# Distance labeling of permutation graphs 

F. Bazzaro, C. Gavoille

## Distance labeling

Permutation graphs
Non-separating linear extension

## Distance labeling



## Distance labeling

Permutation graphs
Non-separating linear extension

## Distance labeling



## Distance labeling

Permutation graphs
Non-separating linear extension

## Distance labeling



Distance labeling
Permutation graphs
Non-separating linear extension

## Distance labeling


$\operatorname{Dist}(L(x), L(y))=\operatorname{dist}_{G}(x, y)=3$

## Existing results

Distance labeling schemes:

- proper interval graphs: $2\lceil\log n\rceil$
[GP03]
- permutation graphs: $\log ^{2} n$
[KKP00]

Routing schemes:

- $\Delta \log n$ with an additive factor 1
[DL04]


## Permutation graphs

A permutation graph $G[\pi]=(V, E)$ is defined as follows:

- $V=\{1,2, \ldots, n\}$
- $\{i, j\} \in E \Leftrightarrow(i-j)\left(\pi^{-1}(i)-\pi^{-1}(j)\right)<0$


## Permutation graphs

A permutation graph $G[\pi]=(V, E)$ is defined as follows:

- $V=\{1,2, \ldots, n\}$
- $\{i, j\} \in E \Leftrightarrow(i-j)\left(\pi^{-1}(i)-\pi^{-1}(j)\right)<0$

$$
\pi=42513
$$



## Permutation graphs

A permutation graph is the intersection graph of segments between two parallel lines.

$$
\pi=42513
$$



## Non-separating linear extension

For all $u, v, w \in V$ such that:

- $u<v<w$
- $\{u, v\},\{v, w\} \in E$


## Non-separating linear extension

For all $u, v, w \in V$ such that:

- $u<v<w$
- $\{u, v\},\{v, w\} \in E$



## Non-separating linear extension

For all $u, v, w \in V$ such that:

- $u<v<w$
- $\{u, v\},\{v, w\} \in E$



## Non-separating linear extension

For all $u, v, w \in V$ such that:

- $u<v<w$
- $\{u, v\},\{v, w\} \in E$

$\Rightarrow\{u, w\} \in E$


## Non-separating linear extension

## Lemma

For all $u, v, w \in V$ such that $u \leq v \leq w$,

- if $\{u, w\} \in E$, then $\{u, v\} \in E$ or $\{v, w\} \in E$;
- if $\{u, w\} \notin E$, then $\{u, v\} \notin E$ or $\{v, w\} \notin E$.


## Permutation graph draw in the plane

Each vertex $i \in V$ is associated with the point of coordinates

$$
\left(i, \pi^{-1}(i)\right)
$$

$$
\{i, j\} \in E \Leftrightarrow(i-j)\left(\pi^{-1}(i)-\pi^{-1}(j)\right)<0
$$



## Permutation graph draw in the plane



## Neighbors


F. Bazzaro, C. Gavoille

Distance labeling of permutation graphs

## Particular sets

- $A=\left\{u \in V \mid N^{-}(u)=\varnothing\right\}$
- $B=\left\{u \in V \mid N^{+}(u)=\varnothing\right\}$.


## Particular sets


F. Bazzaro, C. Gavoille

Distance labeling of permutation graphs

## Adjacency

## Lemma

For every $u \in V$, there exist $f_{a}(u), I_{a}(u) \in A$ such that $f_{a}(u) \leq l_{a}(u)$ and $N[u] \cap A=\left[f_{a}(u), l_{a}(u)\right] \cap A$.

Similarly, there exist $f_{b}(u), I_{b}(u) \in B$ such that $f_{b}(u) \leq I_{b}(u)$ and $N[u] \cap B=\left[f_{b}(u), I_{b}(u)\right] \cap B$.

## Adjacency



## Adjacency



## Overlapping

## Lemma

Let $u<v$ be two non-adjacent vertices. Then, $f_{a}(u) \leq f_{a}(v)$, $l_{a}(u) \leq I_{a}(v), f_{b}(u) \leq f_{b}(v)$, and $I_{b}(u) \leq I_{b}(v)$.

## Overlapping


F. Bazzaro, C. Gavoille

Distance labeling of permutation graphs

## Shortest path

## Lemma

Let $u<v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_{1}, \ldots, w_{k-1}, v$ such that $w_{1} \in\left\{I_{a}(u), I_{b}(u)\right\}$, and, if $d_{G}(u, v) \geq 3, w_{k-1} \in\left\{f_{a}(v), f_{b}(v)\right\}$.

## Shortest path

## Lemma

Let $u<v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_{1}, \ldots, w_{k-1}, v$ such that $w_{1} \in\left\{I_{a}(u), I_{b}(u)\right\}$, and, if $d_{G}(u, v) \geq 3, w_{k-1} \in\left\{f_{a}(v), f_{b}(v)\right\}$.


[^0]
## Shortest path

## Lemma

Let $u<v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_{1}, \ldots, w_{k-1}, v$ such that $w_{1} \in\left\{I_{a}(u), I_{b}(u)\right\}$, and, if $d_{G}(u, v) \geq 3, w_{k-1} \in\left\{f_{a}(v), f_{b}(v)\right\}$.


[^1]
## Shortest path

## Lemma

Let $u<v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_{1}, \ldots, w_{k-1}, v$ such that $w_{1} \in\left\{I_{a}(u), I_{b}(u)\right\}$, and, if $d_{G}(u, v) \geq 3, w_{k-1} \in\left\{f_{a}(v), f_{b}(v)\right\}$.


[^2]
## Shortest path

## Lemma

Let $u<v$ be two non-adjacent vertices. Then there exists a shortest path $u, w_{1}, \ldots, w_{k-1}, v$ such that $w_{1} \in\left\{I_{a}(u), I_{b}(u)\right\}$, and, if $d_{G}(u, v) \geq 3, w_{k-1} \in\left\{f_{a}(v), f_{b}(v)\right\}$.


[^3]
## Interval graphs

For each vertex $u$, we denote $I_{B}(u)=\left[f_{a}(u), I_{a}(u)\right]$ and $I_{A}(u)=\left[f_{b}(u), I_{b}(u)\right]$.

We denote by $G_{A}$ the intersection graph defined by the set of intervals $\left\{I_{A}(u) \mid u \in A\right\}$. And $G_{B}$ the intersection graph defined by the set of intervals $\left\{I_{B}(u) \mid u \in B\right\}$.

## Interval graphs


F. Bazzaro, C. Gavoille

Distance labeling of permutation graphs

## Interval graphs

$G_{B}$


Properties

## Interval graphs



## Interval graphs

$G_{B}$


## Distance

## Lemma

For all $u, v \in A, d_{G}(u, v)=2 d_{G_{A}}\left(I_{A}(u), I_{A}(v)\right)$. Similarly, for all $u, v \in B, d_{G}(u, v)=2 d_{G_{B}}\left(I_{B}(u), I_{B}(v)\right)$.

## Distance

## Lemma

For all $u, v \in A, d_{G}(u, v)=2 d_{G_{A}}\left(I_{A}(u), I_{A}(v)\right)$. Similarly, for all $u, v \in B, d_{G}(u, v)=2 d_{G_{B}}\left(I_{B}(u), I_{B}(v)\right)$.


## Distance

## Lemma

For all $u, v \in A, d_{G}(u, v)=2 d_{G_{A}}\left(I_{A}(u), I_{A}(v)\right)$. Similarly, for all $u, v \in B, d_{G}(u, v)=2 d_{G_{B}}\left(I_{B}(u), I_{B}(v)\right)$.


## Distance Theorem

## Theorem

Let $u, v$ two vertices such that $u<v$. Then,
(1) if $\pi^{-1}(u)>\pi^{-1}(v)$ then $d_{G}(u, v)=1$;

## Distance Theorem

## Theorem

Let $u, v$ two vertices such that $u<v$. Then,
(1) if $\pi^{-1}(u)>\pi^{-1}(v)$ then $d_{G}(u, v)=1$;
(2) otherwise, if $f_{a}(v) \leq I_{a}(u)$ or $f_{b}(v) \leq I_{b}(u)$, then $d_{G}(u, v)=2$;

## Distance Theorem

## Theorem

Let $u, v$ two vertices such that $u<v$. Then,
(1) if $\pi^{-1}(u)>\pi^{-1}(v)$ then $d_{G}(u, v)=1$;
(2) otherwise, if $f_{a}(v) \leq I_{a}(u)$ or $f_{b}(v) \leq I_{b}(u)$, then $d_{G}(u, v)=2$;
(3) otherwise, if $f_{a}(v) \leq I_{a}\left(I_{b}(u)\right)$ or $f_{b}(v) \leq I_{b}\left(I_{a}(u)\right)$ then $d_{G}(u, v)=3 ;$

## Distance Theorem

## Theorem

Let $u, v$ two vertices such that $u<v$. Then,
(1) if $\pi^{-1}(u)>\pi^{-1}(v)$ then $d_{G}(u, v)=1$;
(2) otherwise, if $f_{a}(v) \leq I_{a}(u)$ or $f_{b}(v) \leq I_{b}(u)$, then $d_{G}(u, v)=2$;
(3) otherwise, if $f_{a}(v) \leq I_{a}\left(I_{b}(u)\right)$ or $f_{b}(v) \leq I_{b}\left(I_{a}(u)\right)$ then $d_{G}(u, v)=3 ;$
(3) otherwise, $d_{G}(u, v)$ is the minimum between:

- $2+2 d_{G_{B}}\left(I_{B}\left(I_{b}(u)\right), I_{B}\left(f_{b}(v)\right)\right)$
- $2+2 d_{G_{A}}\left(I_{A}\left(I_{a}(u)\right), I_{A}\left(f_{a}(v)\right)\right)$
- $3+2 d_{G_{A}}\left(I_{A}\left(I_{a}\left(I_{b}(u)\right)\right), I_{A}\left(f_{a}(v)\right)\right)$
- $3+2 d_{G_{B}}\left(I_{B}\left(I_{b}\left(I_{a}(u)\right)\right), I_{B}\left(f_{b}(v)\right)\right)$


## Label size

For each vertex $u$ :

## Label size

For each vertex $u$ :

- $2\lceil\log n\rceil$ for the coordinates of $u$ in the plane


## Label size

For each vertex $u$ :

- $2\lceil\log n\rceil$ for the coordinates of $u$ in the plane
- $4\lceil\log n\rceil$ for $I_{a}(u)$ and $I_{b}(u)$


## Label size

For each vertex $u$ :

- $2\lceil\log n\rceil$ for the coordinates of $u$ in the plane
- $4\lceil\log n\rceil$ for $I_{a}(u)$ and $I_{b}(u)$
- $4\lceil\log n\rceil$ for $f_{a}(u)$ and $f_{b}(u)$


## Label size

For each vertex $u$ :

- $2\lceil\log n\rceil$ for the coordinates of $u$ in the plane
- $4\lceil\log n\rceil$ for $I_{a}(u)$ and $I_{b}(u)$
- $4\lceil\log n\rceil$ for $f_{a}(u)$ and $f_{b}(u)$
- $4\lceil\log n\rceil$ for $I_{a}\left(I_{b}(u)\right)$ and $I_{b}\left(I_{a}(u)\right)$


## Conclusion

Lemma
Labels are of $9\lceil\log n\rceil+6$ bits at most, and it takes constant time to decode the distance from the labels.

## Conclusion

## Lemma

Labels are of $9\lceil\log n\rceil+6$ bits at most, and it takes constant time to decode the distance from the labels.

## Theorem

Permutation graphs have a shortest-path routing scheme with constant time protocol, and with $O(\log n)$ bit addresses, and, for every vertex $u$, the routing table of $u$ is of size $O(\operatorname{deg}(u) \log n)$ bits. If the graph is bipartite then the size of the local routing tables can be reduced to $O(\log n)$ bit per vertex.

## Conclusion


F. Bazzaro, C. Gavoille

Distance labeling of permutation graphs


[^0]:    F. Bazzaro, C. Gavoille

[^1]:    F. Bazzaro, C. Gavoille

[^2]:    F. Bazzaro, C. Gavoille

[^3]:    F. Bazzaro, C. Gavoille

