+ a↵�, where the initial
active robot starts at the apex of the semi-cone.

By having an upper bound for the makespan of a
dome and semi-cone, we are ready to improve the lower
bound on the number of robots needed to ensure a
makespan of 1 + 2

p
2.

Theorem 3 Let n � 281 be an integer. There exists a
strategy to wake up n robots in a unit disk in time less
than 1 + 2

p
2.

7 A Better Upper-bound On The Wake-Up Time

In this section, we present an improved approximation
on the makespan of n 2 N asleep robots located in a
unit disk on Euclidean plane. By a careful study of the
first step in the analysis of Lemma 2 one can propose
the following improvement on the monotonic strategy
mentioned for the unit crown of width w and angle ✓.
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Lemma 5 There exists a strategy to wake up all of the
robots in a crown of angle ✓ and width w starting with
two awake robots at a corner on the exterior side of the

crown in time at most ✓ +
⇣

�4

�3+✓

⌘
w.

Similar to Corollary 1, one can obtain the following
improved corollary for the makespan of robots starting
with one active robot at a corner of the interior side of
the crown.

Let q be the first asleep robot in an angular sweep
starting from the active robot p0. If p0 first awakes q
and then the two robots directly join at the exterior side
of the crown, we can then apply Lemma 1 to the rest of
the crown and obtain the following corollary:

Corollary 3 There exists a strategy to wake up all of
the robots in a crown of angle ✓  ⇡ and width w
starting with one awake robot at a corner on the in-
terior side of the crown in time at most crown(w, ✓) 
✓ +

⇣
1 + �4

�3+✓

⌘
w.

In the rest of this section, assume that the asleep
robots p1, p2, · · · , pn, are in sorted order based on their
distance from p0. That is, if di is the distance of pi from
p0, for each 1  i  n, then we have d1  d2  d3 
· · ·  dn. We introduce two basic strategies to wake up
the robots in set S, and by mixing these two strategies,
we get an upper bound for the makespan of n robots
located in a unit disk in the plane.

Strategy One

The first awake robot at the origin, p0, travels to the
closest robot, p1, at a distance of d1, and after activating
p1, both of the robots, p0 and p1, travel back to the
origin at a total time of 2d1. Recall that the point at
a distance of d2 from the origin is p2. Let ` be the line
that passes through the origin and p2. Next, p0 and
p1 follow di↵erent paths. p0 travels a distance of d2 to
activate p2. Then, p0 and p2 split the remaining region
into two equal crowns of angle 2⇡

3 and width 1 � d2
(See Figure 8). Simultaneously, p1 uses a strategy as
in the proof of Corollary 3 to wake up all the robots
within the crown of angle 2⇡

3 and width 1 � d2 with
the bisector `. Using Corollary 3, each of p0, p1 and
p2 wake up their designated crown in time of at most
2⇡
3 +

⇣
1 + �4

�3+ 2⇡
3

⌘
(1� d2).

Note that 2⇡
3 +

⇣
1 + �4

�3+ 2⇡
3

⌘
(1� d2) is decreasing as

function of d2. Since d1  d2, the total makespan of this
strategy, T1(d1), as a function of d1, is upper bounded
by:

T1(d1)  2d1 + d2 + crown(1� d2, 2⇡/3)

2⇡
3

2⇡
3

p1

p2
`

Figure 8: Strategy one. Three crowns of angle 2⇡
3 and

width 1� d1.

 1 + 2d1 +
2⇡

3
+

✓
�4

�3 + 2⇡
3

◆
(1� d2)

 1 + 2d1 +
2⇡

3
+

✓
�4

�3 + 2⇡
3

◆
(1� d1).

Strategy Two

Note that strategy one is good when d1 is small. We
use a simpler idea for the case when d1 is large, i.e.,
the robots are close to the boundary of the unit disk.
In this strategy, the first awake robot, p0, travels to
the closest point p1 at a distance of d1. Note that after
activating p1, the disk of radius d1 centered at the origin
has no robots to be activated. Next, p0 and p1 split the
remaining region into two crowns of angle ⇡ and width
1�d1. Therefore, using Corollary 3, the total makespan
of the second strategy, T2(d1), as a function of d1, is
upper bounded by:

T2(d1)  d1+crown(1�d1,⇡)  1+⇡+

✓
�4

�3 + ⇡

◆
(1�d1).

Best of Two Worlds

By analyzing the best makespan of these 2 strategies,
we obtain the following result:

Theorem 4 Let n be a non-negative integer. There ex-
ists a strategy to wake up n robots within a unit disk
starting with an awake robot in the center in time less
than 4.6211. The construction of such a wake-up tree
can be done in linear time.

It is worth mentioning that a wake-up tree of depth
at most 4.6211 can be done in linear time. Whenever
n is large, the construction of such a wake-up tree can
be done in linear time using Linear-Split-Strategy
using a partition of the disk into cones and applying
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linear time for every cone (cf. Appendix B of [4]). These
technical constructions are based on binary heaps and
do not require any ordering.
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