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Distance labeling

Dist(L(x), L(y)) = distg(x,y) =3
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Existing results

Distance labeling schemes :
@ proper interval graphs : 2 [log n] [GP03]
@ permutation graphs : log?n [KKPOO]

Routing schemes :
@ Alogn with an additive factor 1 [DLO4]
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A permutation graph G[r] = (V, E) is defined as follows :
o V={1,2,...,n}
o {ij}€E & (i—j)(x (i) —771(j)) <0
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Permutation graphs

A permutation graph is the intersection graph of segments between
two parallel lines.

T =42513
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For all u,v,w € V such that:

du<<v<w
o {u,v},{v,w} €E



For all u,v,w € V such that:

ou<<v<w
o {u,v},{v,w} €E




For all u,v,w € V such that:

ou<<v<w
o {u,v},{v,w} €E




For all u,v,w € V such that:

ou<<v<w
o {u,v},{v,w} €E

= {u,w} € E



Difiifions Distance labeling

Permutation graphs in the Cartesian plane o
grap ¢ P Permutation graphs
Results o & .
. Non-separating linear extension
Conclusion

Non-separating linear extension

For all u,v,w € V such that u < v < w,

o if {u,w} € E, then {u,v} € Eor {v,w} € E;

o if {u,w} ¢ E, then {u,v} ¢ Eor {v,w} ¢ E. )
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Permut

Each vertex i € V is associated with the point of coordinates

(i, 7= 1(/))-

{ijy € E & (i—)@Hi)—771()) <0
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Permutation graph draw in the plane
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m

m=25,7,2,6,1,11,8,10,4,3,9
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o A={ueV|N (v)=2}

e B={ueV|N"(u)=0o}
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Adjacency

For every u € V, there exist f,(u), L(u) € A such that
fa(u) < I(uw) and N[u] N A = [f3(u), L(u)] N

Similarly, there exist f5(u), Ip(u) € B such that fp(u) < Ip(u) and
N[u] N B = [fp(u), Ip(u)] N B.
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Overlapping

Let u < v be two non-adjacent vertices. Then, f;(u) < fo(v),
L(u) < 13(v), fp(u) < fp(v), and Ip(u) < Ip(v).
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Let u < v be two non-adjacent vertices. Then there exists a

shortest path u, wy,...,wy_1, v such that wy € {/5(u), lp(u)}, and,
if dg(u,v) >3, wx_1 € {fa(v), fr(v)}.
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Interval graphs

For each vertex u, we denote Ig(u) = [f3(u), l,(v)] and
Ia(u) = [fp(u), Ip(u)]

We denote by G4 the intersection graph defined by the set of
intervals {/a(u) | u € A}. And Gg the intersection graph defined
by the set of intervals {/g(u) | u € B}.
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For all u,v € A, dg(u,v) = 2dg,(1a(u), la(v)). Similarly, for all
u,v € B, dg(u,v) = 2dg,(Ig(u), Is(v)).
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Let u, v two vertices such that u < v. Then,
Q if 7 1(uv) > 7 (v) then dg(u,v) =1;
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Let u, v two vertices such that u < v. Then,
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Distance Theorem

Let u, v two vertices such that u < v. Then,

Q if 7 1(uv) > 7 (v) then dg(u,v) =1;

Q otherwise, if f,(v) < I,(u) or fp(v) < Ip(u), then dg(u,v) = 2;

© otherwise, if f3(v) < L(Ip(u)) or fp(v) < Ip(l2(u)) then

dg(u,v) =3;

@ otherwise, dg(u, v) is the minimum between:
2 + 2dg,(Ie(ls(u)), /B(fb( )
2+ 2dg,(lIa(ls(v)), Ia(fa(v)))
(4a(
(

(

(
3+ 2dg,(Ia(la(I6(w))), 1a(fa(v)))
3+ 2de, (I8(I6(la(w))), I8(fo(v)))

<

¢ © €
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Labels are of 9 [log n| + 6 bits at most, and it takes constant time
to decode the distance from the labels.
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Conclusion

Labels are of 9 [log n| + 6 bits at most, and it takes constant time

to decode the distance from the labels. }

Permutation graphs have a shortest-path routing scheme with
constant time protocol, and with O(log n) bit addresses, and, for
every vertex u, the routing table of u is of size O(deg(u) log n)
bits. If the graph is bipartite then the size of the local routing
tables can be reduced to O(log n) bit per vertex.

\
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