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Abstract. In this article we define a canonical decomposition of rooted
outerplanar maps into a spanning tree and a list of edges. This decom-
position, constructible in linear time, implies the existence of bijection
between rooted outerplanar maps with n nodes and bicolored rooted
ordered trees with n nodes where all the nodes of the last branch are col-
ored white. As a consequence, for rooted outerplanar maps of n nodes,
we derive:
– an enumeration formula, and an asymptotic of 23n−Θ(log n);
– an optimal data structure of asymptotically 3n bits, built in O(n)

time, supporting adjacency and degree queries in worst-case constant
time;

– an O(n) expected time uniform random generating algorithm.

1 Introduction

A graph is outerplanar if it can be drawn on the plane with non-intersecting
edges such that all the nodes lie on the boundary of the infinite face, also called
outerface. Characterization of outerplanar graphs has been given by Chartrand
and Harary [CH67]: a graph is outerplanar if and only if it has neither K2,3
nor K4 as a minor. A linear time recognition algorithm has been given by
Mitchell [Mit79]. Labeled and unlabeled outerplanar graphs can be randomly
generated in O(n4 log n) space and O(n2) time [BK03] after a preprocessing of
O(n5) time. Among graph properties, outerplanar graphs contain trees, have
tree-width at most two, and are exactly the graphs of pagenumber one [Bil92].
Recall that a graph G has pagenumber k if k is the smaller integer for which
G has a k-page embedding, also called book embedding. In such an embedding
the nodes are drawn on a straight line (the spine of a book), and the edges are
partitioned into k pages, each page consisting of non-intersecting edges.
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A planar map is a connected graph drawn on the sphere with non-intersecting
edges (see [CM92] for a survey). A planar map is outerplanar if all the nodes lie
on one face, called the outerface. For convenience, outerplanar maps are drawn
on the plane such that the outerface corresponds to the infinite face. A map is
rooted if one of its edges, the root, is distinguished and oriented. In this case,
the map is drawn on the plane in such a way that whenever traveling clockwise
around the boundary of the outerface, the tail of the root edge is traversed before
its head. A planted tree is the rooted planar map of a rooted tree such that the
tail of the root of the map coincides with the root of the tree. In the literature,
planted trees are also named ordered rooted trees. All the maps considered in
this paper are planar, rooted, and are simple (have no loops and multi-edges).

Some sub-classes of outerplanar maps are well-known. Planted trees and max-
imal outerplanar maps, i.e., the map of an outerplanar graph with the maximum
number of edges, are counted by the Catalan numbers. Finally, biconnected out-
erplanar maps can be seen as dissections of a convex polygon, and their number
can be counted by Schröder numbers. For these three sub-classes there exist
linear time random generation algorithms [ARS97,BdLP99,ES94].

Besides the combinatorial aspect and random generation, a lot of attention
is given in Computer Science to efficiently represent discrete objects. By ”effi-
ciently”, we mean that the representation should be succinct, i.e., the storage of
these objects requires few bits, and that the time to compute such representation
should be polynomial in its size. Fast manipulation of the so encoded objects
and easy access to a part of the code are also desirable properties. Typically,
adjacency query, i.e., check if two nodes are neighbors or not, and degree query,
i.e., how many neighbors a node has, should be given very fast.

For instance, a folklore encoding of n-edge planted trees, based on a clockwise
depth-first traversal, yields a representation with 2n − O(1) bits. This coding
length is asymptotically optimal since the number of possible n-edge planted
trees is the nth Catalan number 1

n+1

(2n
n

) ∼ 22n−O(log n). Completing this coding
by an efficient data structures of length o(n) bits, it has been shown in [MR01,
CLL01] that adjacency and degree queries can then be answered in constant
time, assuming that: 1) nodes of the tree are labeled according to the depth-first
traversal (i.e., the node i must be the ith node encountered in the clockwise
prefix order of the tree); and 2) standard arithmetic operations on integers of
Ω(log n) bits can be performed in constant time.

Outerplanar graphs are an interesting class of graphs because they are iso-
morphic to graphs of pagenumber one. Our contribution is an optimal 3n-bit
encoding for outerplanar maps. We point out that there exist many 1-page em-
beddings for a graph of pagenumber one. From the asymptotic formula of Flajolet
and Noy [FN99], any encoding of 1-page embeddings requires 3.37n bits1.

Let us sketch our technique. First we show that an outerplanar map admits
a canonical decomposition into a particular rooted spanning tree (called well-

1 In their article, 1-page embeddings are called non-crossing graphs.
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orderly tree and defined in Section 2), and a set of additional edges (u, v) such
that v is the first node after u (in a clockwise preorder of the tree) that is
not a descendant of v. This decomposition can be computed in linear time.
Then, we give three applications to this decomposition: enumeration formula
(Section 3), efficient encoding (Section 4), and random generation algorithm
with experiments (Section 5).

Hereafter we denote by Tn,d the number of n-node planted trees where the
depth of the clockwise last leaf is d (formulas for these numbers are given
in [Fel68,Kre70]). Our canonical decomposition gives a bijection between out-
erplanar maps and bicolored trees (more precisely planted trees in which the
nodes are colored either white or black), and where all the nodes (including the
root) of the clockwise last branch are colored white. Clearly these last objects
are counted by the following numbers:

∑n−1
d=1 2n−d−1Tn,d . From this bijection,

we show that the number of n-node outerplanar maps is asymptotically 23n

36n
√

πn
.

An information-theoretic optimal encoding algorithm is deduced from the
previous decomposition. It takes a O(n) time and uses at most 3n − 6 bits, for
n � 2, as follows: 2n−4 bits are used to encode the spanning tree, and n−2 bits
(at most) are used to encode the additional edges. Adding a standard o(n)-bit
data structure to this coding [MR01,CLL01], adjacency and degree queries can
be then answered in worst-case constant time.

Using a grammar to produce bicolored rooted ordered trees with n nodes
where all the nodes of the last branch are colored white, and using Goldwurm’s
algorithm [Gol95], a random outerplanar map can be generated uniformly with
O(n) space and O(n2) average time. Using Floating-Point Arithmetic [DZ99],
this average time complexity can be reduced to O(n1+ε). In Section 5, we propose
a O(n) expected time and O(n) space complexity generating algorithm. It can
generate outerplanar maps with a given number of nodes, or with a given number
of nodes and of edges.

Due to space limitations, some proofs are not given.

2 The Well-Orderly Tree of an Outerplanar Map

In [BGH03] the authors introduced the well-orderly trees, a special case of the
orderly spanning trees [CLL01]. Let T be a rooted spanning tree of a planar map
H. Two nodes are unrelated if neither of them is an ancestor of the other in T .
An edge of H is unrelated if its endpoints are unrelated. Let v1, v2 . . . , vn be the
clockwise preordering of the nodes in T . A node vi is well-orderly in H w.r.t.
T if the incident edges of vi in H form the following blocks (possibly empty) in
clockwise order around vi:

– BP (vi): the edge incident to the parent of vi;
– B<(vi): unrelated edges incident to nodes vj with j < i;
– BC(vi): edges incident to the children of vi;
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– B>(vi): unrelated edges incident to nodes vj with j > i; and
– the clockwise first edge (vi, vj) ∈ B>(vi), if it exists, verifies that vi is a

descendant of the parent of vj ;

v1

v15

v10

v11

v8

v6 v9

v14

v13

v12v2

v4

v3

v7

v5

Fig. 1. A rooted outerplanar map, and its well-orderly tree depicted with solid edges.

T is a well-orderly tree of H if all the nodes of T are well-orderly in H, and
if the root of T belongs to the boundary of the outerface of H (see Fig. 1 for an
example). Note that a well-orderly tree is necessarily a spanning tree. Observe
also that for every edge e of H, with e = (vi, vj) and i < j, we have either
e ∈ BC(vi) (i.e., e ∈ T ), or e ∈ B>(vi). For convenience, the clockwise first edge
of B>(vi), if it exists, is called the front edge of vi.

All planar maps do not admit a well-orderly tree. Actually, we have:

Lemma 1 ([BGH03]). Every rooted planar map admits at most one well-
orderly tree rooted at the tail of the root edge of the map.

We will show that in fact every outerplanar map admits a well-orderly tree. It
can be computed by the following recursive algorithm Traversal. H is the rooted
outerplanar map, and r is the tail of its root edge. Traversal(H, ∅, r) returns the
well-orderly tree T of H rooted at r, the second parameter is the current set of
edges of the tree.

Theorem 1. Every rooted outerplanar map H has a well-orderly tree T , com-
putable in linear time, rooted at the tail of the root edge of H. Moreover, for
every node u, if (u, v) ∈ B>(u), then v is the next unrelated node with u in the
clockwise preordering of T . In particular, |B>(u)| � 1 for every u.

Proof. Let T be the set of edges returned by Traversal(H, ∅, r) (cf. Algorithm 1),
where r is the tail of the root edge of H. Let us denote by Ti and by vi respectively
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Algorithm 1 Traversal(H, T, u).
C ← {(u, v) ∈ H | v /∈ T}
T ← T ∪ C
for all edges (u, v) ∈ C taken in the clockwise order around u do

T ← Traversal(H, T, v)
end for
return T

the second and the third parameters of the ith call of Traversal. We have T1 = ∅

and v1 = r. Note that there are exactly n calls to Traversal, where n is the number
of nodes of H. By induction, Ti is a tree with i nodes, for every i ∈ {1, . . . , n}.
Therefore Tn = T is a spanning tree of H. An important observation is that the
clockwise preordering of the nodes of T is precisely v1, . . . , vn, and that Ti is a
subtree of Ti+1, for i ∈ {1, . . . , n − 1}.

This algorithm can be easily implemented to run in O(n) time. Let us show
that the tree T satisfies the properties of Theorem 1. This is done thanks to the
following properties.

Unrelated Edges. Every edge of H is either in T , or an unrelated edge. Indeed,
let (vi, vj) be any edge with i < j. Clearly, vj is not an ancestor of vi. When vi

is being treated: 1) if vj ∈ Ti, then vj is not a descendant of vi, and thus (vi, vj)
is an unrelated edge; and 2) if vj �∈ Ti, then vj becomes a child of vi in Ti+1,
thus an edge of Tn since Ti is a subtree of Ti+1.

Blocks. The incident edges of vi form clockwise around vi the four blocks
BP (vi), B<(vi), BC(vi), and B>(vi). Since T is a spanning tree of a planar
map, all the edges of B<(vi) are (clockwise) after BP (vi) and before the edges
of B>(vi). Let us show that the edges of BC(vi) are after the edges of B<(vi)
and before the edges of B>(vi).

Let us consider the ith call of Traversal. Let (vi, vt) be the last edge (in
clockwise order around vi) toward a node that is before vi in Ti. Let vk be the
nearest common ancestor of vi and vt. The path from vk to vi, the edge (vi, vt)
and the path from vt to vk defines a region of the plane, R, distinct from the
outerface. Since H is outerplanar there is no node inside the region R. So all the
neighbors of vi that are not in Ti follow the edge (vi, vt) in the clockwise order
around vi. Hence, the edges of BC(vi) are after the edges of B<(vi).

The same reasoning can be done to show that the edges of BC(vi) are before
the edges of B>(vi).

Descendant of the Parent. For every (vi, vj) ∈ B>(vi), vi is a descendant of
the parent of vj . Assume (vi, vj) ∈ B>(vi). In particular (vi, vj) /∈ T . When vi

is being treated, the node vj must be in Ti, otherwise vj becomes a child of vi

in Ti+1, and thus in T . By construction, the only nodes vj ’s of Ti that are after
the node vi in the prefix clockwise preordering of Ti are such that their parent
is an ancestor of vi.
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At this point, we have proved that every node in T is well-orderly, and thus
T is a well-orderly tree of H.

Next Unrelated Node. Let (vi, vj) ∈ B>(vi). Let vk be the first unrelated
node with vi clockwise after vi in T . Assume that vj �= vk, so i < k < j. Let vt

be the parent of vj in T . The cycle composed of the path in T from vt to vi, and
of the edges (vi, vj) and (vj , vt) defines a region of the plane, R, distinct from
the outerface. Because i < k < j, vk must belong to R or to its boundary. As vj

is the only node of the boundary of R that is unrelated with vi, vk must belong
to R: a contradiction with the fact that H is an outerplanar map. It follows that
vj = vk. Therefore, we have showed that (vi, vj) ∈ B>(vi) implies that vj is the
next unrelated node with vi in T .

This completes the proof of Theorem 1. �

Combining Lemma 1 and Theorem 1, it is clear that an outerplanar map H
has an unique decomposition into a well-orderly tree T , and a set of edges of the
kind (u, v) ∈ B>(u), where v is the next unrelated node after u in T . (Recall that
an edge of H belongs either to T or to a B> block). Conversely, given T , and
a piece of information on whether B>(u) is empty or not for each node u, one
can uniquely determine the corresponding rooted outerplanar map. The coding
of the cardinality of each B> block can be done by coloring the nodes of T as
follows: if |B>(u)| = 0, u is colored white, and if |B>(u)| = 1, u is colored black.
Observing that for every node u of the clockwise last branch of T , |B>(u)| = 0,
we obtain:

Corollary 1. There is a bijection, computable in linear time, between the n-
node bicolored rooted trees where all the nodes of the last branch (including the
root) are colored white, and the n-node rooted outerplanar maps.

Recall that a graph (or a map) is k-connected if G has more than k nodes
and if, for every subset X of fewer than k nodes, G \ X is connected [Die00].
biconnected is a synonym for 2-connected.

Theorem 2. There is a bijection, computable in linear time, between the (n−1)-
node bicolored rooted trees with a white root, all leaves colored in black, and the
set of n-node rooted biconnected outerplanar maps.

Observe that if the well-orderly tree of an outerplanar map H has its
clockwise last leaf of depth d, then from Corollary 1 H has no more than
(n−1)+n− (d+1) = 2n−2−d edges. In particular, the depth of the last leaf of
the well-orderly tree of any maximal outerplanar map (i.e., having 2n−3 edges)
must be d = 1. As the well-orderly tree is unique, this yields another bijective
proof of the well known following result:

Corollary 2. There is a bijection, computable in linear time, between maximal
n-node outerplanar maps and planted trees with n − 1 nodes.
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3 Enumeration of Outerplanar Maps

Let Tn,d be the number of rooted n-node plane trees whose clockwise last leaf is
of depth d. These numbers are called the ballot numbers (or Delannoy numbers),
and we have [Fel68,Kre70]:

Tn,d =
d

2n − 2 − d

(
2n − 2 − d

n − 1 − d

)
, for all n > d > 0.

So, there are exactly 2n−1−dTn,d bicolored trees whose all the nodes of the last
branch (including the root of the tree) are colored white. Let Mn be the number
of n-node outerplanar maps.

Theorem 3. For all n � 2, Mn =
n−1∑

d=1

2n−d−1Tn,d, and Mn ∼ 23n

36n
√

πn
.

Theorem 4. The number Mn,m of rooted outerplanar maps with n � 3 nodes
and m � n − 1 edges is:

Mn,m =
2n−2−m∑

d=1

(
n − d − 1
m − n + 1

)
Tn,d .

4 Coding Supporting Adjacency and Degree Queries

From Corollary 1, every outerplanar map with n nodes can be represented by
a bicolored tree with n nodes. A standard coding for n-node planted trees uses
2n − 4 bits if n � 2, and the colors can be stored using n − 2 bits at most,
observing that the color associated to the last branch (containing the last leaf
and the root) is known (white). For the tree encoding, we use a clockwise depth-
first traversal of the tree, each edge being traversed twice starting from the root.
During the traversal, we output “1” if the edge is traversed for the first time,
and “0” otherwise. This leads to a 2(n − 1)-bit encoding. Actually, if the tree
has at least one edge (n � 2) two bits can be saved observing that the previous
coding always starts we “1” and ends with “0”.

This leads to a 3n − 6 bits encoding. By Lemma 3, the length of this coding
is asymptotically optimal, up to an adding factor of O(log n) bits. It follows:

Theorem 5. Every n-node rooted outerplanar map or every outerplanar graph,
n � 2, can be coded (and decoded) in O(n) time and using a representation on
at most 3n − 6 bits.

In the following, we show how to extend this coding with an extra o(n)
bits (still constructible in linear time) so that the data structure supports adja-
cency and degree queries in worst-case constant time. For that we present below
efficient well-known data structures for binary strings and balanced string of
parentheses.
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4.1 Constant Time Queries in Strings of Parentheses

Let S be a string of symbols defined over a given alphabet. We denote by S[i]
the ith symbol of S, i � 1. Let select(S, i, �) be the position of the ith � in S.
Let rank(S, j, �) be the number of symbols � before or at the jth position of S.
That is if select(S, i, �) = j then rank(S, j, �) = i.

Now, let S be a string of open and closed parentheses, i.e., � ∈ {(, )}. Two
parentheses S[i] = ( and S[j] = ) match if i < j and the difference of the
number of open and closed parentheses between them is null. The string S is
balanced if for each parenthesis, there is a matching parenthesis. Let match(S, i)
be the position in S of the matching parenthesis of S[i]. S[k] is enclosed by S[i]
and S[j] if i < k < j. Let enclose(S, i1, i2) be the closest matching parenthesis
pair (j1, j2) that encloses S[i1] and S[i2]. Finally, let wrapped(S, j) denote twice
the number of pairs of matching parentheses (i1, i2) such that enclose(S, i1, i2) =
(j, match(S, j)).

The following results are valid in the word-RAM model, in which standard
arithmetic operations on binary words of length Ω(log n) can be done in constant
time.

Lemma 2 ([MR01,CLL01]). For every balanced string S of parentheses (or
a binary string) of length O(n), the operations select, rank, match, enclose, and
wrapped can be done in worst-case constant time using an auxiliary table of
o(|S|) bits and O(|S|) preprocessing time.

Actually, Lemma 2 holds for the operations select and rank, even if S is not
balanced.

4.2 Coding of Outerplanar Maps

We can associate to any planted tree T a balanced string of parentheses (or Dyck
word) as follows: during a clockwise depth-first traversal of T starting at the root,
whenever an edge is traversed for the first time, output an open parenthesis and
otherwise output an closed parenthesis. For convenience, an open parenthesis
(resp. a closed parenthesis) is added at the beginning (resp. at the end) of the
output string. One can think this latter transformation as an extra edge entering
in the root of T . If T has n nodes, the final string of parentheses contains 2n
symbols as each of T (plus the extra edge) is traversed twice. The final string is
called the clockwise prefix coding of T .

Consider T an n-node planted tree, and its clockwise prefix coding ST . Let
v1, . . . , vn be the clockwise preordering of the nodes of T . To perform efficiently
queries on T , we label the node vi by its index i, so that an adjacency query
between the nodes vi and vj is simply the pair {i, j}. By construction of the
clockwise prefix coding, the ith open parenthesis corresponds to the edge of
T entering in vi. And, the matching parenthesis of the ith open parenthesis
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corresponds to the edge of T leaving vi. In other words, each node vi can be seen
as a pair (i, j) of matching parentheses, i.e., such that ST [i] matches with ST [j]
in ST . See Example 1.

Lemma 2 and the clockwise prefix coding leads to two useful operations for
the tree that can be done in constant time: adjacency and degree.

Two nodes are adjacent in T if one of them is the parent of the other one.
One can determine the parent of a node vi finding the position p of the ith open
parenthesis using p = select(ST , i, (), and the position of the closest enclosing
pair (j1, j2) of (p, match(ST , p)) with (j1, j2) = enclose(p, match(ST , p)). Then,
the parent of vi is vj where j = rank(ST , j1, ().

As for the degree, one can check that the number of children of vi is
1
2wrapped(ST , select(ST , i, ()). We just have to add 1 if vi is not the root, i.e., if
i �= 1.

From the previous explanations, one can claim the following lemma:

Lemma 3 ([CLL01]). Let T be an n-node planted tree and its clockwise prefix
coding ST . The parent, degree and adjacency of a node can be done in constant
time using an auxiliary table of o(|ST |) bits and a O(n) preprocessing time.

We encode an outerplanar map H with two binary strings:

1. ST of length 2n: the clockwise prefix coding of the well-orderly tree T of H;
2. SB of length n: a binary string such that SB [j] = |B>(vi)|, where vi is the

node corresponding to the jth closed parenthesis of ST .

Given j, i can be obtained by i = rank(ST , match(ST , select(ST , j, ))), (). Ob-
serve that if j > n − 2, then vi belongs to the last branch of T , and thus
|B>(vi)| = 0. Thus, SB can reduce to the first n−2 entries. To perform |B>(vi)|
given i, one can compute j = rank(ST , match(ST , select(ST , i, ()), )), and return
SB [j].

The sequence of nodes vi1 , vi2 , . . . , vij
is a branch of T if vij is a leaf, and if for

every t ∈ {1, . . . , j − 1}, vit+1 is the clockwise last child of vit
. The last branch

consists therefore of all the nodes of the path between the root and the clockwise
last leaf of T . The branches partition the nodes of T and there is exactly one
branch per leaf. One can check that a branch of T corresponds to a maximal
block of closed parentheses in ST .

Example 1. The outerplanar map of Fig. 1 can be encoded by the following two
strings: ST = (((()((()))(()()))())((())())) and SB = 101110111010000.
The sequence of nodes v3, v8, v10 is a branch. To know if node v3 has a front edge,
do the following sequence of operations: p = select(ST , 3, () = 3, match(ST , p) =
18, rank(ST , 18, )) = 8. Since SB [8] = 1, node v3 has a front edge.

Lemma 4. Let vi1 , . . . , vij be a branch of T . Then, |B<(vij+1)| =
∑j

t=1 |B>(vit)|. Moreover, |B<(vij+1)| can be computed in constant time.
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Theorem 6. Every rooted outerplanar map with n nodes admits a 3n + o(n)-
bit encoding, built in linear time, such that adjacency and degree queries can be
computed in worst-case constant time.

Proof. We proposed a 3n-bit encoding for a rooted outerplanar map. Adding
auxiliary tables of size o(n), Lemmas 2 and 3 provide us constant time for com-
puting the parent and the degree of vi in T .

Adjacency: it remains to check the adjacency for the edges of H that does not
belong to T . Nodes vi and vj , with i < j, are adjacent in H if vj is the next
unrelated node after vi (that is j = r − 1 where vr is the leaf of the branch of
vi) and if |B>(vi)| = 1.

Degree: the degree of node vi is the sum of the degree in the tree T (see
Lemma 3), the cardinality of B<(vi) (see Lemma 4) and of B>(vi). �

Starting from a connected outerplanar graph, we can compute a rooted outer-
planar map using the algorithm presented in [CNAO85]. So the previous results
on outerplanar maps can also be applied to outerplanar graphs.

5 Uniform Random Generation

To randomly generate an outerplanar map, one can randomly generate a bi-
colored tree where the nodes of the last branch are colored white. Thanks to
Corollary 1, one can then construct in linear time the corresponding random
outerplanar map.

Theorem 7. A rooted outerplanar map with n nodes or with n nodes and m
edges can be generated uniformly at random in O(n) expected time.

Proof. Let Bn,b be the set of all bicolored rooted trees with n nodes such that:

1. the root is colored white;
2. the clockwise last leaf is colored white; and
3. there are exactly b nodes colored black.

Let Bn =
⋃n−2

b=0 Bn,b. From the bijection between outerplanar maps and some
bicolored trees (cf. Corollary 1), the outerplanar maps with n nodes are in bi-
jection with a subset, say M̃n, of bicolored trees. Clearly, M̃n ⊂ Bn. Similarly,
the outerplanar maps with n nodes and m edges are in bijection with a subset,
say M̃n,m, of bicolored trees. The trees of M̃n,m have exactly m− (n− 1) black
nodes, so M̃n,m ⊂ Bn,m−n+1.

The algorithm we proposed is an accept-reject algorithm: it consists in re-
peating a uniformly generation of an element of Bn (or of Bn,m−n+1) until we get
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an element of M̃n (or of M̃n,m). This clearly provides a uniform random gener-
ation on the set M̃n (or on M̃n,m), and thus on the corresponding outerplanar
maps.

A rooted tree can be generated in linear time using for example the Arnold
and Sleep algorithm [AS80]. The colors of the n−2 nodes are colored black with
probability 1/2 (recall that the root and the last leaf are forced to be colored
white by definition of Bn). This provides an O(n) time algorithm to generate an
element of Bn.

To generate an element of Bn,m−n+1, we have to select exactly b = m−n+1
black nodes among n − 2 (the root and the last leaf are forced to be colored
white). Selecting b elements among n − 2 can be done in O(n) time [Wil77]
(the procedure uses O(n) arithmetic operations on O(log n) bit integers). This
provides an O(n) time algorithm to generate an element of Bn,m−n+1.

Testing whether T ∈ Bn belongs to M̃n (or whether T ∈ Bn,m−n+1 belongs
to M̃n,m) clearly takes O(n) time: it suffices to test whether all the inner nodes
of the last branch are white or not.

As the bijection between bicolored trees and maps is linear, it remains to
show that the average number of rejects in the above procedure is bounded by
a constant.

Observe that every tree T ∈ Bn whose the last leaf is of depth 1 belongs to
M̃n and to M̃n,m−n+1 as well. Thus the probability to accept a tree T ∈ Bn

in M̃n (or in M̃n,m−n+1) is at least (we use the fact that
∑n−1

d=1 Tn,d = cn−1
and Tn,1 = cn−2, where cn = 1

n+1

(2n
n

)
is the nth Catalan number counting the

number of n-edge rooted trees):

Tn,12n−2

|Bn| =
Tn,12n−2

∑n−1
d=1 Tn,d2n−2

=
cn−2

cn−1
=

n

4n − 6
>

1
4

.

It follows that the average number of rejects is at most 4, that completes the
proof. �

The algorithm presented in the proof of Theorem 7 can be enhanced into
an anticipated-reject version. In this version, the bicolored tree is constructed
from the end (so from the last branch). As soon an inner black node appears in
the last branch, we reject. The advantage of this version is that fewer random
bits are needed to generate an outerplanar map since the expected length of the
last branch is O(1), so only O(1) bits would be wasted before acceptation of the
whole bicolored tree. An implementation of the enhanced algorithm is available
in the PIGALE Library (http://pigale.sourceforge.net/).
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