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Abstract

We show that every permutation graph with n elements can be preprocessed in O(n)
time, if two linear extensions of the corresponding poset are given, to produce an
O(n) space data-structure supporting distance queries in constant time. The data-
structure is localized and given as a distance labeling, that is each vertex receives a
label of O(log n) bits so that distance queries between any two vertices are answered
by inspecting on their labels only. This result improves the previous scheme due to
Katz, Katz and Peleg [20] in the STACS ’00 by a log n factor.
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1 Introduction

The comparability graphs of two-dimensional posets are exactly the permuta-
tion graphs, namely the intersection graphs of straight segments between two
parallel lines [4]. Intersection graphs are graphs in which vertices are mapped
to objects, with the vertices defined to be adjacent if and only if the corre-
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sponding objects have nonempty intersection. See [23] for a comprehensive
introduction to the intersection graphs.

This paper deals with the problem of the distance computation and dis-
tributed abilities of permutation graphs. Commonly, when we make a query
concerning a set of nodes in a graph (adjacency, distance, connectivity, etc.),
we need to make a global access to the structure. In our approach, the com-
promise is to store the maximum of information in a label associated with a
vertex to have directly what we need with a local access. Motivation of local-
ized data-structures in distributed computing is survey and widely discussed
in [17].

We are especially interested in the distance labeling problem, introduced
in [24]. The problem consists in labeling the vertices of a graph to compute
the distance between any two of its vertices x and y using only the information
stored in the labels of x and y, without any other source of information. The
main parameters taken into account when designing a solution are: (1) length
(in bits) of the labels; (2) time complexity to decode the distance from the
labels; and (3) time complexity to preprocess the graph and to compute all
the labels.

Related works

Distance computation in graphs is one of the most fundamental graph al-
gorithmic problem. Computing the distance matrix of a general graph is
strongly related to Boolean matrix multiplication [12], and achieving this task
as quickly as possible is a widely open problem.

However, the time complexity of this problem is known, and can be re-
duced significantly from the naive O(n3) upper bound, for many families
of graphs: planar graphs [11,21,29], bounded tree-width graphs [7], interval
graphs [3,8,16], etc.

Beyond the classical all-pair distance problem, whose goal is to preprocess
(possibly linearly) a graph and to produce a data-structure supporting dis-
tance or shortest-path queries in the minimum time complexity, the distance
labeling problem is a variant in which the queries must be answered locally, by
looking at the information related to the concerned vertices only. Introduced
in [24], it generalizes adjacency labeling [1,19] whose goal is only to decide
whether the distance is 1 or not between any two vertices. At this point, it is
worth to mention that any distance labeling scheme on a family F of graphs
with �(n) bit labels converts trivially into a non-distributed data-structure for
F of O(�(n) ·n/ log n) space supporting distance queries within the same time
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complexity, being assumed that a cell of space can store Ω(log n) bits of data.

The main results on the field are that general graphs support a distance
labeling scheme with labels of O(n) bits [18], and that trees [1,24], bounded
tree-width graphs [18], distance-hereditary graphs [15], bounded clique-width
graphs [10], some non-positively curved plane graphs [9], interval and permu-
tation graphs, all support distance labeling schemes with O(log2 n) bit labels.
There are also deep results concerning approximated distance labeling schemes
we will not discuss here, e.g., see [14,27,29,30].

The O(n) bit upper bound is tight for general graphs, and a lower bound
of Ω(log2 n) bit on the label length is known for trees [18], implying that
all the results mentioned above are tight as well, excepted for interval and
permutation graphs that does not contain trees. Recently, [16] showed an
optimal bound of O(log n) bits for interval graphs and circular-arc graphs.

Concerning permutation graphs, we should mention the related work of [25].
It is shown how to compute one fixed BFS tree and DFS tree in O(n) and
O(n log log n) time respectively when the permutation of the graph is given.
Although original, the technique is limited; it does not allow us to choose
arbitrarily the root of the trees.

2 Our results

We show that permutation graphs with n vertices enjoy a distance labeling
with labels of length O(log n) bits. The distance can be computed in constant
time, and all the labels are computed in O(n) time if a realizer (the permuta-
tion associated to the representation of the graph as an intersection model of
straight segments between two parallel lines) is given. (Such realizer can be
obtained be in O(n+m) time [22] otherwise, m the number of edges). This re-
sult has optimal complexities (label length, distance decoder time complexity,
and preprocessing time complexity). It improves within a log n factor on the
label length the previous result of Katz, Katz and Peleg [20] in the STACS ’00.

As remarked previously, this leads to an optimal O(n) space data-structure
supporting distance queries in constant time, and computable in O(n) time.

Outline of our distance labeling scheme

We use a 2D geometric representation of the permutation graph, each vertex
being associated with a point of N

2, and u is adjacent to v if and only if v is
in the South-East or North-West quadrant around u. For our purpose, two
sets of points (or vertices) are of special interests: those with no neighbors
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in their North-West quadrant (call A), and those with no neighbors in their
South-East quadrant (call B). Intuitively, one can always construct a shortest
path between non-adjacent vertices by using only edges alternating between
A and B. The main difficult resides in deciding whether the first edge must
be incident to a vertex of A or of B.

The first trick is to treat differently short and long distances. We entirely
characterize distances � 3 by comparing the coordinates of six specific vertices
spread around each vertex (three belongs to A and three to B). Then, for
long distances, i.e., distances � 4, we show that they reduce to the distance
computation between vertices of two intermediate graphs, GA and GB, defined
on respectively the vertices of A and of B. The edges of GA and GB are entirely
determined by an asymmetric relation between the points of A and of B, and
we show that a distance labeling for these graphs with O(logn) bit labels is
possible. The distance is then computed by evaluating the distance in the
graphs GA and GB between the six points associated with the source and the
six points associated with the destination.

Finally, after several optimizations, the resulting data-structure is ex-
tremely simple. It is composed of 9 integers of {0, . . . , n − 1} plus 6 bits.
The distance decoder simply consists of a constant number of additions and
comparisons on these integers.

Theorem 2.1 Permutation graphs with n vertices enjoy a distance labeling

scheme using labels of 9 �log n�+6 bits. The distance decoder has constant time

complexity, and given a realizer of the graph, i.e., a permutation of {1, . . . , n},
all the labels can be computed in O(n) time.

3 Conclusion and Discussion

An interesting direction for further research would be to discover other large
families of graphs supporting distance labeling schemes with logarithmic or
poly-logarithmic labels (in n, the number of vertices). To our best knowl-
edge, only interval and permutation graphs (and their immediate generaliza-
tions into circular-arc and circular permutation graphs) have O(log n) bit label
schemes. Trees, bounded tree-width and bounded clique-width graphs have
O(log2 n) bit distance labeling schemes.

As a byproduct, we also show how to adapt our data-structure such that
a length-d shortest path can be extracted in O(d) time for any distance-d pair
of vertices. One can also use our localized data-structure to identify the first
shortest-path edge, and we therefore present (cf. [5,6]) a new shortest-path
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compact routing scheme for permutation graphs, improving the result of [13].
All these results can be extended to circular permutation graphs, a natural
generalization of permutation graphs.

Intersection graphs, like interval or permutation graphs, seem a priori good
candidates for this search, essential because such graphs are “simple” in the
Kolmogorov Complexity sense: they support short programs to decide ad-
jacency. However we moderate this feeling because many intersection graph
families contain planar graphs. Although planar graphs have also short ad-
jacency labels, 3 log n + O(log∗ n) bits per vertex from [2], it is known that
every distance labeling scheme on this family requires some labels of Ω(n1/3)
bits [18]. Some generalizations of interval graphs, namely interval number-
3 graphs (the intersection graphs of the union of 3 intervals) and boxicity-3
graphs (the intersection graphs of the Cartesian product of 3 intervals), both
contain planar graphs [26,28]. So, the design of distance labeling with O(log n)
bit labels (and related problems like all-pair shortest path and compact rout-
ing) remains open for these generalizations only for boxicity-2, and interval
number-2 graphs.

Another direction is to extend our data-structure in a dynamic setting.
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