Definitions
Permutation graphs in the Cartesian plane
Results
Conclusion

Distance labeling of permutation graphs

F. Bazzaro, C. Gavoille

$$Dist(L(x), L(y)) = dist_G(x, y) = 3$$

Existing results

Distance labeling schemes:

• proper interval graphs : $2 \lceil \log n \rceil$ [GP03]

• permutation graphs : $\log^2 n$ [KKP00]

Routing schemes:

• $\Delta \log n$ with an additive factor 1 [DL04]

Permutation graphs

A permutation graph $G[\pi] = (V, E)$ is defined as follows :

- $V = \{1, 2, \dots, n\}$
- $\{i,j\} \in E \iff (i-j)(\pi^{-1}(i)-\pi^{-1}(j)) < 0$

Permutation graphs

A permutation graph $G[\pi] = (V, E)$ is defined as follows :

- $V = \{1, 2, \dots, n\}$
- $\{i,j\} \in E \iff (i-j)(\pi^{-1}(i)-\pi^{-1}(j)) < 0$

$$\pi = 42513$$

Permutation graphs

A permutation graph is the intersection graph of segments between two parallel lines.

$$\pi = 42513$$

- u < v < w</p>
- $\bullet \ \left\{ u,v\right\} ,\left\{ v,w\right\} \in E$

- u < v < w</p>
- $\bullet \ \left\{ u,v\right\} ,\left\{ v,w\right\} \in E$

- u < v < w</p>
- $\{u, v\}, \{v, w\} \in E$

- u < v < w</p>
- $\bullet \ \left\{ u,v\right\} ,\left\{ v,w\right\} \in E$

$$\Rightarrow \{u, w\} \in E$$

Lemma

For all $u, v, w \in V$ such that $u \leq v \leq w$,

• if
$$\{u, w\} \in E$$
, then $\{u, v\} \in E$ or $\{v, w\} \in E$;

• if
$$\{u, w\} \notin E$$
, then $\{u, v\} \notin E$ or $\{v, w\} \notin E$.

Permutation graph draw in the plane

Each vertex $i \in V$ is associated with the point of coordinates $(i, \pi^{-1}(i))$.

$$\{i,j\} \in E \iff (i-j)(\pi^{-1}(i)-\pi^{-1}(j)) < 0$$

Permutation graph draw in the plane

$$\pi = 5, 7, 2, 6, 1, 11, 8, 10, 4, 3, 9$$

Neighbors

Particular sets

$$\bullet \ A = \{u \in V \mid N^-(u) = \varnothing\}$$

•
$$B = \{u \in V \mid N^+(u) = \emptyset\}.$$

Particular sets

Adjacency

Lemma

For every $u \in V$, there exist $f_a(u), I_a(u) \in A$ such that $f_a(u) \le I_a(u)$ and $N[u] \cap A = [f_a(u), I_a(u)] \cap A$.

Similarly, there exist $f_b(u), I_b(u) \in B$ such that $f_b(u) \leq I_b(u)$ and $N[u] \cap B = [f_b(u), I_b(u)] \cap B$.

Adjacency

Adjacency

Properties
Interval graphs
Distance in permutation graphs
Label size

Overlapping

Lemma

Let u < v be two non-adjacent vertices. Then, $f_a(u) \le f_a(v)$, $I_a(u) \le I_a(v)$, $f_b(u) \le f_b(v)$, and $I_b(u) \le I_b(v)$.

Properties Interval graphs Distance in permutation graphs Label size

Overlapping

Shortest path

Lemma

Let u < v be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{I_a(u), I_b(u)\}$, and, if $d_G(u, v) \geq 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.

Shortest path

Lemma

Let u < v be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{I_a(u), I_b(u)\}$, and, if $d_G(u, v) \geq 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.

Properties Interval graphs Distance in permutation graphs Label size

Shortest path

Lemma

Let u < v be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{I_a(u), I_b(u)\}$, and, if $d_G(u, v) \ge 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.

Properties Interval graphs Distance in permutation graphs Label size

Shortest path

Lemma

Let u < v be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{I_a(u), I_b(u)\}$, and, if $d_G(u, v) \geq 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.

Shortest path

Lemma

Let u < v be two non-adjacent vertices. Then there exists a shortest path $u, w_1, \ldots, w_{k-1}, v$ such that $w_1 \in \{I_a(u), I_b(u)\}$, and, if $d_G(u, v) \geq 3$, $w_{k-1} \in \{f_a(v), f_b(v)\}$.

For each vertex
$$u$$
, we denote $I_B(u) = [f_a(u), I_a(u)]$ and $I_A(u) = [f_b(u), I_b(u)]$.

We denote by G_A the intersection graph defined by the set of intervals $\{I_A(u) \mid u \in A\}$. And G_B the intersection graph defined by the set of intervals $\{I_B(u) \mid u \in B\}$.

Properties Interval graphs Distance in permutation graphs Label size

Distance

Lemma

For all $u, v \in A$, $d_G(u, v) = 2d_{G_A}(I_A(u), I_A(v))$. Similarly, for all $u, v \in B$, $d_G(u, v) = 2d_{G_B}(I_B(u), I_B(v))$.

Distance

Lemma

For all $u, v \in A$, $d_G(u, v) = 2d_{G_A}(I_A(u), I_A(v))$. Similarly, for all $u, v \in B$, $d_G(u, v) = 2d_{G_B}(I_B(u), I_B(v))$.

Distance

Lemma

For all $u, v \in A$, $d_G(u, v) = 2d_{G_A}(I_A(u), I_A(v))$. Similarly, for all $u, v \in B$, $d_G(u, v) = 2d_{G_B}(I_B(u), I_B(v))$.

Theorem

① if
$$\pi^{-1}(u) > \pi^{-1}(v)$$
 then $d_G(u, v) = 1$;

Theorem

- if $\pi^{-1}(u) > \pi^{-1}(v)$ then $d_G(u, v) = 1$;
- ② otherwise, if $f_a(v) \le I_a(u)$ or $f_b(v) \le I_b(u)$, then $d_G(u, v) = 2$;

Theorem

- if $\pi^{-1}(u) > \pi^{-1}(v)$ then $d_G(u, v) = 1$;
- ② otherwise, if $f_a(v) \le I_a(u)$ or $f_b(v) \le I_b(u)$, then $d_G(u, v) = 2$;
- **3** otherwise, if $f_a(v) \leq I_a(I_b(u))$ or $f_b(v) \leq I_b(I_a(u))$ then $d_G(u,v)=3$;

Theorem

- **1** if $\pi^{-1}(u) > \pi^{-1}(v)$ then $d_G(u, v) = 1$;
- ② otherwise, if $f_a(v) \le I_a(u)$ or $f_b(v) \le I_b(u)$, then $d_G(u, v) = 2$;
- otherwise, if $f_a(v) \leq I_a(I_b(u))$ or $f_b(v) \leq I_b(I_a(u))$ then $d_G(u,v)=3$;
- **1** otherwise, $d_G(u, v)$ is the minimum between:
 - $2 + 2d_{G_B}(I_B(I_b(u)), I_B(f_b(v)))$
 - $2 + 2d_{G_A}(I_A(I_a(u)), I_A(f_a(v)))$
 - $3 + 2d_{G_A}(I_A(I_a(I_b(u))), I_A(f_a(v)))$
 - $3 + 2d_{G_B}(I_B(I_b(I_a(u))), I_B(f_b(v)))$

Label size

Label size

For each vertex u:

• $2 \lceil \log n \rceil$ for the coordinates of u in the plane

Label size

- $2 \lceil \log n \rceil$ for the coordinates of u in the plane
- $4 \lceil \log n \rceil$ for $I_a(u)$ and $I_b(u)$

Label size

- $2 \lceil \log n \rceil$ for the coordinates of u in the plane
- $4 \lceil \log n \rceil$ for $I_a(u)$ and $I_b(u)$
- $4 \lceil \log n \rceil$ for $f_a(u)$ and $f_b(u)$

Label size

- $2 \lceil \log n \rceil$ for the coordinates of u in the plane
- $4 \lceil \log n \rceil$ for $I_a(u)$ and $I_b(u)$
- $4 \lceil \log n \rceil$ for $f_a(u)$ and $f_b(u)$
- $4 \lceil \log n \rceil$ for $I_a(I_b(u))$ and $I_b(I_a(u))$

Conclusion

Lemma

Labels are of $9 \lceil \log n \rceil + 6$ bits at most, and it takes constant time to decode the distance from the labels.

Conclusion

Lemma

Labels are of $9 \lceil \log n \rceil + 6$ bits at most, and it takes constant time to decode the distance from the labels.

Theorem

Permutation graphs have a shortest-path routing scheme with constant time protocol, and with $O(\log n)$ bit addresses, and, for every vertex u, the routing table of u is of size $O(\deg(u)\log n)$ bits. If the graph is bipartite then the size of the local routing tables can be reduced to $O(\log n)$ bit per vertex.

Conclusion

