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Abstract

We show that every comparability graph of any two-dimensional poset over n elements (a.k.a. permutation graph) can be
preprocessed in O(n) time, if two linear extensions of the poset are given, to produce an O(n) space data-structure supporting
distance queries in constant time. The data-structure is localized and given as a distance labeling, that is each vertex receives a label
of O(log n) bits so that distance queries between any two vertices are answered by inspecting their labels only. This result improves
the previous scheme due to Katz, Katz and Peleg [M. Katz, N.A. Katz, D. Peleg, Distance labeling schemes for well-separated graph
classes, Discrete Applied Mathematics 145 (2005) 384–402] by a log n factor.

As a byproduct, our data-structure supports all-pair shortest-path queries in O(d) time for distance-d pairs, and so identifies in
constant time the first edge along a shortest path between any source and destination.

More fundamentally, we show that this optimal space and time data-structure cannot be extended for higher dimension posets.
More precisely, we prove that for comparability graphs of three-dimensional posets, every distance labeling scheme requires
Ω(n1/3) bit labels.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The dimension of a partially ordered set (or poset for short) P = (V, <) is a fundamental invariant. It is the
minimum number d of totally ordered sets (V, <1), . . . , (V, <d) whose intersection is P , i.e., x < y if and only if
x <i y for all i ∈ {1, . . . , d}. Each total order<i is called a linear extension of P , and a k-dimensional poset is a poset
of dimension at most k.

The comparability graph of a poset P = (V, <) is the graph G = (V, E) such that {x, y} ∈ E if and only if
x < y or y < x . The important point is that all posets with the same comparability graph have the same dimension [5,
Section 7.6]. So the comparability graph is definitively a fundamental tool for the study of posets.

Of special interest are the two-dimensional posets because they can be characterized in terms of a single
ordering [15]. It is NP-complete to recognize posets of dimension three [38] whereas linear time (linear in the
size of the relation) algorithms exist for two-dimensional posets [28]. Actually, the comparability graphs of two-
dimensional posets are exactly the permutation graphs, namely the intersection graphs of straight segments between
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two parallel lines [4]. Intersection graphs are graphs in which vertices are mapped to objects, with the vertices defined
to be adjacent if and only if the corresponding objects have nonempty intersection. See [29] for a comprehensive
introduction to the intersection graphs.

This paper deals with the problem of distance computation and distributed abilities of comparability graphs.
Commonly, when we make a query concerning a set of nodes in a graph (adjacency, distance, connectivity, etc.),
we need to make a global access to the structure. In our approach, the compromise is to store the maximum of
information in a label associated with a vertex to have directly what we need with a local access. Motivation of
localized data-structures in distributed computing is surveyed and widely discussed in [19].

We are especially interested in the distance labeling problem, introduced in [30]. The problem consists in labeling
the vertices of a graph to compute the distance between any two of its vertices x and y using only the information
stored in the labels of x and y, without any other source of information. The main parameters taken into account when
designing a solution are: (1) length (in bits) of the labels; (2) time complexity to decode the distance from the labels;
and (3) time complexity to preprocess the graph and to compute all the labels.

1.1. Related works

Distance computation in graphs is one of the most fundamental graph algorithmic problem. Computing the distance
matrix of a general graph is strongly related to Boolean matrix multiplication [13], and achieving this task as quickly
as possible is a widely open problem.

However, the time complexity of this problem is known, and can be reduced significantly from the naive O(n3)

upper bound, for many families of graphs: planar graphs [12,25,26,36], bounded tree-width graphs [6], interval
graphs [3,7,18], etc.

Beyond the classical all-pair distance problem, whose goal is to preprocess (possibly linearly) a graph and to
produce a data-structure supporting distance or shortest-path queries in the minimum time complexity, the distance
labeling problem is a variant in which the queries must be answered locally, by looking at the information related to
the concerned vertices only. Introduced in [30], it generalizes adjacency labeling [1,23] whose goal is only to decide
whether the distance is 1 or not between any two vertices. At this point, it is worth mentioning that any distance
labeling scheme on a family F of graphs with `(n) bit labels converts trivially into a non-distributed data-structure
for F of O(`(n) · n/ log n) space supporting distance queries within the same time complexity, being assumed that a
cell of space can store Ω(log n) bits of data.

The main results on the field are that general graphs support a distance labeling scheme with labels of O(n)
bits [20], and that trees [1,30], bounded tree-width graphs [20], distance-hereditary graphs [17], bounded clique-
width graphs [11], some non-positively curved plane graphs [8], interval and permutation graphs, all support distance
labeling schemes with O(log2 n) bit labels. There are also deep results concerning approximated distance labeling
schemes that we will not discuss here, e.g., see [16,34,36,37].

The O(n) bit upper bound is tight for general graphs, and a lower bound of Ω(log2 n) bit on the label length is
known for trees [20], implying that all the results mentioned above are tight as well, except for interval and permutation
graphs that does not contain trees. Recently, [18] showed an optimal bound of O(log n) bits for interval graphs and
circular-arc graphs.

Concerning permutation graphs, we should mention the related work of [31]. It is shown how to compute one fixed
BFS tree and DFS tree in O(n) and O(n log log n) time respectively when the permutation of the graph is given.
Although original, the technique is limited; it does not allow us to choose arbitrarily the root of the trees.

1.2. Our results

In this paper, we are only interested in comparability graphs, and in particular the permutation graphs, the
comparability graphs of two-dimensional posets. This latter family is well known and have a lot of valuable properties
due to its characterizations as a partially ordered sets [15], as an intersection graph of segments between two parallel
lines [21] or as an Asteroidal Triple-free graph [10].

We show that permutation graphs with n vertices enjoy a distance labeling with labels of length O(log n) bits,
more precisely 9dlog ne + 6 bits. The distance can be computed in constant time, and all the labels are computed in
O(n) time if a realizer (the two linear extensions of the poset) is given. (Such realizer a can be obtained in O(n +m)
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time [28] otherwise, m is the number of edges). This result has optimal complexities (label length, distance decoder
time complexity, and preprocessing time complexity). It improves within a log n factor on the label length of the
previous result of Katz, Katz and Peleg [24].

We also show that 3 log n bits for the label length of any labeling distance scheme is inevitably in the worst-case. As
intermediate combinatorial result to prove this latter Information-Theoretic lower bound, and of independent interest,
we prove that there are 2Ω(n log n) unlabeled permutation graphs with n vertices.

As remarked previously, our labeling scheme leads to an optimal O(n) space data-structure supporting distance
queries in constant time, and computable in O(n) time. We also show how to adapt the data-structure such that a
length-d shortest path can be extracted in O(d) time for any distance-d pair of vertices. One can also use our localized
data-structure to identify the first shortest-path edge, and we therefore present a new shortest-path compact routing
scheme for permutation graphs, improving the result of [14]. All these results can be extended to circular permutation
graphs, a natural generalization of permutation graphs.

Looking for a generalized scheme with O( f (d) log n) bit labels for all comparability graphs of d-dimensional
posets, we have proved that unfortunately no such function f (d) can exist. More precisely, for every distance labeling
scheme, there are comparability graphs of posets of dimension three that requires Ω (n1/3) bit labels. This makes a
difference between comparability graphs of two- and three-dimensional posets for distance computation. This could
not be observed when only adjacency is required, since O(log n) bit labels suffices for comparability graphs of any
fixed dimension posets.

1.3. Outline of the paper

Let us sketch our distance labeling scheme. We use a two-dimensional geometric representation of the permutation
graph, each vertex being associated with a point of N2, and u is adjacent to v if and only if v is in the South-
East or North-West quadrant around u (cf. Fig. 2). For our purpose, two sets of points (or vertices) are of special
interests: those with no neighbors in their North-West quadrant (call A), and those with no neighbors in their South-
East quadrant (call B). Intuitively, one can always construct a shortest path between non-adjacent vertices by using
only edges alternating between A and B. The main difficulty resides in deciding whether the first edge must be incident
to a vertex of A or of B.

The first trick is to treat differently short and long distances. We entirely characterize distances 63 by comparing
the coordinates of six specific vertices spread around each vertex (three belong to A and three to B). Then, for
long distances, i.e., distances >4, we show that they reduce to the distance computation between vertices of two
intermediate graphs, G A and G B , defined on respectively the vertices of A and of B. The edges of G A and G B are
entirely determined by an asymmetric relation between the points of A and of B, and we show that a distance labeling
for these graphs with O(log n) bit labels is possible. The distance is then computed by evaluating the distance in the
graphs G A and G B between the six points associated with the source and the six points associated with the destination.

Finally, after several optimizations, the resulting data-structure is extremely simple. It is composed of 9 integers of
{0, . . . , n − 1} plus 6 bits. The distance decoder simply consists of a constant number of additions and comparisons
on these integers.

Background and preliminaries are presented in Section 2, and the implementation of the scheme is presented
in Section 3. An extension of the data-structure for all-pair shortest-path queries, compact routing, and to circular
permutation graphs is discussed in Section 4. Several lower bounds are presented in Section 5 before a conclusion and
a discussion in Section 6.

2. Preliminaries

We consider simple undirected graphs. Moreover, throughout this paper, we will assume that graphs are connected.
We denote by dG(u, v) the distance between u and v in G, the minimum number of edges of a path connecting u to
v. For a vertex u of graph G, we denote by N (u) the set of neighbors of u, and N [u] := N (u) ∪ {u}.

A permutation graph is an intersection graph of straight segments between two parallel lines [21]. In Fig. 1,
Segment 1 intersects the segments 2, 5, 6, 7, so in the permutation graph vertex 1 is adjacent to the vertices 2, 5, 6, 7.
More formally, a permutation graph is isomorphic to a graph G = (V, E) with V = {1, . . . , n} such that there exists
a permutation π of V , called realizer of G, satisfying: u is adjacent to v if and only if u < v and π−1(u) > π−1(v).
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Fig. 1. A permutation graph G with the realizer π = (5, 7, 2, 6, 1, 11, 8, 10, 4, 3, 9).

Fig. 2. Graphic representation of the permutation graph of Fig. 1.

It is not difficult to see that the isomorphism and the permutation π can be combined to form two linear extensions
of a two-dimensional poset. Actually, permutation graphs are exactly the comparability graphs of two-dimensional
posets [4].

We can draw in the plane a permutation graph G with the realizer π , by associating with each vertex u ∈ {1, . . . , n}
the point of coordinates (u, π−1(u)). Within this graphic representation, the neighbors of u are the points located in
the North-West and South-East quadrants around u (see Fig. 2 for an example).

Hereafter, we assume that G = (V, E) is a given connected permutation graph, and π a realizer of G. Since
V = {1, . . . , n}, we use the total ordering on natural numbers as total ordering of the vertices of G. We partition the
neighbors of u in the subsets N+(u) := {v ∈ N (u) | v > u} and N−(u) := {v ∈ N (u) | v < u} (see the left side of
Fig. 2 for a graphical interpretation).

The following lemma is used in many places in the paper. The proof is obvious using the graphic representation.

Lemma 2.1. For all u, v, w ∈ V such that u 6 v 6 w, if {u, w} ∈ E, then {u, v} ∈ E, or {v,w} ∈ E, and if
{u, w} 6∈ E, then {u, v} 6∈ E or {v,w} 6∈ E.

Proof. The statement is trivially true if u = v or v = w. So let us assume that u < v < w.
Assume that {u, w} ∈ E . Then w ∈ N+(u). If π−1(v) < π−1(u), then v ∈ N+(u) so that {u, v} ∈ E . And,

if π−1(v) > π−1(u), then w ∈ N+(v) so that {v,w} ∈ E . Assume that {u, w} 6∈ E . If π−1(v) > π−1(u), then
{u, v} 6∈ E . And if π−1(v) < π−1(u), then {v,w} 6∈ E . �

We distinguish two particular subsets of vertices, A and B depicted in black and gray in Fig. 2, defined by
A := {u ∈ V | N−(u) = ∅} and B := {u ∈ V | N+(u) = ∅}. Note that A and B are nonempty stables of G.
If G is connected and has at least one edge, then A ∩ B = ∅. Moreover, we check that G is bipartite if and only if
V = A ∪ B.
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Lemma 2.2. For every u ∈ V , there exist a−(u), a+(u) ∈ A such that a−(u) 6 a+(u) and N [u] ∩ A =
[a−(u), a+(u)] ∩ A. Similarly, there exist b−(u), b+(u) ∈ B such that b−(u) 6 b+(u) and N [u] ∩ B =
[b−(u), b+(u)] ∩ B.

Proof. We only prove Lemma 2.2 for the first statement, about the set A. The second statement, about set B, can be
proved similarly.

Let x := min N [u], which exists since N [u] is nonempty. Let us show that x ∈ A, and thus that N [u] ∩ A 6= ∅. If
x = u, then N−(u) = ∅, and thus u ∈ A and u = min N [u]. So, x = u ∈ A. So assume that x 6= u. It follows that
x ∈ N−(u). If x 6∈ A, then N−(x) 6= ∅ and contains at least a vertex, say y. We have y < x < u, and y ∈ N−(x)
and x ∈ N−(u). So, y ∈ N [u]: a contradiction with the definition of x .

Therefore N [u] ∩ A is nonempty, and in particular N [u] ∩ A ⊆ [x, y] ∩ A, where x = min{N [u] ∩ A} and
y = max{N [u] ∩ A}. Let us show that actually N [u] ∩ A = [x, y] ∩ A.

So let w ∈ [x, y] ∩ A, and assume that w 6∈ N [u] ∩ A. It follows that w ∈ A, and that {w, u} 6∈ E . Since A is a
stable, w is adjacent to neither x nor y. If w 6 u, then we have x 6 w 6 u and since {x, u} ∈ E and {w, u} 6∈ E by
Lemma 2.1, w must be adjacent to x : a contradiction. Similarly, if w > u, then u 6 w 6 y yielding to w adjacent to
y: a contradiction.

Therefore, such w does not exist and so [x, y] ∩ A ⊆ N [u] ∩ A completing the proof. �

According to Lemma 2.2, N [u] ∩ A and N [u] ∩ B are never empty and are consecutive in A and B respectively.
Also observe that necessarily a−(u) = min{N [u] ∩ A} and a+(u) = max{N [u] ∩ A}, and similarly for b−(u) and
b+(u).

Lemma 2.3. Let u < v be two non-adjacent vertices. Then, a−(u) 6 a−(v), a+(u) 6 a+(v), b−(u) 6 b−(v), and
b+(u) 6 b+(v).

Proof. First let us show that a+(u) 6 u. Indeed, if a+(u) > u, then {a+(u), u} ∈ E (a+(u) 6= u). Then,
a+(u) ∈ N+(u), or equivalently u ∈ N−(a+(u)): a contradiction with the fact that N−(a+(u)) = ∅. So, since
a−(u) 6 a+(u), we also have that a−(u) 6 u.

Assume that a−(v) < a−(u). Then we have a−(v) < a−(u) 6 u < v, i.e., a−(v) < u < v. We have
{a−(u), v} ∈ E , and by assumption {u, v} 6∈ E , so by Lemma 2.1 u is adjacent to a−(v). It follows that there is
a vertex a−(v) ∈ A smaller than a−(u) and adjacent to u: a contradiction with the definition of a−(u). Therefore,
a−(v) > a−(u).

Assume that a+(v) < a+(u). Then, similarly, we have a+(v) < a+(u) 6 u < v, i.e., a+(v) < a+(u) < v.
Again, by Lemma 2.1, since {a+(v), v} ∈ E and {a+(v), a+(u)} 6∈ E , v must be adjacent to a+(u). So there is
a vertex a+(u) ∈ A greater than a+(v) and adjacent to v: a contradiction with the definition of a+(u). Therefore,
a+(v) > a+(u).

The proof that b−(u) 6 b−(v) and b+(u) 6 b+(v) is similar. �

Lemma 2.4. Let u < v be two non-adjacent vertices. Then there exists a shortest path u, w1, . . . , wk−1, v such that
w1 ∈ {a+(u), b+(u)}, and, if dG(u, v) > 3, wk−1 ∈ {a−(v), b−(v)}.

Proof. Let P = p0, p1, . . . , pk−1, pk be a shortest path between u = p0 and v = pk with k = dG(u, v) > 2.
We consider the first two edges of P and show that p1 can be replaced by a vertex satisfying the statement of the

lemma. First let us show that p0 < p2. If p2 < p0, then from the graphic representation we have:

(1) v belongs to the North-East quadrant of u = p0;
(2) p2 belongs to the South-West quadrant of u; and
(3) there is no edge connecting the South-West to the North-East quadrant of u.

Therefore, because R2 is connected, every path from u to v through p2 has to contain an intermediate vertex w
located either in the North-East or South-West quadrant of u. A contradiction, sincew would be adjacent to u resulting
in a path shorter than P .

Observe that since {p0, p2} 6∈ E , either p1 ∈ N−(p0) ∩ N−(p2) or p1 ∈ N+(p0) ∩ N+(p2).
Assume that p1 ∈ N−(p0) ∩ N−(p2). It suffices to show that a+(p0) is adjacent to p2 (and so w1 can be chosen

as a+(u)). We have a+(p1) ∈ N (p0) and a+(p1) ∈ N (p2) as well. In other words, a+(p1) ∈ [a−(p0), a+(p0)] ∩
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Fig. 3. The proper interval graphs G A and G B from Fig. 2.

[a−(p2), a+(p2)] implying a−(p2) 6 a+(p0). By Lemma 2.3 applied on the non-adjacent vertices p0 < p2, we
obtain a+(p0) 6 a+(p2), and thus a−(p2) 6 a+(p0) 6 a+(p2). It follows that a+(p0) ∈ [a−(p2), a+(p2)], and
therefore a+(p0) is adjacent to p2.

The case p1 ∈ N+(p0) ∩ N+(p2) is similar by proving that b+(p0) is adjacent to p2.
Finally, if u and v are at distance >3, i.e., k > 3, then we can consider the two last edges of P along the vertices

pk−2, pk−1, pk and show that pk−1 6= p1 can be replaced by a vertex satisfying the statement of the lemma. The proof
is symmetric exchanging the role of pk with p0, pk−1 with p1, and pk−2 with p2, and taken into account the fact that
now pk > pk−2. �

Hereafter, we denote by G A the intersection graph of the family {[b−(u), b+(u)] | u ∈ A}. Similarly, we denote by
G B the intersection graph of the family {[a−(u), a+(u)] | u ∈ B}. By construction, G A and G B are interval graphs
with vertex sets A and B respectively (see Fig. 3). As we will see later in Lemma 3.2, G A and G B are proper interval
graphs.

The interesting connection between G and G A, G B is the following:

Lemma 2.5. For all u, v ∈ A, dG(u, v) = 2dG A (u, v), and for all u, v ∈ B, dG(u, v) = 2dG B (u, v).

Proof. The lemma is true if u = v, so assume that u 6= v ∈ A. We have {u, v} 6∈ E , and

dG A (u, v) = 1 ⇔ [b−(u), b+(u)] ∩ [b−(v), b+(v)] ∩ B 6= ∅
⇔ N (u) ∩ N (v) 6= ∅
⇔ dG(u, v) = 2.

So, if dG A (u, v) = k, then dG(u, v) = 2k. Similarly for distinct u, v ∈ B. �

For example, in our example, dG(1, 9) = 4 because 1, 9 ∈ A and dG A (1, 9) = 2 (see Fig. 3). By Lemma 2.5, since
G is connected, G A and G B are also connected. We are now ready to prove the main result of this section that is the
heart of our distance decoder.

Theorem 2.1. Let u, v be two vertices with u < v. Then,

(1) if π−1(u) > π−1(v), then dG(u, v) = 1;
(2) otherwise, if a−(v) 6 a+(u) or b−(v) 6 b+(u), then dG(u, v) = 2;
(3) otherwise, if a−(v) 6 a+(b+(u)) or b−(v) 6 b+(a+(u)), then dG(u, v) = 3;
(4) otherwise, dG(u, v) is the minimum between the four distances:

• 2+ 2dG B (b
+(u), b−(v)) • 3+ 2dG A (a

+(b+(u)), a−(v))
• 2+ 2dG A (a

+(u), a−(v)) • 3+ 2dG B (b
+(a+(u)), b−(v)).

Proof. Let u < v be two vertices. If π−1(u) > π−1(v), then by definition, u and v are adjacent, completing the proof
of Case 1.

Now, suppose that π−1(u) < π−1(v). Then, by definition, {u, v} 6∈ E . Since u < v, by Lemma 2.3, a−(u) 6 a−(v)
and b−(u) 6 b−(v). So in Case 2, if a−(v) 6 a+(u), then a−(v) ∈ [a−(u), a+(u)] ∩ A ⊆ N [u] (Lemma 2.2).
Actually, a−(v) ∈ N (u), because if a−(v) = u, then dG(u, v) 6 1 which is impossible. Therefore, u, a−(v), v is a
path in G, and dG(u, v) = 2. Similarly, if b−(v) 6 b+(u), u, b−(v), v is a path in G. So dG(u, v) = 2 in both cases
completing the proof of Case 2.
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Now, suppose that we are neither in the first nor in the second case. Let us first show that dG(u, v) > 2. Indeed,
by Lemma 2.4, if dG(u, v) = 2, then there exists a shortest path u, w, v with some w ∈ A ∪ B. However, since
a+(u) < a−(v), we have [a−(u), a+(u)] ∩ [a−(v), a+(v)] = ∅ that implies N [u] ∩ N [v] ∩ A = ∅, and similarly we
have N [u] ∩ N [v] ∩ B = ∅ (because b+(u) < b−(v)). Hence such w does not exist, and dG(u, v) > 2.

We are now going to prove that if a−(v) 6 a+(b+(u)), then dG(u, v) = 3. We have u 6 v and {u, b+(u)} ∈ E . If
v 6 b+(u) then by Lemma 2.1, v neighbors u or b+(u). This is not possible because dG(u, v) > 2. So b+(u) 6 v.
Clearly, v and b+(u) are not neighbors since dG(u, v) > 2. We are now under the hypothesis of Case 2 applied
between b+(u) and v, and thus dG(b+(u), v) = 2. So there is a path of length three between u and v, and since
dG(u, v) > 2, we get that dG(u, v) = 3. The case b−(v) 6 b+(a+(u)) can be treated similarly. This completes Case
3.

We now assume that we are not in the three first cases. We have that v is not a neighbor of b+(u), and we have
seen previously that b+(u) 6 v. Previously, we have seen that when u 6 v, and u and v are not in the two first
cases, dG(u, v) > 2. Now we can apply the same argument between b+(u) and v to obtain dG(b+(u), v) > 2 and
consequently dG(u, v) > 3.

By Lemma 2.4, let P = u, w1, . . . , wk−1, v be a shortest path with w1 ∈ {a+(u), b+(u)} and wk−1 ∈

{a−(v), b−(v)}. If w1, wk−1 ∈ A or w1, wk−1 ∈ B, then, by Lemma 2.5,

dG(u, v) = 2+ 2dG B (b
+(u), b−(v)) or (1)

dG(u, v) = 2+ 2dG A (a
+(u), a−(v)). (2)

So assume that w1 ∈ B and wk−1 ∈ A, i.e., w1 = b+(u) and wk−1 = a−(v) (the proof is similar if w1 ∈ A and
wk−1 ∈ B). Since dG(b+(u), v) > 3 we can apply Lemma 2.4 between w1 and v, and let P ′ = w′1, . . . , w

′

k−2, w
′

k−1,
v be this shortest path fromw′1 = w1 to v. Observe that necessarilyw′2 ∈ A (sincew′1 ∈ B) and thusw′2 = a+(b+(u)).

If w′k−1 ∈ B, then u, b+(u), w′2, . . . , w
′

k−2, w
′

k−1, v is a shortest path, and by Lemma 2.5,

dG(u, v) = 2+ 2dG B (b
+(u), b−(v)). (3)

If w′k−1 ∈ A, then, since w′2 ∈ A, by Lemma 2.5,

dG(u, v) = 3+ 2dG A (a
+(b+(u)), a−(v)). (4)

Similarly, if w1 ∈ A and if wk−1 belongs to A or to B, then the distance is

dG(u, v) = 2+ 2dG A (a
+(u), a−(v)) or (5)

dG(u, v) = 3+ 2dG B (b
+(a+(u)), b−(v)). (6)

Let di be the right value provided by Eq. (1). For each equation, we check that, if u < v and dG(u, v) > 4, then there
is a path from u to v using the vertices involved in the corresponding formula. For example, there always exists a path
from u to v using b+(u) and b−(v) if dG(u, v) > 4. So, dG(u, v) = mini {di }.

Finally, we observe that Eqs. (1) and (3), and Eqs. (2) and (5) are the same. Therefore,

dG(u, v) = min{d1, d2, d4, d6}. �

3. Implementation of the scheme

3.1. Distance labeling for proper interval graphs

An interval graph is the intersection graph of a family of intervals of the real line. The layout of an interval graph is
the set of intervals associated with each vertex of the graph. A layout is proper if no intervals are strictly contained in
another one, i.e., there are no intervals [a, b] and [c, d] with a < c and d < b (however a = c, or b = d is possible).
The graphs having such layouts are called proper interval graphs.

Motivated by Lemma 2.5, we will use as a sub-routine the distance labeling scheme of [18] for proper interval
graphs that we need to detail. To compute all the labels in O(n) time, the scheme of [18] takes as input a proper
layout in a special form: a normalized proper layout. A layout is normalized if: (1) the left boundaries of the intervals
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are distinct; (2) the intervals are sorted according to their left boundaries (so there is a way to list them in O(n) time
by increasing left boundary); (3) the boundaries are integers bounded by some polynomials of n (so that boundaries
can be manipulated in constant time on RAM-word computers). Note that the layouts provided by the linear time
recognizing algorithms of [9,22] have such properties. Also observe that a layout satisfying Properties (2) and (3) can
be easily transformed in O(n) time in a normalized layout by scanning all the intervals by increasing left boundaries.

Consider any connected proper interval graph H with n vertices with a normalized proper layout L H =

{[LH (u),RH (u)] | u ∈ V (H)}. In [18], it has been proved that in O(n) time it is possible to compute two mappings
λH , σH : V (H) → {0, . . . , n − 1} such that the distance between any two vertices x, y can be computed as
combinations of λH (x), σH (x) and λH (y), σH (y). In other words, the family of proper interval graphs supports a
distance labeling scheme with 2dlog ne bit labels, and this is tight up to an additive log log n term [18]. The mappings
λH and σH are respectively based on a BFS and a DFS initiated from the vertex x0 of H whose left boundary is
minimum in L H .

Let us define the binary relation adjH (x, y) ∈ {0, 1} by: adjH (x, y) = 1 if and only if λH (x) < λH (y) and
σH (x) > σH (y). These mappings satisfy the following properties:

Lemma 3.1 ([18]). For all distinct vertices x and y of H with λH (x) 6 λH (y):

(1) dH (x, y) = λH (y)− λH (x)+ 1− adjH (x, y).
(2) λH (x) = dH (x0, x).
(3) σH is bijective.
(4) If λH (x) = λH (y), then LH (x) < LH (y) if and only if σH (x) < σH (y).

Remark. The function adjH (x, y) involved in Lemma 3.1 can be seen as the matrix of a permutation graph (clearly,
adjH (x, y) defines a comparability graph of a two-dimensional poset whose linear extensions are λH and the reverse
of σH ). A surprising fact is that, in the scheme of [18], distance computation in interval graphs is based on adjacency in
permutation graphs. In this paper we use distances in proper interval graphs to design distance labeling for permutation
graphs. Fortunately, this does not define an infinite recursive loop!

Lemma 3.2. The families I A := {[b−(u), b+(u)] | u ∈ A} and I B := {[a−(u), b+(u)] | u ∈ B} are proper layouts
of the graphs G A and G B respectively.

Proof. Let u, v ∈ A with u < v. Lemma 2.3 applies to u and v, since u and v cannot be adjacent (A is a stable).
It follows that b−(u) 6 b−(v) and b+(u) 6 b+(v). Hence b−(u) < b−(v) < b+(v) < b+(u) is impossible, as
well b−(v) < b−(u) < b+(u) < b+(v). So [b−(u), b+(u)] is not a proper sub-interval of [b−(v), b+(v)], as well
[b−(v), b+(v)] is not a proper sub-interval of [b−(u), b+(u)]. Therefore, I A is a proper layout of G A. Similarly, I B
is a proper layout of G B . �

3.2. Distance decoder

At this step, we have enough material to prove that permutation graphs enjoy an O(log n) bit distance
labeling scheme. Indeed, Theorem 2.1 can be easily implemented with short labels. Each vertex u could store:
(1) the integers u and π−1(u) in order to compute distances 61; (2) the x-coordinates about the six vertices
a−(u), a+(u), b−(u), b+(u), a+(b+(u)), b+(a+(u)) for distances 2 and 3; and (3) the distance labels (two integers
per label) in the proper interval graphs G A and G B about the same six vertices for distances >4. The resulting label
is composed of a total of 2 + 6 + 6 × 2 = 20 integers in O(n). Thus such a label is of length 20 log n + O(1) bits.
However, we will show how to significantly reduce this length.

In order to apply the result of [18] (Lemma 3.1) we need to transform the initial layouts I A and I B into the
normalized layouts that we denote hereafter by L A = {[LA(u),RA(u)] | u ∈ A} and L B = {[LB(u),RB(u)] | u ∈ B}
respectively. Clearly, all the boundaries of I A and of I B are in O(n), so sorting them can be done in O(n) time.
Actually, we check that the left boundaries of I A and I B are already sorted if A and B are sorted. To produce
normalized layouts, the left boundaries are ordered and distinguished with the following rule:

∀u, v ∈ A, LA(u) < LA(v) iff b−(u) < b−(v), or b−(u) = b−(v) and u < v.
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Similarly, left boundaries of B are ordered such that LB(u) < LB(v) if and only if a−(u) < a−(v), or a−(u) = a−(v)
and u < v. This can be done in linear time by scanning the left boundaries of I A (and of I B) by increasing order, and
by shifting them to produce L A. We check that the resulting boundaries are in O(n).

Thanks to Lemma 2.3 we can prove the following properties for the layouts L A and L B :

Lemma 3.3. For all u, v ∈ A, u < v if and only if LA(u) < LA(v). Similarly, for all u, v ∈ B, u < v if and only if
LB(u) < LB(v).

Proof. We prove the lemma for u, v ∈ A only, the proof being symmetric for u, v ∈ B.
Assume that u < v, and let us show that it implies LA(u) < LA(v). By the normalization, it suffices to show that

b−(u) 6 b−(v). A is a stable, thus u < v implies b−(u) 6 b−(v) by Lemma 2.3.
Assume that LA(u) < LA(v), and let us show that it implies u < v. By the normalization, it suffices to show that

b−(u) 6 b−(v) implies u < v. If b−(u) = b−(v), then we are done: u < v by the priority rule in the normalization
of L A. Assume that b−(u) < b−(v). Using the converse of Lemma 2.3 (again u and v are not adjacent), we obtain
u 6 v, and since u = v is impossible (LA(u) 6= LA(v)), hence u < v. �

Let λA, σA and λB , σB be the mappings obtained after application of Lemma 3.1 for the graphs G A and G B with
normalized proper layouts L A and L B . We are now ready to define the label of u, which is composed of the following
14 fields:

label(u) := 〈u, π−1(u), λA(a), σA(a), λB(b), σB(b), . . .〉

for all a ∈ {a−(u), a+(u), a+(b+(u))} and b ∈ {b−(u), b+(u), b+(a+(u))}.

The information about the six vertices needed to compute the 4 distances involved at Step 4 of Theorem 2.1 is
available in the labels. So, when implementing the distance decoder the only problem concerns the comparison tests
between vertices, involved at Steps 2 and Steps 3 of Theorem 2.1. For these two steps, we need to make comparison
tests between some vertices of A or some vertices of B. Typically, in Step 2 for instance, we need to test whether
a−(v) 6 a−(u) or not. The problem is solved thanks to the next lemma.

Lemma 3.4.

For all au, av ∈ A, au 6 av if and only if : For all bu, bv ∈ B, bu 6 bv if and only if:
• σA(au) = σA(av), or • σB(bu) = σB(bv), or
• λA(au) < λA(av), or • λB(bu) < λB(bv), or
• λA(au) = λA(av) and σA(au) < σA(av). • λB(bu) = λB(bv) and σB(bu) < σB(bv).

Proof. We prove the result only for au, av ∈ A, the proof being symmetric if au, av ∈ B.
First, au = av can be tested using the mapping σA using its bijectivity (see Property 3 of Lemma 3.1). So the

lemma holds if au = av . So let us assume that au 6= av .
By Lemma 3.3, au < av ⇔ LA(au) < LA(av) for all au, av ∈ A. So it remains to prove:

LA(au) < LA(av)⇔ λA(au) < λA(av) or (λA(au) = λA(av) and σ A(au) < σA(av)). (7)

First, let us show that:

Claim 1. For au 6= av ,

λA(au) < λA(av)⇒ LA(au) < LA(av)⇒ λA(au) 6 λA(av). (8)

Proof. Let a0 be the vertex of A with minimum left boundary in L A. Consider any shortest path P = w0, w1, . . . , wk
from a0 = w0 to av = wk in G A. For every i , LA(wi ) < LA(wi+1). Indeed, if LA(w0) < · · · < LA(wi−1) < LA(wi )

and LA(wi ) > LA(wi+1), then wi−1 would be adjacent to wi+1: contradiction, P is the shortest path.
Assume that λA(au) < λA(av), i.e., dG A (a0, au) < dG A (a0, av) by Property 2 of Lemma 3.1. It is shown in [18],

that each set Vi := {w | dG A (a0, w) = i} induces a clique in the proper interval graph G A. So au is adjacent to
wi ∈ Vi where i = dG A (a0, au) < k. If {au, wi+1} ∈ E , then one can choose the shortest path P from a0 to
av through au , and as seen previously, it implies that LA(au) < LA(av). So assume that {au, wi+1} 6∈ E . Thus
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LA(au) 6 RA(au) < LA(wi+1). Previously we have seen that LA(wi ) < LA(wi+1) 6 LA(wk) = LA(av). Therefore,
we have proved the first implication of Eq. (8), that is λA(au) < λA(av) implies LA(au) < LA(av).

Let us prove the second implication, and assume that LA(au) < LA(av). Let i be such that LA(wi−1) < LA(au) 6
LA(wi ). Since the intervals ofwi−1 andwi intersect, au is a neighbor ofwi−1. Hence dG A (a0, au) 6 dG A (a0, wi−1)+

1 = i . We have assumed that LA(au) < LA(av) thus i < k. Therefore, dG A (a0, au) < k = dG A (a0, av),
i.e., λA(au) 6 λA(av), completing the proof of Eq. (8). �

It remains to prove Eq. (7).
⇒ By Eq. (8), LA(au) < LA(av) implies λA(au) 6 λA(av), i.e., either λA(au) < λA(av) or λA(au) = λA(av).

However, by Property 4 of Lemma 3.1, if λA(au) = λA(av), then LA(au) < LA(av)⇔ σA(au) < σA(av). Therefore,
LA(au) < LA(av) implies λA(au) < λA(av), or λA(au) = λA(av) and σA(au) < σA(av).
⇐ By Eq. (8), λA(au) < λA(av) implies LA(au) < LA(av). And, by Property 4 of Lemma 3.1, λA(au) = λA(av)

and σA(au) < σA(av) implies LA(au) < LA(av), completing this part, and the proof of Lemma 3.4. �

Therefore, according to Lemmas 3.1, 3.4 and Theorem 2.1, the distance decoder takes a constant number of integer
additions and comparisons.

3.3. Label size

Since each field of label(u) ranges in {0, . . . , n − 1} (formally we need to decrease by 1 the first two fields), the
label size is a priori 14dlog ne. However we will work a little and use correlations between some values of label(u) to
reduced it to 9 log n + O(1). As we will see all the six λ values involved in label(u) are strongly related.

The precise description of the final implementation of label(u) is given in the proof of Lemma 3.6, which is based
on the following lemma:

Lemma 3.5. Let u ∈ V . For all a ∈ N [u] ∩ A and b ∈ N [u] ∩ B, |λA(a)− λB(b)| 6 1.

Proof. Let a0 := min A, and b0 := min B. Note that a0 has minimum left boundary in L A since a−(a0) = a0 =

min A. Similarly, since b−(b0) = b0 = min B, b0 has minimum left boundary in L B . Hence, by Property 2 of
Lemma 3.1, λA(a) = dG A (a0, a) for all a ∈ A, and λB(b) = dG B (b0, b) for all b ∈ B. It remains to show that
|dG A (a0, a)− dG B (b0, b)| 6 1 for all a ∈ N [u] ∩ A and b ∈ N [u] ∩ B.

Note that {a0, b0} ∈ E , otherwise G would not be connected. Let k := dG A (a0, a) and k′ := dG B (b0, b). We need
to show that |k′ − k| 6 1. By the triangle inequality (observe that a and b are neighbors),

dG(b0, b) 6 dG(b0, a0)+ dG(a0, a)+ dG(a, b) = dG(a0, a)+ 2.

By Lemma 2.5, dG(b0, b) = 2dG B (b0, b) = 2k′ and dG(a0, a) = 2dG A (a0, a) = 2k. So 2k′ 6 2k + 2 implying
k′ − k 6 1. Similarly, dG(a0, a) 6 dG(b0, b)+ 2 implying k − k′ 6 1. Therefore, |k′ − k| 6 1. �

Lemma 3.6. Labels are of 9dlog ne+6 bits at most, and it takes constant time to decode the distance from the labels.

Proof. Consider any vertex u.
Since LA(a−(u)) 6 LA(a+(u)), we have that λA(a−(u)) 6 λA(a+(u)) (by Eq. (8) in the proof of Lemma 3.4,

and using the fact that a−(u) 6 a+(u)). It follows that dG(a−(u), a+(u)) = 0 or 2. Thus by Lemma 2.5,
dG A (a

−(u), a+(u)) = 0 or 1. So, λA(a+(u))− λA(a−(u)) 6 1.
Similarly, λA(a+(u)) 6 λA(a+(b+(u))). Vertices a+(u) and b+(u) are neighbors because, if u 6∈ A ∪ B (this

is trivial if u ∈ A ∪ B), a+(u) ∈ N−(u) and b+(u) ∈ N+(u). It follows that dG(a+(u), a+(b+(u))) = 2, and
dG A (a

+(u), a+(b+(u))) = 1 by Lemma 2.5. So, λA(a+(b+(u)))− λA(a+(u)) 6 1.
We have similarly, λB(b+(u))− λB(b−(u)) 6 1, and λB(b+(a+(u)))− λB(b+(u)) 6 1.
For every u ∈ V , we set δ(u) := min{λA(a−(u)), λB(b−(u))}, and let1(u) be the array with the six entries defined

as follows:

1(u)[1] := λA(a
−(u))− δ(u)

1(u)[2] := λA(a
+(u))− λA(a

−(u))

1(u)[3] := λA(a
+(b+(u)))−λA(a

+(u))
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1(u)[4] := λB(b
−(u))− δ(u)

1(u)[5] := λB(b
+(u))− λB(b

−(u))

1(u)[6] := λB(b
+(a+(u)))− λB(b

+(u)).

Given δ(u) and the array 1(u), all the λ’s can be retrieved. For example, λB(a+(b+(u))) = δ(u) + 1(u)[1] +
1(u)[2] +1(u)[3].

From Lemma 3.5, the 1st and the 4th entries of 1(u) are 0 or 1, and from the above upper bounds, the four other
entries are 0 or 1 as well. Therefore, label(u) can be implemented with 〈u, π−1(u), δ(u),1(u), σA(a), σB(b), . . .〉 for
all a ∈ {a−(u), a+(u), a+(b+(u))} and b ∈ {b−(u), b+(u), b+(a+(u))}.

Let s := max{|A|, |B|}. Note that all λ’s and σ ’s are in {0, . . . , s − 1}. Therefore, the length of this label is at most
2dlog ne + 7dlog se + 6 6 9dlog ne + 6 bits. �

3.4. Computing the labels

We describe the main steps of our procedure to compute all the labels previously defined. We denote by A− the
array containing the values a−(u) for all u ∈ V = {1, . . . , n}. More precisely, A−[u] = a−(u). We define similarly
the arrays A+, B−, B+. Observe that the input of our procedure can be obtained in O(n + m) time if the input graph
is given only by its adjacency list [28,27], m being the number of edges.
INPUT: a realizer π of a connected permutation graph G of n.
OUTPUT: label(u) for all u ∈ V .

(1) Compute π−1.
(2) Compute the sets A and B.
(3) Compute the arrays A−, A+, B−, B+.
(4) Compute the layouts I A and I B from A−, A+, B−, B+.
(5) Normalize I A and I B into L A and L B .
(6) Compute the mappings λA(w), σA(w) for all w ∈ A, and λB(w), σB(w) for all w ∈ B.
(7) Compute δ(u) := min{λA(a−(u)), λB(b−(u))} and the array1(u) (which is described in the proof of Lemma 3.6),

and then compose label(u) for all u ∈ V .

The correctness of the procedure follows from the previous paragraphs. Steps 1, 4, 5, and 7 clearly take O(n) time.
Step 6 takes O(n) time from [18]. So, we only detail, Steps 2 and 3 to show that they also take O(n) time.

By definition u ∈ A if and only if N−(u) = ∅. So, from the graphic representation, we can easily construct A in
O(n) time by maintaining the current vertex a0 with highest y-coordinate, i.e., π−1, as follows:

(1) A := {1} and a0 := 1
(2) For u = 2 to n
(3) If π−1(u) > π−1(a0), then a0 := u and A := A ∪ {u}.

Similarly, B can be computed by maintaining the current vertex b0 with lowest y-coordinate with initially
B := {n} and b0 := n, and successively checking from u = n − 1 down to 1 whether π−1(u) < π−1(b0) or not.

The computation of a+(u) and b−(u) for all u can be done as follows:

(1) For u = 1 to n (1)For u = n down to 1
(2) If u ∈ A, then a+(u) := u and a0 := u (2) If u ∈ B, then b−(u) := u and b0 := u
(3) Else a+(u) := a0 (3)Else b−(u) := b0.

Then, sorting the points of V by their y-coordinate, and this can be done in O(n) time, one can compute a−(u) and
b+(u) for all u with the similar procedures, completing Step 3:

(1) Forπ−1(u) = n down to 1 (1) Forπ−1(u) = 1 to n
(2) If u ∈ A, then a−(u) := u and a0 := u (2) If u ∈ B, then b+(u) := u and b0 := u
(3) Else a−(u) := a0 (3)Else b+(u) := b0.

Combining this previous algorithm with Lemma 3.6, we obtain:
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Theorem 3.1. Permutation graphs with n vertices enjoy a distance labeling scheme using labels of 9dlog ne+ 6 bits.
The distance decoder has constant time complexity, and given a realizer of the graph, i.e., a permutation of {1, . . . , n},
all the labels can be computed in O(n) time.

4. Extensions

4.1. All-pair shortest paths

We observe that Theorem 2.1 give us, not only the distance between u and v with u < v, but also the first edge
incident to u on a shortest path from u to v. This first edge is {u, v} if the distance is 1, and is {u, a+(u)} or {u, b+(u)}
for the other cases, depending on which particular case occurs. (For instance the edge is {u, a+(u)} if a−(v) 6 a−(u),
by Case 2 and Lemma 2.4). So, adding pointers to the labels of the next vertices, a+(u) or b+(u), allows us to answer
the first edge on a shortest path from u to v, if u < v. It is clear that a similar data-structure can be constructed to
support first shortest-path edge queries between v to u with u < v. (Case 3 and 4 of Theorem 2.1 needs to be adapted,
for instance, by considering the vertices a−(b−(v)) and b−(a−(v)) instead of a+(b+(v)) and b+(a+(v))). Overall,
doubling our data-structure allows us to support first shortest-path edge queries between any pair of vertices in constant
time. It turns out that length-d shortest path can be extracted in O(d) time (following up the first shortest-path edge).
Therefore we have:

Theorem 4.1. Given a realizer of a permutation graph of n vertices, one can construct in O(n) time an O(n) space
data-structure supporting all-pair shortest-path extraction in linear time (linear in the length of the shortest path
returned).

4.2. Compact routing schemes

Another application of our localized data-structure is the compact routing, whose goal is to design short addresses
and succinct local routing tables for each vertex such that the route from any source u to any destination v can be
computed from the local table of u and the address of v. By “computing the route” we mean here that the routing
algorithm running in u must return the port number of a first shortest-path edge between u and v, that is an integer
taken from {1, . . . , deg(u)}. The trivial solution for this problem is the standard routing tables, where each vertex u
stores the mapping of the entire possible destination set to a port number, using O(n log deg(u)) bits for u.

One can use our scheme to provide a better solution as follows: the local table of u is composed of the distance
label of u and of a mapping from N (u) to the port numbers of u, which represents O(deg(u) log n) bits, whereas
addresses consist of the distance label only, so are on O(log n) bits. This leads to an improvement upon the additive
stretch-1 routing scheme of [14].

Theorem 4.2. Permutation graphs have a shortest-path routing scheme with constant time protocol, and with
O(log n) bit addresses, and, for every vertex u, the routing table of u is of size O(deg(u) log n) bits. If the graph is
bipartite then the size of the local routing tables can be reduced to O(log n) bits per vertex.

Proof. Using the previous distance labeling scheme, the routing between non-adjacent vertices u to v can be done
with O(log n) bits/vertex only. Indeed, from Lemma 2.4, the routes are done through a+(u) or b+(u) (a−(u) or b−(u)
if u > v), so it suffices that u stores the 4 corresponding port numbers of these neighbors. The only difficulty concerns
routing between adjacent vertices.

We can use an O(deg(u) log n) bit table for a mapping from N (u) to {1, . . . , deg(u)}. However, if the graph is
bipartite, the routing can be simplified, and the port numbers can be permuted so that the memory requirement is
O(log n) bits only for each vertex. In that case V = A ∪ B with edges between A and B.

We only detail the port number labeling of a link from a vertex u ∈ A to a vertex v ∈ B (the case u ∈ B and
v ∈ A is symmetric).The port number of the edge {u, v} is p if and only if v is the pth largest neighbor of u. Let
r(b) = |{w ∈ B | w 6 b}| denote the rank of any vertex b ∈ B. Vertex u stores r(b−(u)) and r(b+(u)), whereas
v stores in its address its own rank r(v). First, if r(v) ∈ [r(b−(u)), r(b+(u))], then v is adjacent to u and the port
number of this edge is r(v)− r(b−(u))+ 1, so the routing can be done through this port. Otherwise, the routing can
be done through the port 1 or deg(u) (i.e., through the neighbors b−(u) or b+(u)) depending on whether v < u or not.
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Actually, the address of a vertex v can be even reduced to the pair (r, t) of dlog ne + 1 bits, where r is the rank of v in
its stable (either in A or in B), and t a Boolean indicating whether v ∈ A or v ∈ B. If we allow to store |A| in all the
vertices, we can even use dlog ne bit addresses by mapping the address of v to r + t · |A|. �

4.3. Circular permutation graphs

The distance labeling scheme for permutation graphs can be naturally extended to circular permutation graphs. A
circular permutation graph is the intersection graph of a family of geodesics of a cylinder between to parallel non-
contractible cycles of a cylinder. A permutation graph is simply a circular permutation graph in which the diameter of
the cycles is infinite.

Using a similar idea of [3,7,18], the cylinder can be “unrolled” twice to produce a permutation graph H of size twice
the input circular permutation graph G. Each vertex u of G appears twice in H , say as u1 and u2. The distance from
u to v in G can be computed by taking the minimum of the distances dH (u1, v1) and dH (v1, u2). So, if permutation
graphs have an `(n) bit distance labeling scheme, then circular permutation graphs enjoy a 2`(2n) bit distance labeling
scheme, that is an O(log n) bit labeling scheme from Theorem 3.1.

Theorem 4.3. Circular permutation graphs with n vertices enjoy a distance labeling scheme with O(log n) bit labels
and constant time distance decoder.

Obviously, Theorems 4.1 and 4.2 can be similarly extended to obtain a localized and compact data-structure for
all-pair shortest path and routing in circular permutation graphs as well.

5. Lower bounds

5.1. Higher dimensions

A simple counting argument shows that every adjacency labeling scheme, and every distance labeling scheme as
well, of any family containing F(n) labeled graphs of n vertices requires some labels of length at least 1

n log F(n) bits
(see [23]).

Now, it is not difficult to check that there are 2Θ(n2) comparability graphs of n vertices. For instance, the family
of split graphs, obtained from a bipartite graph in which one part is completed by a clique, clearly contains at least
2(n/2)

2
graphs. Split graphs are comparability graphs (i.e., comparability graphs of some posets) because their edges

can be transitively oriented by: (1) choosing any transitive orientation of the clique edges; and (2) orienting all the
non-clique edges in the same direction (e.g., from the stable to the clique). Therefore, we have:

Proposition 5.1. There are comparability graphs for which every distance labeling scheme requires Ω(n) bit labels.

This latter result is optimal in the sense that there is a distance labeling scheme that guaranties O(n) bit labels for
every graph [20], moreover with a O(log log n) time distance decoder.

Adjacency of comparability graphs of d-dimensional posets can be done with labels of ddlog ne bits by simply
associating with each vertex its d coordinates, one for each linear extension. So comparability graphs of posets
of bounded dimension have O(log n) bit adjacency labeling. In general, split graphs are comparability graphs of
unbounded dimension posets. Therefore, the argument used for Proposition 5.1, a reduction from adjacency labeling
scheme for split graphs, cannot be used efficiently for comparability graphs of, say, three-dimensional posets.

We overcome this problem, and show that the behavior between two- and three-dimensional poset is quite different
when considering distances. The result is based on a reduction to distance labeling in planar graphs.

Theorem 5.1. There are comparability graphs of three-dimensional posets for which every distance labeling scheme
requires Ω(n1/3) bit labels.

Proof. For every graph G = (V, E), the vertex/edge inclusion poset is a height one poset P = (V ∪ E, <G) such
that v <G e if and only if v ∈ V , e ∈ E , and e is incident to v. Let H be the comparability graph of P . It is clear that
u, v ∈ V are adjacent in G if and only if there is an edge e ∈ E incident to u and v, i.e., dG(u, v) = 1 if and only if
dH (u, v) = 2. It follows that, for all u, v ∈ V , dH (u, v) = 2dG(u, v).
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Fig. 4. Linking a sequence of α-graphs.

Schnyder in [33] showed that the vertex/edge inclusion poset of every planar graph G has dimension at most three.
From [20], for every distance labeling on the family planar graphs with at most n vertices, there is a planar graph
G0 = (V0, E0) with a label of size `(n) = Ω(n1/3).

Now assume that the family of comparability graphs of three-dimensional poset over n elements enjoys a distance
labeling scheme with labels of length at most k(n), and a scheme with k(n) as smallest as possible. From [20], k(n) is
at most linear in n. Observe that k(n) is non-decreasing because removing an element of a d-dimensional poset (and
thus a vertex of its comparability graph) results in a d-dimensional poset as well.

Let P0 be the vertex/edge poset of G0, and let H0 be its comparability graph. H0 has |V0| + |E0| < 4n vertices.
For all u, v ∈ V0, dG0(u, v) =

1
2 dH0(u, v). Therefore, applying the distance labeling scheme only on the vertices of

V0 of H0 yields a distance labeling for G0. The labels for the vertices of G0 are of length at most k(4n) (because k(n)
is non-decreasing). It follows that k(4n) > `(n) = Ω(n1/3). Therefore, since k(n) is at most linear in n, we have
k(n) = Ω(n1/3). �

5.2. Dimension two

It is not difficult to see that for any connected proper interval graph H with n vertices, there is a permutation graph G
of O(n) vertices (actually a bipartite permutation graph) with a subset A with |A| = n corresponding to the vertices of
H such that distances in G between the vertices of A are exactly twice all the distances in H . In other words, distance
labeling in permutation graphs is at least as hard as in proper interval graphs. So, the 2 log n − O(log log n) bit lower
bound for distance labels of proper interval graphs [18] also holds for permutation graphs. Actually, it is possible to
improve this lower bound to asymptotically 3 log n using the technique of [18]. As we will see, this technique shows
that any distance labeling scheme on permutation graphs requires labels of length roughly 1

n log P(n)+ log n, where
P(n) denotes the number of labeled permutation graphs with n vertices.

Let us first present the technique of [18]. An α-graph, for integer α > 1, is a graph H having a pair of vertices
(l, r), possibly with l = r , such that l and r are of eccentricity at most α. Let S = (H0, H1, . . . , Hk) be a sequence
of α-graphs, and let (li , ri ) denote the pair of vertices that defines the α-graph Hi , for i ∈ {0, . . . , k}. For each non-
null integer sequence W = (w1, . . . , wk), we denotes by S ◦ W the graph obtained by attaching a path of length wi
between the vertices ri−1 and li , for every i ∈ {1, . . . , k} (see Fig. 4).

A family H of graphs is α-linkable for F if every graph of H is an α-graph of F and if S ◦W ∈ F for every graph
sequence S of H and every non-null integer sequence W .

Lemma 5.1 ([18]). Let F be any graph family, and let H be any α-linkable family for F . If H(N ) denotes the number
of labeled N-vertex graphs of H, then every distance labeling scheme on the n-vertex graphs of F requires a label
of length at least 1

N log H(N )+ log N − 9, where N = bn/(α log n)c.

Lemma 5.2. Any distance labeling scheme on the family of n-vertex permutation graphs requires a label of length at
least 1

N log P(N − 1)+ log N − 9 where N = bn/ log nc.

Proof. Let H be the family of all permutation graphs having an universal vertex, i.e., a vertex connected to all the
others. By construction, H is composed of 1-graphs. Clearly, adding a vertex connected to all other vertices of any
permutation graphs, results in a permutation graph. So, if H(N ) denotes the number of N -vertex graphs of H, then
H(N ) > P(N − 1).

Let us show that H is 1-linkable for the family of permutation graphs. Indeed, for each sequence S =
(H0, H1, H2, . . .) of H and non-null integer sequence W = (w1, w2, . . .), one can easily check that S ◦ W is a
permutation graph from the intersection representation depicted in Fig. 5 (the grayed boxes are arbitrary permutation
graphs, the bold line being the universal vertex of each Hi ).
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Fig. 5. Linking permutation graphs with universal vertices.

Fig. 6. A graph GS for S = 0110 isomorphic to P0.

From Lemma 5.1, every distance labeling scheme on the n-vertex permutation graphs requires a label of length at
least:

1
N

log H(N )+ log N − 9 >
1
N

log P(N − 1)+ log N − 9

where N = bn/ log nc. �

To conclude, it need to be shown that 1
n log P(n) ∼ 2 log n. It is clear that P(n) 6 U (n) · n! 6 n!2 6 n2n where

U (n) denotes the number of unlabeled permutation graphs with n vertices. Hence 1
n log P(n) 6 2 log n. However,

establishing a lower bound on P(n) is more tricky since an unlabeled permutation graph may have an exponential
number of realizers (see Proposition 5.2). As there are n! realizers, U (n)� n! and thus P(n)� n!2.

Proposition 5.2. There are unlabeled connected permutation graphs of n vertices with 2Ω(n) realizers.

Proof. With each binary string S of length 2t and with t ones, we associate a distinct realizer πS of a permutation
graph GS as follows. The n = 2t + 1 vertices of GS are a1, b1, . . . , at , bt , c, and their two-dimensional coordinates
that define the edges of GS are, for every i ∈ {1, . . . , t} (see Fig. 6):

• ai = 2i − 1, and π−1
S (ai ) = 2i + S[i].

• bi = 2i , and π−1
S (bi ) = 2i + 1− S[i].

• c = n, and π−1
S (c) = 1.

These points define a permutation graph GS having the realizer πS . The graph is connected (because vertex c), and
ai is adjacent to bi if and only if S[i] = 1. It is easy to see that each GS graph is isomorphic to a unique permutation

graph P0 depicted in Fig. 6. The number of realizers for P0 is
(

2t
t

)
= Ω(2n/

√
n) = 2Ω(n). �

Theorem 5.2. The number P(n) of labeled n-vertex connected permutation graphs satisfies 1
n log P(n) > 2 log n −

O(log log n). It follows that there are 2Ω(n log n) unlabeled n-vertex permutation graphs.
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Fig. 7. A realizer RS from the sequence S = ({11, 8, 6}, {12, 7, 4}, {10, 9, 5}) ∈ S3,3.

Proof. Let us overview the proof. We construct a particular family of points of N2, say R p,k , where p and k are
integral parameters such that p ∼ n/ log n and k ∼ log n. Each set of R p,k is composed of exactly n points
and can be viewed as a permutation of {1, . . . , n}: the coordinates of the points range in {1, . . . , n}, and there is a
unique point for each row and column of the square {1, . . . , n} × {1, . . . , n}. We show that the family of labeled
permutation graphs with n vertices having any R ∈ R p,k as realizer contains at least B(n) = (n − log n)! · |R p,k |

labeled graphs. This is based on the fact that for each given permutation graph G of this family, there is a unique
way to assign coordinates to each vertex so that the set of points so constructed is a realizer R ∈ R p,k for G.
We conclude with the fact that the family R p,k contains at least (p − 1)!k ∼ Θ(n/ log n)n realizers, and thus
B(n) > Θ(n)n−log n

·Θ(n/ log n)n > Θ(n/ log n)2n , proving that 1
n log P(n) > 1

n log B(n) > 2 log n− O(log log n).
Let us now formalize the proof.

Let S p,k be the set of all sequences (S1, . . . , Sp) of p subsets of size k such that:

(1) for every i ∈ {1, . . . , p}, Si ⊆ {p + 1, . . . , p(k + 1)} \
⋃

j<i S j , setting S0 = ∅; and
(2) for every i ∈ {1, . . . , p − 1}, for all x, y ∈ Si with x < y, there exists z ∈ S j with some j > i such that

x < z < y.

Such sequences can be constructed by a greedy algorithm (see the proof of Claim 3 for details). For instance,
({11, 8, 6}, {12, 7, 4}, {10, 9, 5}) ∈ S3,3. Before counting the number of such sequences (cf. Claim 3), we show how
to associate with each of them a realizer and a permutation graph.

Let S = (S1, . . . , Sp) ∈ S p,k . Hereafter, we denote by Si [ j] the j th largest element of Si , j ∈ {1, . . . , k}. We
associate with S a set RS of points of N2 as follows:

(1) there are p points b1, . . . , bp, each bi being of coordinates ((k + 1)i, i); and
(2) there are pk points denoted by ai, j such that, for every (i, j) ∈ {1, . . . , p} × {1, . . . , k}, ai, j is of coordinates

((k + 1)(i − 1)+ j, Si [ j]).

In other words, RS is composed of p strips ordered from left to right, two consecutive strips being delimited by a bi ,
and the y-coordinates of the points of the i th strip are given by Si . See Fig. 7 for an example.

Let n = p(k+1). Observe that every set RS with S ∈ S p,k contains n points. Also, each RS can be considered as a
realizer, and thus as a permutation graph with n vertices. Indeed, by construction the n points of RS have coordinates
ranging in {1, . . . , n}, no two points having the same x-coordinate or y-coordinate (cf. Property 1 of the definition of
S).

Let F p,k be the family of all labeled permutation graphs having a realizer RS for some S ∈ S p,k and such that the
vertices ap,1, . . . , ap,k and bp are labeled respectively 1, . . . , k, and k + 1. Clearly, |F p,k | is a lower bound on P(n)
since F p,k is a subset of all labeled connected permutation graphs with n vertices (the connexity of the graphs follows
from the ordering of the ai, j ’s).
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By forcing the labeling of k + 1 vertices, there remains at most (n − (k + 1))! = ((p − 1)(k + 1))! ways to label
the other vertices of the graph. Thus |F p,k | 6 ((p − 1)(k + 1))! · |S p,k |. Actually, and this is the heart of the proof,
the equality holds.

Claim 2. For all p, k > 2, |F p,k | = ((p − 1)(k + 1))! · |S p,k |.

Proof. Let G be any labeled graph of F p,k , thus having at least one realizer RS for some S ∈ S p,k . Let L =
{ap,1, . . . , ap,k, bp}. We said that a vertex x of G is identified if we can determine the coordinates of x in RS . We
will show how to identify all the vertices of G (except those of L) in a unique way, i.e., x could not have any other
coordinates for every vertex x 6∈ L . Note that once x has been identified, then we know the coordinates of x and also
its label. It follows that all such labeled permutation graphs pairwise differ. More formally, it will prove that there
is a one-to-one (or injective) function φ : S p,k × L p,k → F p,k , where L p,k denotes the set of all permutations of
{|L| + 1, . . . , n}. It will imply that |F p,k | > (n − |L|)! · |S p,k | = ((p − 1)(k + 1))! · |S p,k | as required.

We now describe how to calculate φ−1(G). We first show that the vertices b1, a1,1, . . . , a1,k (the first strip) can be
identified. Then, by induction, we will show how to process all the strips, excepted the last one. Note that the set of
vertices L can be determined in G since their label are 6k + 1.

Identifying strip 1. The only vertex not in L having a degree k is b1. (Recall that V (G) is not reduced to L since
p > 2.) Indeed, every vertex ai, j (i < p) is adjacent to all the k − 1 vertices of its strip plus bi , and also plus bp ∈ L .
Thus its degree is >k. A vertex bi adjacent to all the ai, j ’s is its strip plus all the ai ′, j ’s where i ′ < i . Thus for i > 1,
the degree of bi is >k, and the degree of b1 is k exactly.

It follows that the set of vertices of the first strip, say A1, can be determined (its the b1 neighbors). To identify each
of them we need to precisely compute their coordinates. By construction, a1,1 is the highest degree vertex among the
vertices of A1, and more generally, a1, j is the j th highest degree vertex of A1. The key point is that all these vertices
have necessarily distinct degree and can be uniquely ranked. This is due to Property 2 in the definition of S. The
degree of two vertices of a same strip differ by at least one since there is at least one vertex whose y-coordinates is
between them.

Note that the y-coordinates of a1, j is exactly its degree minus j − 1 (the value j − 1 is due to the North-West
quadrant of a1, j that contains j − 1 neighbors). Therefore, all the vertices of the first strip can be identified.

Identifying the other strips. The identification of the next strips, A2, . . . , Ap−1, is quite similar. Assume that we
have identified all the vertices of the i − 1 first strips, i.e., we know exactly the coordinates of all the vertices in
A1 ∪ · · · ∪ Ai−1. The identification of Ai can be done as follows. We consider the graph Gi obtained from G by
removing the already identified vertices (the strips of index <i). If Gi reduced to L , then we are done: all the vertices
have been identified. Otherwise, as previously, bi is the only vertex of degree k in Gi (note here that i < p). Then, the
x-coordinates of the ai, j ’s can be determined by ranking their degree: the highest one by ai,1, and so one. Still thanks
to Property 2 in the definition of S, the degree must differ. However, unlike previously, the degree in Gi of ai, j does
not give directly its y-coordinates. However, it is not difficult to see that its y-coordinates can be precisely computed
from the set of points in the strips of index <i and from its degree in Gi (its degree in Gi is actually the number of
neighbors located in its South-East quadrant. And the degree in G gives the sum of its number plus its North-West
neighborhood).

This procedure can be repeated up to strip i = p−1. After that index, the vertex set of G p reduces to L . Therefore,
all the vertices, except those in L , can be identified, and this completes the proof of Claim 2. �

Claim 3. For all p, k > 2, |S p,k | > (p − 1)!k .

Proof. Let (S1, . . . , Sp) ∈ S p,k . By definition (item 1), S1, . . . , Sp is a partition of {p+1, . . . , n}, where n = p(k+1).
Thus S1 can be constructed by selecting any k-set of {p + 1, . . . , n} such that for all distinct elements x, y, we have
|x− y| > 2, i.e., there are no consecutive elements. For that, one can first choose a k-set W ⊆ {p+1, . . . , n−(k−1)},
and then one can enlarge by one each inter-space between two consecutive x, y ∈ W . The enlarged set W now ranges
in the desired interval, i.e., {p + 1, . . . , n}, since there are k − 1 inter-spaces in W . This construction is actually a

bijection (from S1 it is easy to rebuild the set W ), showing that there are exactly
(

n − (k − 1)− p
k

)
ways to construct S1.

The set S2 can be constructed similarly by selecting a k-set in {p + 1, . . . , n − (k − 1)} \ S1 and by enlarging the

k − 1 inter-spaces by one. There are
(

n − (k − 1)− p − k
k

)
ways to choose S2 given S1. More generally, to construct Si
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with i < p, one can select a k-set in {p+1, . . . , n− (k−1)}\
⋃

j<i S j and by enlarging the k−1 inter-spaces by one.

And there are
(

n − (k − 1)− p − (i − 1)k
k

)
=

(
(p − i)k + 1

k

)
ways to choose such Si , simplifying and plugging n = p(k + 1).

Noting that there is only one way for selecting Sp (which does not require Property 2), the total number of ways to
choose a sequence (S1, . . . , Sp) is:

|S p,k | =

p−1∏
i=1

(
(p − i)k + 1

k

)
=

p−1∏
i=1

(
ik + 1

k

)
.

However,(
ik + 1

k

)
=

ik + 1
k
·

ik

k − 1
· · ·

ik − j

k − j − 1
· · ·

ik − (k − 2)
1

> ik

since ik − j > i(k − j − 1) for i > 1. It follows that

|S p,k | >

p−1∏
i=1

ik
= (p − 1)!k . �

It remains to combine Claims 2 and 3. Let us choose p = bn/ log nc. We have k = n/p − 1 > log n − 1. Using the
fact for x large enough log(x !) > x log x − O(x), we obtain

|F p,k | > ((p − 1)(k + 1))! · (p − 1)!k,

and thus

log |F p,k | > (p − 1)(k + 1) log((p − 1)(k + 1))+ k(p − 1) log(p − 1)− O(pk)

> (2pk − O(k + p)) log(p − 1)− O(kp)

> 2pk log p − O((k + p) log p)− O(kp)

> 2n log(n/ log n)− O(n)

> 2n log n − O(n log log n).

This completes the proof of Theorem 5.2. �

Theorem 5.3. Any distance labeling scheme on the family of n-vertex permutation graphs requires a label of length
at least 3 log n − O(log log n) bits.

Proof. Using the lower bound on 1
N−1 log P(N − 1) from Theorem 5.2, we have:

1
N

log P(N − 1) =
N − 1

N
·

1
N − 1

log P(N − 1)

> 2 log(N − 1)−
1
N
·

1
N − 1

· log P(N − 1)− O(log log N ).

Clearly, P(N ) 6 N !2 thus log P(N − 1) 6 2(N − 1) log(N − 1) and

1
N
·

1
N − 1

log P(N − 1) 6
1
N
· 2 log(N − 1) < 1.

Using the fact that N 6 n/ log n and N − 1 > n/(2 log n),

1
N

log P(N − 1) > 2 log(n/(2 log n))− O(log log n)

> 2 log n − O(log log n).

By Lemma 5.2, the lower bound on the label length is:

1
N

log P(N − 1)+ log N − 9 > 3 log n − O(log log n). �
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6. Conclusion and discussion

In this paper we have looked for a large family of graphs supporting distance labeling scheme with O(log n) bit
labels, and more generally with O( f (d) log n) bit labels where d is some invariant of the family. In particular we have
shown that comparability graphs of posets of dimension d enjoy an O(log n) bit distance labeling scheme for d 6 2,
and require Ω(n1/3) bit label in the worst-case if d > 3.

An interesting direction for further research would be to discover other large families of graphs supporting distance
labeling schemes with logarithmic or poly-logarithmic labels (in n, the number of vertices). To the best of our
knowledge, only interval and permutation graphs (and their immediate generalizations into circular-arc and circular
permutation graphs) have O(log n) bit label schemes. Trees, bounded tree-width and bounded clique-width graphs
have O(log2 n) bit distance labeling schemes.

Intersection graphs, like interval or permutation graphs, seem a priori good candidates for this search, essential
because such graphs are “simple” in the Kolmogorov Complexity sense: they support short programs to decide
adjacency. However we moderate this feeling because many intersection graph families contain planar graphs.
Although planar graphs have also short adjacency labels, 3 log n + O(log∗ n) bits per vertex from [2], it is known
that every distance labeling scheme on this family requires some labels of Ω(n1/3) bits [20]. Some generalizations of
interval graphs, namely interval number-3 graphs (the intersection graphs of the union of 3 intervals) and boxicity-3
graphs (the intersection graphs of the Cartesian product of 3 intervals), both contain planar graphs [32,35]. So, the
design of distance labeling with O(log n) bit labels (and related problems like all-pair shortest path and compact
routing) remains open for these generalizations only for boxicity-2, and interval number-2 graphs.

Another direction is to extend our data-structure in a dynamic setting.
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